首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Persistent cellular migration requires efficient protrusion of the front of the cell, the leading edge where the actin cytoskeleton and cell-substrate adhesions undergo constant rearrangement. Rho family GTPases are essential regulators of the actin cytoskeleton and cell adhesion dynamics. Here, we examined the role of the RhoGEF TEM4, an activator of Rho family GTPases, in regulating cellular migration of endothelial cells. We found that TEM4 promotes the persistence of cellular migration by regulating the architecture of actin stress fibers and cell-substrate adhesions in protruding membranes. Furthermore, we determined that TEM4 regulates cellular migration by signaling to RhoC as suppression of RhoC expression recapitulated the loss-of-TEM4 phenotypes, and RhoC activation was impaired in TEM4-depleted cells. Finally, we showed that TEM4 and RhoC antagonize myosin II-dependent cellular contractility and the suppression of myosin II activity rescued the persistence of cellular migration of TEM4-depleted cells. Our data implicate TEM4 as an essential regulator of the actin cytoskeleton that ensures proper membrane protrusion at the leading edge of migrating cells and efficient cellular migration via suppression of actomyosin contractility.  相似文献   

6.
7.
The phage-shock-protein (Psp) stress-response system is conserved in many bacteria and has been linked to important phenotypes in Escherichia coli, Salmonella enterica and also Yersinia enterocolitica, where it is essential for virulence. It is activated by specific extracytoplasmic stress events such as the mislocalization of secretin proteins. From studies of the Psp system in E. coli, the cytoplasmic membrane proteins PspB and PspC have only been proposed to act as positive regulators of psp gene expression. However, in this study we show that PspB and PspC of Y. enterocolitica are dual function proteins, acting both as regulators and effectors of the Psp system. Consistent with the current model, they positively control psp gene expression in response to diverse inducing cues. PspB and PspC must work together to achieve this regulatory function, and bacterial two-hybrid (BACTH) analysis demonstrated a specific interaction between them, which was confirmed by in vivo cross-linking. We also show that PspB and PspC play a second role in supporting growth when a secretin protein is overexpressed. This function is independent from their role as regulators of psp gene expression. Furthermore, whereas PspB and PspC must work together for their regulatory function, they can apparently act independently to support growth during secretin production. This study expands the current understanding of the roles played by PspB and PspC, and demonstrates that they cannot be considered only as positive regulators of psp gene expression in Y. enterocolitica.  相似文献   

8.
9.
Luo QQ  Wang D  Yu MY  Zhu L 《IUBMB life》2011,63(2):120-128
Iron is essential for many biological processes, including oxygen delivery, and its supply is tightly regulated. Iron regulatory proteins (IRPs, IRP1 and IRP2) are master regulators of cellular iron metabolism. Hypoxia triggers a broad range of gene responses that are primarily mediated by hypoxia-inducible factor-1 (HIF-1). In this study, we have shown that hypoxia could not only upregulate the expression of hypoxia inducible factor-1 but also downregulate the expression of IRP1. However, the molecular mechanisms that govern the IRP1 response to hypoxia are not known. Herein we suggested that HIF/HRE system was an essential link between IRP1 and hypoxia. The HRE of IRP1 5'-regulation regions could combine with HIF-1 in vitro. Dual-luciferase reporter assay showed that IRP1 was directly downregulated by HIF/HRE system.  相似文献   

10.
11.
12.
13.
14.
15.
Selectively regulating gene expression in bacteria has provided an important tool for studying gene function. However, well-regulated gene control systems have been restricted primarily for use in laboratory non-pathogenic strains of bacteria (e.g. Escherichia coli, Bacillus subtilis). The development of analogous systems for use in bacterial pathogens such as Staphylococcus aureus would significantly enhance our ability to examine the contribution of any given gene product to pathogen growth and viability. In this report, we adapt, examine and compare three regulated gene expression systems in S. aureus, which had previously been used in B. subtilis. We demonstrate that all three systems function and exhibit titratable induction, together covering a dynamic range of gene expression of approximately 3000-fold. This dynamic range correlates well with the physiological expression levels of cellular proteins. Importantly, we show that one of these systems, the Spac system, is particularly useful for examining gene essentiality and creating specific conditional lethal phenotypes. Moreover, we find that titration of selective target gene products using this system allows direct demonstration of antibiotic mode of action.  相似文献   

16.
Production of biochemicals by industrial fermentation using microorganisms requires maintaining cellular production capacity, because maximal productivity is economically important. High-productivity microbial strains can be developed using static engineering, but these may not maintain maximal productivity throughout the culture period as culture conditions and cell states change dynamically. Additionally, economic reasons limit heterologous protein expression using inducible promoters to prevent metabolic burden for commodity chemical and biofuel production. Recently, synthetic and systems biology has been used to design genetic circuits, precisely controlling gene expression or influencing genetic behavior toward a desired phenotype. Development of dynamic regulators can maintain cellular phenotype in a maximum production state in response to factors including cell concentration, oxygen, temperature, pH, and metabolites. Herein, we introduce dynamic regulators of industrial microorganism optimization and discuss metabolic flux fine control by dynamic regulators in response to metabolites or extracellular stimuli, robust production systems, and auto-induction systems using quorum sensing.  相似文献   

17.
Nemo-like kinases define a novel family of serine/threonine kinases that are involved in integrating multiple signaling pathways. They are conserved regulators of Wnt/Wingless pathways, which may coordinate Wnt with TGFbeta-mediated signaling. Drosophila nemo was identified through its involvement in epithelial planar polarity, a process regulated by a non-canonical Wnt pathway. We have previously found that ectopic expression of Nemo using the Gal4-UAS system resulted in embryonic lethality associated with defects in patterning and head development. In this study we present our analyses of the phenotypes of germline clone-derived embryos. We observe lethality associated with head defects and reduction of programmed cell death and conclude that nmo is an essential gene. We also present data showing that nmo is involved in regulating apoptosis during eye development, based on both loss of function phenotypes and on genetic interactions with the pro-apoptotic gene reaper. Finally, we present genetic data from the adult wing that suggest the activity of ectopically expressed Nemo can be modulated by Jun N-terminal kinase (JNK) signaling. Such an observation supports the model that there is cross-talk between Wnt, TGFbeta and JNK signaling at multiple stages of development.  相似文献   

18.
19.
The unfolded protein response (UPR) is an adaptive response to the stress that is caused by an accumulation of misfolded proteins in the lumen of the endoplasmic reticulum (ER). It is an important component of cellular homeostasis. During ER stress, the UPR increases the protein-folding capacity of the endoplasmic reticulum to relieve the stress. Failure to recover leads to apoptosis. Specific cellular mechanisms are required for the cellular recovery phase after UPR activation. Using bioinformatics tools, we identified a number of microRNAs that are predicted to decrease the mRNA expression levels for a number of critical components of the UPR. In this review, we discuss the potential role of microRNAs as key regulators of this pathway and describe how microRNAs may play an essential role in turning off the UPR after the stress has subsided.  相似文献   

20.

Background

Over many years, it has been assumed that enzymes work either in an isolated way, or organized in small catalytic groups. Several studies performed using “metabolic networks models” are helping to understand the degree of functional complexity that characterizes enzymatic dynamic systems. In a previous work, we used “dissipative metabolic networks” (DMNs) to show that enzymes can present a self-organized global functional structure, in which several sets of enzymes are always in an active state, whereas the rest of molecular catalytic sets exhibit dynamics of on-off changing states. We suggested that this kind of global metabolic dynamics might be a genuine and universal functional configuration of the cellular metabolic structure, common to all living cells. Later, a different group has shown experimentally that this kind of functional structure does, indeed, exist in several microorganisms.

Methodology/Principal Findings

Here we have analyzed around 2.500.000 different DMNs in order to investigate the underlying mechanism of this dynamic global configuration. The numerical analyses that we have performed show that this global configuration is an emergent property inherent to the cellular metabolic dynamics. Concretely, we have found that the existence of a high number of enzymatic subsystems belonging to the DMNs is the fundamental element for the spontaneous emergence of a functional reactive structure characterized by a metabolic core formed by several sets of enzymes always in an active state.

Conclusions/Significance

This self-organized dynamic structure seems to be an intrinsic characteristic of metabolism, common to all living cellular organisms. To better understand cellular functionality, it will be crucial to structurally characterize these enzymatic self-organized global structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号