首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immune responses have the important function of host defense and protection against pathogens. However, the immune response also causes inflammation and host tissue injury, termed immunopathology. For example, hepatitis B and C virus infection in humans cause immunopathological sequel with destruction of liver cells by the host's own immune response. Similarly, after infection with lymphocytic choriomeningitis virus (LCMV) in mice, the adaptive immune response causes liver cell damage, choriomeningitis and destruction of lymphoid organ architecture. The immunopathological sequel during LCMV infection has been attributed to cytotoxic CD8(+) T cells. However, we now show that during LCMV infection CD4(+) T cells selectively induced the destruction of splenic marginal zone and caused liver cell damage with elevated serum alanin-transferase (ALT) levels. The destruction of the splenic marginal zone by CD4(+) T cells included the reduction of marginal zone B cells, marginal zone macrophages and marginal zone metallophilic macrophages. Functionally, this resulted in an impaired production of neutralizing antibodies against LCMV. Furthermore, CD4(+) T cells reduced B cells with an IgM(high)IgD(low) phenotype (transitional stage 1 and 2, marginal zone B cells), whereas other B cell subtypes such as follicular type 1 and 2 and germinal center/memory B cells were not affected. Adoptive transfer of CD4(+) T cells lacking different important effector cytokines and cytolytic pathways such as IFNγ, TNFα, perforin and Fas-FasL interaction did reveal that these cytolytic pathways are redundant in the induction of immunopathological sequel in spleen. In conclusion, our results define an important role of CD4(+) T cells in the induction of immunopathology in liver and spleen. This includes the CD4(+) T cell mediated destruction of the splenic marginal zone with consecutively impaired protective neutralizing antibody responses.  相似文献   

2.
The control of acute and chronic Mycobacterium tuberculosis infection is dependent on CD4(+) T cells. In a variety of systems CD8(+) T cell effector responses are dependent on CD4(+) T cell help. The development of CD8(+) T cell-mediated immune responses in the absence of CD4(+) T cells was investigated in a murine model of acute tuberculosis. In vitro and in vivo, priming of mycobacteria-specific CD8(+) T cells was unaffected by the absence of CD4(+) T cells. Infiltration of CD8(+) T cells into infected lungs of CD4(-/-) or wild-type mice was similar. IFN-gamma production by lung CD8(+) T cells in CD4(-/-) and wild-type mice was also comparable, suggesting that emergence of IFN-gamma-producing mycobacteria-specific CD8(+) T cells in the lungs was independent of CD4(+) T cell help. In contrast, cytotoxic activity of CD8(+) T cells from lungs of M. tuberculosis-infected mice was impaired in CD4(-/-) mice. Expression of mRNA for IL-2 and IL-15, cytokines critical for the development of cytotoxic effector cells, was diminished in the lungs of M. tuberculosis-infected CD4(-/-) mice. As tuberculosis is frequently associated with HIV infection and a subsequent loss of CD4(+) T cells, understanding the interaction between CD4(+) and CD8(+) T cell subsets during the immune response to M. tuberculosis is imperative for the design of successful vaccination strategies.  相似文献   

3.
Progression of human immunodeficiency virus (HIV) disease is associated with massive death of CD4(+) T cells along with death and/or dysfunction of CD8(+) T cells. In vivo, both HIV infection per se and host factors may contribute to the death and/or dysfunction of CD4(+) and CD8(+) T cells. Progression of HIV disease is often characterized by a switch from R5 to X4 HIV type 1 (HIV-1) variants. In human lymphoid tissues ex vivo, it was shown that HIV infection is sufficient for CD4(+) T-cell depletion. Here we address the question of whether infection of human lymphoid tissue ex vivo with prototypic R5 or X4 HIV variants also depletes or impairs CD8(+) T cells. We report that whereas productive infection of lymphoid tissue ex vivo with R5 and X4 HIV-1 isolates induced apoptosis in CD4(+) T cells, neither viral isolate induced apoptosis in CD8(+) T cells. Moreover, in both infected and control tissues we found similar numbers of CD8(+) T cells and similar production of cytokines by these cells in response to phorbol myristate acetate or anti-CD3-anti-CD28 stimulation. Thus, whereas HIV-1 infection per se in human lymphoid tissue is sufficient to trigger apoptosis in CD4(+) T cells, the death of CD8(+) T cells apparently requires additional factors.  相似文献   

4.
T-cell based vaccines against HIV have the goal of limiting both transmission and disease progression by inducing broad and functionally relevant T cell responses. Moreover, polyfunctional and long-lived specific memory T cells have been associated to vaccine-induced protection. CD4(+) T cells are important for the generation and maintenance of functional CD8(+) cytotoxic T cells. We have recently developed a DNA vaccine encoding 18 conserved multiple HLA-DR-binding HIV-1 CD4 epitopes (HIVBr18), capable of eliciting broad CD4(+) T cell responses in multiple HLA class II transgenic mice. Here, we evaluated the breadth and functional profile of HIVBr18-induced immune responses in BALB/c mice. Immunized mice displayed high-magnitude, broad CD4(+)/CD8(+) T cell responses, and 8/18 vaccine-encoded peptides were recognized. In addition, HIVBr18 immunization was able to induce polyfunctional CD4(+) and CD8(+) T cells that proliferate and produce any two cytokines (IFNγ/TNFα, IFNγ/IL-2 or TNFα/IL-2) simultaneously in response to HIV-1 peptides. For CD4(+) T cells exclusively, we also detected cells that proliferate and produce all three tested cytokines simultaneously (IFNγ/TNFα/IL-2). The vaccine also generated long-lived central and effector memory CD4(+) T cells, a desirable feature for T-cell based vaccines. By virtue of inducing broad, polyfunctional and long-lived T cell responses against conserved CD4(+) T cell epitopes, combined administration of this vaccine concept may provide sustained help for CD8(+) T cells and antibody responses- elicited by other HIV immunogens.  相似文献   

5.
Sitati EM  Diamond MS 《Journal of virology》2006,80(24):12060-12069
Although studies have established that innate and adaptive immune responses are important in controlling West Nile virus (WNV) infection, the function of CD4(+) T lymphocytes in modulating viral pathogenesis is less well characterized. Using a mouse model, we examined the role of CD4(+) T cells in coordinating protection against WNV infection. A genetic or acquired deficiency of CD4(+) T cells resulted in a protracted WNV infection in the central nervous system (CNS) that culminated in uniform lethality by 50 days after infection. Mice surviving past day 10 had high-level persistent WNV infection in the CNS compared to wild-type mice, even 45 days following infection. The absence of CD4(+) T-cell help did not affect the kinetics of WNV infection in the spleen and serum, suggesting a role for CD4-independent clearance mechanisms in peripheral tissues. WNV-specific immunoglobulin M (IgM) levels were similar to those of wild-type mice in CD4-deficient mice early during infection but dropped approximately 20-fold at day 15 postinfection, whereas IgG levels in CD4-deficient mice were approximately 100- to 1,000-fold lower than in wild-type mice throughout the course of infection. WNV-specific CD8(+) T-cell activation and trafficking to the CNS were unaffected by the absence of CD4(+) T cells at day 9 postinfection but were markedly compromised at day 15. Our experiments suggest that the dominant protective role of CD4(+) T cells during primary WNV infection is to provide help for antibody responses and sustain WNV-specific CD8(+) T-cell responses in the CNS that enable viral clearance.  相似文献   

6.
The intestinal immune response to oral Ags involves a complex multistep process. The requirements for optimal intestinal T cell responses in this process are unclear. LFA-1 plays a critical role in peripheral T cell trafficking and activation, however, its role in intestinal immune responses has not been precisely defined. To dissect the role of LFA-1 in intestinal immune responses, we used a system that allows for segregation of T cell migration and activation through the adoptive transfer of LFA-1-deficient (CD18(-/-)) CD4(+) T cells from DO11.10 TCR transgenic mice into wild-type BALB/c mice. We find that wild-type mice adoptively transferred with CD18(-/-) DO11.10 CD4(+) T cells demonstrate decreases in the numbers of Ag-specific T cells in the intestinal lamina propria after oral Ag administration. We also find that in addition to its role in trafficking to intestinal secondary lymphoid organs, LFA-1 is required for optimal CD4(+) T cell proliferation in vivo upon oral Ag immunization. Furthermore, CD18(-/-) DO11.10 CD4(+) T cells primed in the intestinal secondary lymphoid organs demonstrate defects in up-regulation of the intestinal-specific trafficking molecules, alpha(4)beta(7) and CCR9. Interestingly, the defect in trafficking of CD18(-/-) DO11.10 CD4(+) T cells to the intestinal lamina propria persists even under conditions of equivalent activation and intestinal-tropic differentiation, implicating a role for CD18 in the trafficking of activated T cells into intestinal tissues independent of the earlier defects in the intestinal immune response. This argues for a complex role for CD18 in the early priming checkpoints and ultimately in the trafficking of T cells to the intestinal tissues during an intestinal immune response.  相似文献   

7.
Ag-specific precursor frequency is increasingly being appreciated as an important factor in determining the kinetics, magnitude, and degree of differentiation of T cell responses, and recently was found to play a critical role in determining the relative requirement of CD8(+) T cells for CD28- and CD154-mediated costimulatory signals during transplantation. We addressed the possibility that variations in CD4(+) T cell precursor frequency following transplantation might affect CD4(+) T cell proliferation, effector function, and provision of help for donor-reactive B cell and CD8(+) T cell responses. Using a transgenic model system wherein increasing frequencies of donor-reactive CD4(+) T cells were transferred into skin graft recipients, we observed that a critical CD4(+) T cell threshold precursor frequency was necessary to provide help following blockade of the CD28 and CD154 costimulatory pathways, as measured by increased B cell and CD8(+) T cell responses and precipitation of graft rejection. In contrast to high-frequency CD8(+) T cell responses, this effect was observed even though the proliferative and cytokine responses of Ag-specific CD4(+) T cells were inhibited. Thus, we conclude that an initial high frequency of donor-reactive CD4(+) T cells uncouples T cell proliferative and effector cytokine production from the provision of T cell help.  相似文献   

8.
In vivo studies have shown that regulatory CD4(+) T cells regulate conventional CD4(+) T cell responses to self- and environmental Ags. However, it remains unclear whether regulatory CD4(+) T cells control CD8(+) T cell responses to self, directly, or indirectly by decreasing available CD4(+) T cell help. We have developed an experimental mouse model in which suppressive and helper T cells cannot mediate their functions. The mouse chimeras generated were not viable and rapidly developed multiple organ autoimmunity. These features were correlated with strong CD8(+) T cell activation and accumulation in both lymphoid and nonlymphoid organs. In vivo Ab treatment and secondary transfer experiments demonstrated that regulatory CD4(+) T cells play an important direct role in the prevention of peripheral CD8(+) T cell-mediated autoimmunity.  相似文献   

9.
Decreased CD4(+) T cell counts are the best marker of disease progression during HIV infection. However, CD4(+) T cells are heterogeneous in phenotype and function, and it is unknown how preferential depletion of specific CD4(+) T cell subsets influences disease severity. CD4(+) T cells can be classified into three subsets by the expression of receptors for two T cell-tropic cytokines, IL-2 (CD25) and IL-7 (CD127). The CD127(+)CD25(low/-) subset includes IL-2-producing naive and central memory T cells; the CD127(-)CD25(-) subset includes mainly effector T cells expressing perforin and IFN-gamma; and the CD127(low)CD25(high) subset includes FoxP3-expressing regulatory T cells. Herein we investigated how the proportions of these T cell subsets are changed during HIV infection. When compared with healthy controls, HIV-infected patients show a relative increase in CD4(+)CD127(-)CD25(-) T cells that is related to an absolute decline of CD4(+)CD127(+)CD25(low/-) T cells. Interestingly, this expansion of CD4(+)CD127(-) T cells was not observed in naturally SIV-infected sooty mangabeys. The relative expansion of CD4(+)CD127(-)CD25(-) T cells correlated directly with the levels of total CD4(+) T cell depletion and immune activation. CD4(+)CD127(-)CD25(-) T cells were not selectively resistant to HIV infection as levels of cell-associated virus were similar in all non-naive CD4(+) T cell subsets. These data indicate that, during HIV infection, specific changes in the fraction of CD4(+) T cells expressing CD25 and/or CD127 are associated with disease progression. Further studies will determine whether monitoring the three subsets of CD4(+) T cells defined based on the expression of CD25 and CD127 should be used in the clinical management of HIV-infected individuals.  相似文献   

10.
Gut-associated lymphoid tissue (GALT) is a significant but understudied lymphoid organ, harboring a majority of the body's total lymphocyte population. GALT is also an important portal of entry for human immunodeficiency virus (HIV), a major site of viral replication and CD4(+) T-cell depletion, and a frequent site of AIDS-related opportunistic infections and neoplasms. However, little is known about HIV-specific cell-mediated immune responses in GALT. Using lymphocytes isolated from rectal biopsies, we have determined the frequency and phenotype of HIV-specific CD8(+) T cells in human GALT. GALT CD8(+) T cells were predominantly CD45RO(+) and expressed CXCR4 and CCR5. In 10 clinically stable, chronically infected individuals, the frequency of HIV Gag (SL9)-specific CD8(+) T cells was increased in GALT relative to peripheral blood mononuclear cells by up to 4.6-fold, while that of cytomegalovirus (CMV)-specific CD8(+) T cells was significantly reduced (P = 0.012). Both HIV- and CMV-specific CD8(+) T cells in GALT expressed CCR5, but only HIV-specific CD8(+) T cells expressed alpha E beta 7 integrin, suggesting that mucosal priming may account for their retention in GALT. Chronically infected individuals exhibited striking depletion of GALT CD4(+) T cells expressing CXCR4, CCR5, and alpha E beta 7 integrin, but CD4(+)/CD8(+) T-cell ratios in blood and GALT were similar. The percentage of GALT CD8(+) T cells expressing alpha E beta 7 was significantly decreased in infected individuals, suggesting that HIV infection may perturb lymphocyte retention in GALT. These studies demonstrate the feasibility of using tetramers to assess HIV-specific T cells in GALT and reveal that GALT is the site of an active CD8(+) T-cell response during chronic infection.  相似文献   

11.
Virus-specific CD4(+) T-cell function is thought to play a central role in induction and maintenance of effective CD8(+) T-cell responses in experimental animals or humans. However, the reasons that diminished proliferation of human immunodeficiency virus (HIV)-specific CD4(+) T cells is observed in the majority of infected patients and the role of these diminished responses in the loss of control of replication during the chronic phase of HIV infection remain incompletely understood. In a cohort of 15 patients that were selected for particularly strong HIV-specific CD4(+) T-cell responses, the effects of viremia on these responses were explored. Restriction of HIV replication was not observed during one to eight interruptions of antiretroviral therapy in the majority of patients (12 of 15). In each case, proliferative responses to HIV antigens were rapidly inhibited during viremia. The frequencies of cells that produce IFN-gamma in response to Gag, Pol, and Nef peptide pools were maintained during an interruption of therapy. In a subset of patients with elevated frequencies of interleukin-2 (IL-2)-producing cells, IL-2 production in response to HIV antigens was diminished during viremia. Addition of exogenous IL-2 was sufficient to rescue in vitro proliferation of DR0101 class II Gag or Pol tetramer(+) or total-Gag-specific CD4(+) T cells. These observations suggest that, during viremia, diminished in vitro proliferation of HIV-specific CD4(+) T cells is likely related to diminished IL-2 production. These results also suggest that relatively high frequencies of HIV-specific CD4(+) T cells persist in the peripheral blood during viremia, are not replicatively senescent, and proliferate when IL-2 is provided exogenously.  相似文献   

12.
HIV infection is characterized by a gradual deterioration of immune function, mainly in the CD4 compartment. To better understand the dynamics of HIV-specific T cells, we analyzed the kinetics and polyfunctional profiles of Gag-specific CD4(+) and CD8(+) T cell responses in 12 subtype C-infected individuals with different disease-progression profiles, ranging from acute to chronic HIV infection. The frequencies of Gag-responsive CD4(+) and CD8(+) T cells showed distinct temporal kinetics. The peak frequency of Gag-responsive IFN-γ(+)CD4(+) T cells was observed at a median of 28 d (interquartile range: 21-81 d) post-Fiebig I/II staging, whereas Gag-specific IFN-γ(+)CD8(+) T cell responses peaked at a median of 253 d (interquartile range: 136-401 d) and showed a significant biphasic expansion. The proportion of TNF-α-expressing cells within the IFN-γ(+)CD4(+) T cell population increased (p = 0.001) over time, whereas TNF-α-expressing cells within IFN-γ(+)CD8(+) T cells declined (p = 0.005). Both Gag-responsive CD4(+) and CD8(+) T cells showed decreased Ki67 expression within the first 120 d post-Fiebig I/II staging. Prior to the disappearance of Gag-responsive Ki67(+)CD4(+) T cells, these cells positively correlated (p = 0.00038) with viremia, indicating that early Gag-responsive CD4 events are shaped by viral burden. No such associations were observed in the Gag-specific CD8(+) T cell compartment. Overall, these observations indicated that circulating Gag-responsive CD4(+) and CD8(+) T cell frequencies and functions are not synchronous, and properties change rapidly at different tempos during early HIV infection.  相似文献   

13.
14.
HIV replicates primarily in lymphoid tissue and immune activation is a major stimulus in vivo. To determine the cells responsible for HIV replication during Ag-driven T cell activation, we used a novel in vitro model employing dendritic cell presentation of superantigen to CD4(+) T cells. Dendritic cells and CD4(+) T cells are the major constituents of the paracortical region of lymphoid organs, the main site of Ag-specific activation and HIV replication. Unexpectedly, replication occurred in nonproliferating bystander CD4(+) T cells that lacked activation markers. In contrast, activated Ag-specific cells were relatively protected from infection, which was associated with CCR5 and CXC chemokine receptor 4 down-regulation. The finding that HIV replication is not restricted to highly activated Ag-specific CD4(+) T cells has implications for therapy, efforts to eradicate viral reservoirs, immune control of HIV, and Ag-specific immune defects.  相似文献   

15.
CD4(+) T cells have been shown to play a critical role in the maintenance of an effective anti-viral CD8(+) CTL response in murine models. Recent studies have demonstrated that CD4(+) T cells provide help to CTLs through ligation of the CD40 receptor on dendritic cells. The role of CD4(+) T cell help in the expansion of virus-specific CD8(+) memory T cell responses was examined in normal volunteers recently vaccinated to influenza and in HIV-1 infected individuals. In recently vaccinated normal volunteers, CD4(+) T cell help was required for optimal in vitro expansion of influenza-specific CTL responses. Also, CD40 ligand trimer (CD40LT) enhanced CTL responses and was able to completely substitute for CD4(+) T cell help in PBMCs from normal volunteers. In HIV-1 infection, CD4(+) T cell help was required for optimal expansion of HIV-1-specific memory CTL in vitro in 9 of 10 patients. CD40LT could enhance CTL in the absence of CD4(+) T cell help in the majority of patients; however, the degree of enhancement of CTL responses was variable such that, in some patients, CD40LT could not completely substitute for CD4(+) T cell help. In those HIV-1-infected patients who demonstrated poor responses to CD40LT, a dysfunction in circulating CD8(+) memory T cells was demonstrated, which was reversed by the addition of cytokines including IL-2. Finally, it was demonstrated that IL-15 produced by CD40LT-stimulated dendritic cells may be an additional mechanism by which CD40LT induces the expansion of memory CTL in CD4(+) T cell-depleted conditions, where IL-2 is lacking.  相似文献   

16.
Naturally occurring anti-carbohydrate antibodies play a major role in both the innate and adaptive immune responses. To elicit an anti-carbohydrate immune response, glycoproteins can be processed to glycopeptides and presented by the classical antigen-presenting molecules, major histocompatibility complex (MHC) Class I and II. In contrast, much less is known about the mechanism(s) for anti-carbohydrate responses to glycolipids, although it is generally considered that the CD1 family of cell surface proteins presents glycolipids to T cells or natural killer T (NKT) cells. Using model carbohydrate systems (isogloboside 3 and B blood group antigen), we examined the anti-carbohydrate response on glycolipids using both antibody neutralisation and knockout mouse-based experiments. These studies showed that CD4(+) T cells were required to generate antibodies to the carbohydrates expressed on glycolipids, and unexpectedly, these antibody responses were CD1d and NKT cell independent. They also did not require peptide help. These data provide new insight into glycolipid antigen recognition by the immune system and indicate the existence of a previously unrecognised population of glycolipid antigen-specific, CD1-independent, CD4(+) T cells.  相似文献   

17.
Neutrophils have an important role in early host protection during influenza A virus infection. Their ability to modulate the virus-specific adaptive immune response is less clear. Here, we have used a mouse model to examine the impact of neutrophils on CD8(+) T-cell responses during influenza virus infection. CD8(+) T-cell priming, expansion, migration, cytokine secretion and cytotoxic capacity were investigated in the virus-infected airways and secondary lymphoid organs. To do this, we utilised a Ly6G-specific monoclonal antibody (mAb; 1A8) that specifically depletes neutrophils in vivo. Neutrophil depletion early after infection with influenza virus strain HKx31 (H3N2) did not alter influenza virus-derived antigen presentation or na?ve CD8(+) T-cell expansion in the secondary lymphoid organs. Trafficking of virus-specific CD8(+) T cells into the infected pulmonary airways was also unaltered. Instead, early neutropenia reduced both the overall magnitude of influenza virus-specific CD8(+) T cells, together with impaired cytokine production and cytotoxic effector function. Therefore, neutrophils are important participants in anti-viral mechanisms that sustain effective CD8(+) T-cell responses in the respiratory tract of influenza virus-infected mice.  相似文献   

18.
Regulatory CD4(+)CD25(+)Foxp3(+) T cells play a critical role in controlling autoimmunity and T cell homeostasis. However, their role in regulation of lymphopenia-induced proliferation (LIP), a potential mechanism for generation of autoaggressive T cells, has been poorly defined. Currently, two forms of LIP are recognized: spontaneous and homeostatic. Spontaneous LIP is characterized by fast, burst-like cell-cycle activity, and may allow effector T cell differentiation. Homeostatic LIP is characterized by slow and steady cell cycle activity and is not associated with the acquisition of an effector phenotype. In this study, we demonstrate that CD4(+)CD25(+)Foxp3(+) T cells suppress the spontaneous, but not homeostatic, LIP of naive CD8 and CD4 T cells. However, selective inhibition of spontaneous LIP does not fully explain the tolerogenic role of Tregs in lymphopenia-associated autoimmunity. We show here that suppression of LIP in the lymphoid tissues is independent of Treg-derived IL-10. However, IL-10-deficient Tregs are partially defective in their ability to prevent colitis caused by adoptive transfer of CD4 T cells into RAG(-/-) mice. We propose that Tregs may inhibit emergence of effector T cells during the inductive phase of the immune response in the secondary lymphoid tissues by IL-10-independent mechanisms. In contrast, Treg-mediated inhibition of established effector T cells does require IL-10. Both Treg functions appear to be important in control of lymphopenia-associated autoimmunity.  相似文献   

19.
HIV immunity is likely CD4 T cell dependent. HIV-specific CD4 T cell proliferative responses are reported to correlate inversely with virus load and directly with specific CD8 responses. However, the phenotype and cytokine profile of specific CD4 T cells that correlate with disease is unknown. We compared the number/function of Gag p24-specific CD4 T cells in 17 HIV-infected long-term nonprogressors (LTNPs) infected for a median of 14.6 years with those of 16 slow progressors (SPs), also HIV infected for a median of 14 years but whose CD4 count had declined to <500 cells/ micro l. Compared with SPs, LTNPs had higher numbers of specific CD4s that were double positive for IFN-gamma and IL-2 as well as CD28 and IL-2. However, CD4 T cells that produced IL-2 alone (IL-2(+)IFN-gamma(-)) or IFN-gamma alone (IFN-gamma(+)IL-2(-)) did not differ between LTNPs and SPs. The decrease in p24-specific CD28(+)IL-2(+) cells with a concomitant increase of p24-specific CD28(-)IL-2(+) cells occurred before those specific for a non-HIV Ag, CMV. p24-specific CD28(-)IL-2(+) cells were evident in LTNPs and SPs, whereas the CMV-specific CD28(-)IL-2(+) response was confined to SPs. The difference between LTNPs and SPs in the Gag p24 IFN-gamma(+)IL-2(+) response was maintained when responses to total Gag (p17 plus p24) were measured. The percentage and absolute number of Gag-specific IFN-gamma(+)IL-2(+) but not of IFN-gamma(+)IL-2(-) CD4s correlated inversely with virus load. The Gag-specific IFN-gamma(+)IL-2(+) CD4 response also correlated positively with the percentage of Gag-specific IFN-gamma(+) CD8 T cells in these subjects. Accumulation of specific CD28(-)IL-2(+) helpers and loss of IFN-gamma(+)IL-2(+) CD4 T cells may compromise specific CD8 responses and, in turn, immunity to HIV.  相似文献   

20.
CD4(+) T-cell help is essential for effective immune responses to viruses. In human immunodeficiency virus (HIV) infection, CD4(+) T cells specific for HIV are infected by the virus at higher frequencies than other memory CD4(+) T cells. Here, we demonstrate that HIV-specific CD4(+) T cells are barely detectable in most infected individuals and that the corresponding CD4(+) T cells exhibit an immature phenotype compared to both cytomegalovirus (CMV)-specific CD4(+) T cells and other memory CD4(+) T cells. However, in two individuals, we observed a rare and diametrically opposed pattern in which HIV-specific CD4(+) T-cell populations of large magnitude exhibited a terminally differentiated immunophenotype; these cells were not preferentially infected in vivo. Clonotypic analysis revealed that the HIV-specific CD4(+) T cells from these individuals were cross-reactive with CMV. Thus, preferential infection can be circumvented in the presence of cross-reactive CD4(+) T cells driven to maturity by coinfecting viral antigens, and this physical proximity rather than activation status per se is an important determinant of preferential infection based on antigen specificity. These data demonstrate that preferential infection reduces the life span of HIV-specific CD4(+) T cells in vivo and thereby compromises the generation of effective immune responses to the virus itself; further, this central feature in the pathophysiology of HIV infection can be influenced by the cross-reactivity of responding CD4(+) T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号