首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitric oxide (NO)-mediated smooth muscle relaxation is mediated by cGMP through activation of cGMP-dependent protein kinase I (cGKI). We studied the importance of cGKI for lower urinary tract function in mice lacking the gene for cGKI (cGKI-/-) and in litter-matched wild-type mice (cGKI+/+) in vitro and in vivo. cGKI deficiency did not result in any changes in bladder gross morphology or weight. Urethral strips from cGKI-/- mice showed an impaired relaxant response to nerve-derived NO. The cGMP analog 8-bromo-cGMP (8-BrcGMP) and the NO-donor SIN-1 relaxed the wild-type urethra (50-60%) but had only marginal effects in the cGKI-deficient urethra. Bladder strips from cGKI-/- mice responded normally to electrical field stimulation and to carbachol but not to 8-BrcGMP. In vivo, the cGKI-deficient mice showed bladder hyperactivity characterized by decreased intercontraction intervals and nonvoiding bladder contractions. Loss of cGKI abolishes NO-cGMP-dependent relaxations of urethral smooth muscle and results in hyperactive voiding. These data suggest that certain voiding disturbances may be associated with impaired NO-cGKI signaling.  相似文献   

2.
Exocytosis of myeloperoxidase (MPO) from activated neutrophils has been investigated in the presence of the anionic polysaccharide heparin. The optimal concentration of heparin (0.1 U/mL), which did not cause additional activation of cells (lack of augmentation of lysozyme exocytosis from specific and azurophilic granules), was determined. After preincubation of cells with heparin (0.1 U/mL) MPO exocytosis from neutrophils was stimulated by various activators (fMLP, PMA, plant lectins CABA and PHA-L) and was higher as compared to the effects of the activators alone. Experiments performed using MPO isolated from leukocytes have shown that heparin in the range of concentrations 0.1–50 U/mL had no effect on MPO peroxidase activity. Thus, the use of heparin at a concentration of 0.1 U/mL avoids the artifact caused by the “loss” of MPO due to its binding to neutrophils and increases the accuracy of the method of registration of degranulation of neutrophil azurophilic granules based on determination of the MPO concentration or its peroxidase activity in cell supernatants.  相似文献   

3.
The activation of large conductance, calcium-sensitive K(+) (BK(Ca)) channels by the nitric oxide (NO)/cyclic GMP (cGMP) signaling pathway appears to be an important cellular mechanism contributing to the relaxation of smooth muscle. In HEK 293 cells transiently transfected with BK(Ca) channels, we observed that the NO donor sodium nitroprusside and the membrane-permeable analog of cGMP, dibutyryl cGMP, were both able to enhance BK(Ca) channel activity 4-5-fold in cell-attached membrane patches. This enhancement correlated with an endogenous cGMP-dependent protein kinase activity and the presence of the alpha isoform of type I cGMP-dependent protein kinase (cGKI). We observed that co-transfection of cells with BK(Ca) channels and a catalytically inactive ("dead") mutant of human cGKIalpha prevented enhancement of BK(Ca) channel in response to either sodium nitroprusside or dibutyryl cGMP in a dominant negative fashion. In contrast, expression of wild-type cGKIalpha supported enhancement of channel activity by these two agents. Importantly, both endogenous and expressed forms of cGKIalpha were found to associate with BK(Ca) channel protein, as demonstrated by a reciprocal co-immunoprecipitation strategy. In vitro, cGKIalpha was able to directly phosphorylate immunoprecipitated BK(Ca) channels, suggesting that cGKIalpha-dependent phosphorylation of BK(Ca) channels in situ may be responsible for the observed enhancement of channel activity. In summary, our data demonstrate that cGKIalpha alone is sufficient to promote the enhancement of BK(Ca) channels in situ after activation of the NO/cGMP signaling pathway.  相似文献   

4.
The cGMP-dependent protein kinase (PKG) is the main mediator of nitric oxide-induced relaxation of smooth muscle. Although this pathway is well established, the cellular action of PKG, nitric oxide, and cGMP is complex and not fully understood. A cross-talk between the cGMP-PKG and other pathways (e.g. cAMP-protein kinase A) seems to exist. We have explored cGMP- and cAMP-dependent relaxation of smooth muscle using PKG-deficient mice (cGKI-/-). In intact ileum strips of wild type mice (cGKI+/+), 8-Br-cGMP inhibited the sustained phase of carbachol contractions by approximately 80%. The initial peak was less inhibited (approximately 30%). This relaxation was associated with a reduction in intracellular [Ca2+] and decreased Ca2+ sensitivity. Contractions of cGKI-/- ileum were not influenced by 8-Br-cGMP. EC50 for 8-Br-cGMP for PKG was estimated to be 10 nm. PKG-independent relaxation by 8-Br-cGMP had an EC50 of 10 microm. Relaxation by cAMP (approximately 50% at 100 microm), Ca2+ sensitivity of force, and force potentiation by GTPgammaS were similar in cGKI+/+ and cGKI-/- tissues. The results show that PKG is the main target for cGMP-induced relaxation in intestinal smooth muscle. cGMP desensitize the contractile system to Ca2+ via PKG. PKG-independent pathways are activated at 1000-fold higher cGMP concentrations. Relaxation by cAMP can occur independently of PKG. Long term deficiency of PKG does not lead to an apparent up-regulation of the cAMP-dependent pathways or changes in Ca2+ sensitivity.  相似文献   

5.
Pholasin, the photoprotein of the common piddock Pholas dactylus, emits an intense luminescence upon oxidation. The contribution of superoxide anion radicals and myeloperoxidase (MPO) to Pholasin luminescence in stimulated neutrophils was investigated. Data on Pholasin luminescence were compared with results of superoxide anion radical generation detected by the cytochrome c test as well as with the release of elastase and MPO. In N-formyl-methionyl-leucyl-phenylalanine (fMLP) stimulated neutrophils, most of the luminescence is caused by superoxide anion radicals, whereas MPO shows only a small effect as shown by coincubation with superoxide dismutase (SOD) as well as potassium cyanide (KCN), an inhibitor of MPO. However, both, O2- and MPO contribute to light emission in fMLP/cytochalasin B and phorbol myristoyl acetate (PMA) stimulated cells. Thus, the kinetics of O2- generation and MPO release can be very well detected by Pholasin luminescence in stimulated neutrophils.

Degranulation of azurophilic granules was assessed using an ELISA test kit for released MPO or detection of elastase activity with MeO-Suc-Ala-Ala-Pro-Val-p-nitroanilide in the supernatant of stimulated cells. Both approaches revealed concurrently similar results concerning the amount and kinetics of enzyme release with data of Pholasin luminescence. Both, cytochrome c measurements and Pholasin luminescence indicate that fMLP/cytochalasin B and PMA stimulated neutrophils produce more O2- than fMLP stimulated cells. Thus, Pholasin luminescence can be used to detect, sensitively and specifically, O2- production and MPO release from stimulated neutrophils.  相似文献   

6.
In neutrophils, the major substrate of MAPKAPK2 (MK2) is an F-actin binding protein LSP1. Studies using mutants of the two potential Serine phosphorylation sites in LSP1 C-terminal F-actin binding region indicated that the major phosphorylation site for MK2 is Ser243 in murine neutrophils (Ser252 in humans). Human phosphoLSP1 antibodies that recognize phosphoSer252 site were prepared and revealed fMLP-induced neutrophil LSP1 phosphorylation. The phosphorylation was inhibited by p38 MAPK (upstream kinase for MK2) inhibitor SB203580. The antibodies also detect LSP1 phosphorylation in murine neutrophils. Immunostaining revealed that in WT murine neutrophils phosphoLSP1 was localized in F-actin enriched lamellipodia and oriented toward the fMLP gradient while non-phosphoLSP1 failed to colocalize with F-actin. In suspension, WT neutrophils exhibited persistent F-actin polarization following fMLP stimulation, while MK2(-/-) neutrophils exhibited transient F-actin polarization. These studies suggest that MK2-regulated LSP1 phosphorylation is involved in stabilization of F-actin polarization during neutrophil chemotaxis.  相似文献   

7.
Surfactant protein A (SP-A), a pulmonary lectin, plays an important role in regulating innate immune cell function. Besides accelerating pathogen clearance by pulmonary phagocytes, SP-A also stimulates alveolar macrophage chemotaxis and directed actin polymerization. We hypothesized that SP-A would also stimulate neutrophil chemotaxis. With the use of a Boyden chamber assay, we found that SP-A (0.5-25 microg/ml) did not stimulate chemotaxis of rat peripheral neutrophils or inflammatory bronchoalveolar lavage (BAL) neutrophils isolated from LPS-treated lungs. However, SP-A affected neutrophil chemotaxis toward the bacterial peptide formyl-met-leu-phe (fMLP). Surprisingly, the effect was different for the two neutrophil populations: SP-A reduced peripheral neutrophil chemotaxis toward fMLP (49 +/- 5% fMLP alone) and enhanced inflammatory BAL neutrophil chemotaxis (277 +/- 48% fMLP alone). This differential effect was not seen for the homologous proteins mannose binding lectin and complement protein 1q but was recapitulated by type IV collagen. SP-A bound both neutrophil populations comparably and did not alter formyl peptide binding. These data support a role for SP-A in regulating neutrophil migration in pulmonary tissue.  相似文献   

8.
Nociceptin/orphanin FQ (N/OFQ) produces several biological actions by activating the N/OFQ peptide receptor (NOP). It has been previously shown that N/OFQ stimulates leukocyte chemotaxis both in vitro and in vivo. In the present study we investigated the ability of N/OFQ, in comparison with the proinflammatory peptide formyl-Met-Leu-Phe (fMLP), to stimulate human neutrophil and monocyte chemotaxis and the release of lysozyme and superoxide anion (O2-) production from neutrophils. fMLP stimulated all the leukocyte functions examined. N/OFQ stimulated monocyte (pEC50 12.15) but not neutrophil chemotaxis. The production of O2- from neutrophils was not affected by N/OFQ while the release of lysozyme was increased in a concentration dependent manner (pEC50 11.00) although the maximal effects evoked by N/OFQ were about half of those of fMLP. The NOP ligands [Arg14, Lys15]N/OFQ, N/OFQ(1-13)NH2, Ro 64-6198, UFP-101 and the opioid antagonist naloxone were used for pharmacologically characterizing the receptor involved in the monocyte chemoattractant action of N/OFQ. [Arg14, Lys15]N/OFQ, N/OFQ(1-13)NH2, and Ro 64-6198 mimicked the action of N/OFQ showing similar maximal effects and the following order of potency: [Arg14, Lys15]N/OFQ (pEC50 13.22)>Ro 64-6198 (pEC50 12.96)>N/OFQ(1-13)NH2 (pEC50 12.67)>N/OFQ (pEC50 12.15). Moreover, the monocyte chemoattractant action of N/OFQ was not modified by naloxone 1 microM while antagonized by UFP-101 10 microM (pA2 7.00). Thus, the order of potency of agonists and the antagonist selectivity demonstrated that N/OFQ stimulates human monocyte chemotaxis via NOP receptor activation.  相似文献   

9.
Pholasin, the photoprotein of the common piddock Pholas dactylus, emits an intense luminescence upon oxidation. The contribution of superoxide anion radicals and myeloperoxidase (MPO) to Pholasin luminescence in stimulated neutrophils was investigated. Data on Pholasin luminescence were compared with results of superoxide anion radical generation detected by the cytochrome c test as well as with the release of elastase and MPO. In N-formyl-methionyl-leucyl-phenylalanine (fMLP) stimulated neutrophils, most of the luminescence is caused by superoxide anion radicals, whereas MPO shows only a small effect as shown by coincubation with superoxide dismutase (SOD) as well as potassium cyanide (KCN), an inhibitor of MPO. However, both, O2- and MPO contribute to light emission in fMLP/cytochalasin B and phorbol myristoyl acetate (PMA) stimulated cells. Thus, the kinetics of O2- generation and MPO release can be very well detected by Pholasin luminescence in stimulated neutrophils.

Degranulation of azurophilic granules was assessed using an ELISA test kit for released MPO or detection of elastase activity with MeO-Suc-Ala-Ala-Pro-Val-p-nitroanilide in the supernatant of stimulated cells. Both approaches revealed concurrently similar results concerning the amount and kinetics of enzyme release with data of Pholasin luminescence. Both, cytochrome c measurements and Pholasin luminescence indicate that fMLP/cytochalasin B and PMA stimulated neutrophils produce more O2- than fMLP stimulated cells. Thus, Pholasin luminescence can be used to detect, sensitively and specifically, O2- production and MPO release from stimulated neutrophils.  相似文献   

10.
Activation of neutrophils induces generation of reactive oxygen species and release of granule enzymes, which not only participate in the bactericidal mechanisms of these cells, but also in possible tissue damage. We studied the effect of carvedilol (CARV) [0.1-100 micromol/l], an antihypertensive and cardiovascular drug with antioxidative properties, on superoxide generation (SO) and myeloperoxidase (MPO) release from isolated human neutrophils stimulated with fMLP, a specific receptor activator, or with PMA, a receptor bypassing stimulus. Unstimulated cells showed neither SO formation nor MPO release after preincubation with drug. CARV decreased fMLP and PMA stimulated MPO release and SO generation dose dependently. The inhibitory effect of CARV may attributed to non-specific action since its effect was not influenced by the type of stimulation. It might inhibit SO generation as well as MPO release either by membrane-operating stimulus (fMLP) or membrane bypassing activator (PMA).  相似文献   

11.
Liao XL  Lou B  Ma J  Wu MP 《Life sciences》2005,77(3):325-335
High density lipoprotein (HDL) has anti-inflammatory function. To investigate the effects of apolipoprotein A-I (ApoA-I), the major apolipoprotein of HDL, on activated neutrophils, we stimulated neutrophils in vitro with fMLP and PMA, as a receptor-binding and a nonreceptor-binding stimuli, respectively, and incubated ApoA-I with those neutrophils. Three conditions were utilized: 1) resting neutrophils + ApoA-I (0, 2.5,5, 10 microg/mL respectively), 2) fMLP(10(-7) mol/L)-activated neutrophils + ApoA-I (0, 2.5, 5, 10 microg/mL respectively), and 3) PMA(10(-7) mol/L)-activated neutrophils + ApoA-I (0, 2.5, 5, 10 microg/mL respectively). After incubation, we measured neutrophils adhesion to fibronectin, oxidative bust (O2- and H2O2 production), degranulation (release of MPO and elastase), and L929 cell mortality which were attacked by release-out of cytokines in activated neutrophils (using MTT). Our results showed that in vitro ApoA-I inhibits fMLP- and PMA- activated neutrophil adhesion, oxidative burst, degranulation and L929 cell mortality. These inhibition effects of ApoA-I on fMLP-activated neutrophils are more powerful than that on PMA-activated neutrophils. ApoA-I has no effect on resting neutrophils. We concluded that ApoA-I could diminish the function of activated neutrophils.  相似文献   

12.
RhoG is a Rho family small GTPase implicated in cytoskeletal regulation, acting either upstream of or in parallel to Rac1. The precise function(s) of RhoG in vivo has not yet been defined. We have identified a novel role for RhoG in signaling the neutrophil respiratory burst stimulated by G protein-coupled receptor agonists. Bone marrow-derived neutrophils from RhoG knockout (RhoG(-/-)) mice exhibited a marked impairment of oxidant generation in response to C5a or fMLP, but normal responses to PMA or opsonized zymosan and normal bacterial killing. Activation of Rac1 and Rac2 by fMLP was diminished in RhoG(-/-) neutrophils only at very early (5 s) time points (by 25 and 32%, respectively), whereas chemotaxis in response to soluble agonists was unaffected by lack of RhoG. Additionally, fMLP-stimulated phosphorylation of protein kinase B and p38MAPK, activation of phospholipase D, and calcium fluxes were equivalent in wild-type and RhoG(-/-) neutrophils. Our results define RhoG as a critical component of G protein-coupled receptor-stimulated signaling cascades in murine neutrophils, acting either via a subset of total cellular Rac relevant to oxidase activation and/or by a novel and as yet undefined interaction with the neutrophil NADPH oxidase.  相似文献   

13.
We analysed the function and intracellular signalling of the cyclic pyrimidinic nucleotide cCMP. The membrane-permeable cCMP analogue dibutyryl-cCMP mediated mouse aorta relaxation. cCMP activated purified cGMP-dependent protein kinase (cGK) Iα and Iβ and stimulated cGK in aorta lysates. cCMP-induced relaxation was abolished in cGKI-knockout tissue. Additionally, deletion of inositol-trisphosphate receptor associated cGKI substrate (IRAG) suppressed cCMP-mediated relaxation. Signalling of cCMP via cGKI/IRAG appears to be of broader physiological importance because cCMP-mediated inhibition of platelet aggregation was absent in cGKI- and IRAG-deficient platelets. These results demonstrate that cCMP acts as intracellular messenger molecule, most unexpectedly utilizing the cGMP signal transduction pathway.  相似文献   

14.
In this study, differences between two strains of inbred mice in aspects of neutrophil function, namely Rac1 expression, chemotaxis, nicotinamide adenine dinucleotide phosphate oxidase activity and formation of neutrophil extracellular traps (NETs), were determined. Neutrophils from CBA/CaH mice exhibited weaker Rac1 expression and a slower chemotactic gradient than BALB/c mice. Furthermore, PMA‐ or fMLP‐stimulated neutrophils from CBA/CaH mice generated much less superoxide and NETs than similarly stimulated neutrophils from BALB/c mice. These findings suggest that neutrophils from BALB/c mice are functionally more efficient than those from CBA/CaH mice.  相似文献   

15.
The detailed mechanisms by which acutely activated leukocytes metabolize NO and regulate its bioactivity are unknown. Therefore, healthy, chronic granulomatous disease (CGD) or myeloperoxidase (MPO)-deficient human neutrophils were examined for their ability to consume NO and attenuate its signaling. fMLP or PMA activation of healthy neutrophils caused NO consumption that was fully blocked by NADPH oxidase inhibition, and was absent in CGD neutrophils. Studies using MPO-deficient neutrophils, enzyme inhibitors, and reconstituted NADPH oxidase ruled out additional potential NO-consuming pathways, including Fenton chemistry, PGH synthase, lipoxygenase, or MPO. In particular, the inability of MPO to consume NO resulted from lack of H(2)O(2) substrate since all superoxide (O(2)(-.) reacted to form peroxynitrite. For healthy or MPO-deficient cells, NO consumption rates were 2- to 4-fold greater than O(2)(-.) generation, significantly faster than expected from 1:1 termination of NO with O(2)(-.). Finally, fMLP or PMA-stimulated NO consumption fully blocked NO-dependent neutrophil cGMP synthesis. These data reveal NADPH oxidase as the central regulator of NO signaling in human leukocytes. In addition, they demonstrate an important functional difference between CGD and either normal or MPO-deficient human neutrophils, namely their inability to metabolize NO which will alter their ability to adhere and migrate in vivo.  相似文献   

16.
For the type I cGMP-dependent protein kinases (cGKIalpha and cGKIbeta), a high affinity interaction exists between the C2 amino group of cGMP and the hydroxyl side chain of a threonine conserved in most cGMP binding sites. To examine the effect of this interaction on ligand binding and kinase activation in the type II isozyme of cGMP-dependent protein kinase (cGKII), alanine was substituted for the conserved threonine or serine. cGKII was found to require the C2 amino group of cGMP and its cognate serine or threonine hydroxyl for efficient cGMP activation. Of the two binding sites, disruption of cGMP-specific binding in the NH(2)-terminal binding site had the greatest effect on cGMP-dependent kinase activation, like cGKI. However, ligand dissociation studies showed that the location of the rapid and slow dissociation sites of cGKII was reversed relative to cGKI. Another set of mutations that prevented cyclic nucleotide binding demonstrated the necessity of the NH(2)-terminal, rapid dissociation binding site for cyclic nucleotide-dependent activation of cGKII. These findings suggest distinct mechanisms of activation for cGKII and cGKI isoforms. Because cGKII mediates the effects of heat-stable enterotoxins via the cystic fibrosis transmembrane regulator Cl(-) channel, these findings define a structural target for drug design.  相似文献   

17.
We investigated N-formyl-Methionyl-Leucyl-Phenylalanine (fMLP)-induced chemotaxis of neutrophils with different densities. FMLP-induced (10(-8)M) chemotaxis of neutrophils with lower density were significantly reduced when compared to neutrophils with higher density (p less than 0.05). These findings imply a relationship between the neutrophil density and chemotaxis.  相似文献   

18.
Preincubation of neutrophils with certain agonists may "prime" the cells to cause increased responses to a second stimulus ("primed stimulation"). We used two approaches to examine the role of protein kinase C (Ca2+/phospholipid-dependent enzyme) in priming and stimulation by 1-oleoyl-2-acetylglycerol (OAG), phorbol 12-myristate 13-acetate (PMA), and N-formyl-Met-Leu-Phe (fMLP): inhibition of protein kinase C by 1-(5-isoquinolinesulfonyl)-piperazine (C-I) and measurement of protein kinase C translocation induced by priming and stimulatory concentrations of OAG. C-I had little effect on stimulation or primed stimulation by fMLP, suggesting that fMLP invokes events independent of protein kinase C. C-I equally inhibited stimulation and primed stimulation by PMA. Direct stimulation by OAG was inhibited, but priming and primed stimulation by OAG was unaltered by C-I. OAG concentrations greater than or equal to 100 microM caused translocation of protein kinase C, in correlation with direct stimulation of the respiratory burst. Lower OAG concentrations (10-30 microM) primed to stimulation by fMLP and, conversely, stimulated neutrophils primed with fMLP, yet did not cause translocation of protein kinase C. The data are compatible with previous assumptions that PMA and OAG directly stimulate polymorphonuclear neutrophil leukocytes by translocation and activation of protein kinase C. However, priming and primed stimulation by OAG apparently invoke distinct transduction mechanisms other than protein kinase C translocation.  相似文献   

19.
Protein I, the major outer membrane protein of Neisseria gonorrhoeae, is a voltage-dependent anion channel which can translocate from the gonococcus into human cells. Since granule exocytosis from neutrophils is regulated by ion fluxes, we examined the effect of protein I on neutrophil activation. Pretreatment with protein I (250 nM) impaired degranulation from neutrophils: beta-glucuronidase release decreased to 27 +/- 6% S.E. of cells treated with N-f-Met-Leu-Phe (fMLP, 0.1 microM) and to 13 +/- 4% of cells treated with leukotriene B4 (LTB4, 0.1 microM); lysozyme release decreased to 52 +/- 17% of fMLP-treated cells and 22 +/- 9% of LTB4-treated cells. Morphometric analysis was consistent: control neutrophils increased their surface membrane after fMLP (43.3 +/- 5.6 microns relative perimeter versus 71.4 +/- 3.7 microns) while protein I-treated neutrophils did not (29.4 +/- 2 (S.E.) microns relative perimeter versus 34 +/- 4 microns). Enzyme release after exposure to phorbol myristate acetate was not affected (lysozyme: 86 +/- 27% of control). Cell/cell aggregation in response to fMLP was inhibited by treatment with protein I. However, generation of O2 was not affected. Protein I altered the surface membrane potential (Oxonol V): protein I evoked a transient membrane hyperpolarization which was not inhibited by furosemide. After exposure to fMLP, protein I-treated neutrophils underwent a furosemide-sensitive hyperpolarization rather than the usual depolarization. Protein I did not alter increments in [Ca]i (Fura-2) stimulated by fMLP (460 +/- 99 nM (S.E.) versus 377 +/- 44 nM) nor decrements in [pH]i (7.22 +/- 0.04 S.E. versus 7.22 +/- 0.02, bis-(carboxy-ethyl)carboxyfluorescein). The results suggest that degranulation and O2 generation have separate ionic requirements and that protein I interrupts the activation sequence proximal to activation of protein kinase C.  相似文献   

20.
Pretreatment ("priming") of neutrophils with a non-activating concentration (2 nM) of phorbol myristate acetate (PMA) augments superoxide (O2-) production in response to the chemoattractant formylmethionylleucylphenylalanine (fMLP). We initially examined the effect of sphinganine, an inhibitor of protein kinase C (Ca2+/phospholipid-dependent enzyme), on activation of primed neutrophils. In both primed and unprimed cells activation by fMLP was blocked, and inhibition occurred at identical concentrations, supporting a common inhibited site. PMA also augmented (about 2-fold) fMLP-induced generation of sn-1,2-diglyceride (DG), the level of which correlated with O2- generation. In contrast to its effects on DG, PMA diminished by about 50% the magnitude of the fMLP-stimulated rise in cytosolic Ca2+. Thus, PMA priming dissociates the fMLP-stimulated Ca2+ increase from DG and O2- generation. The effect of PMA on Ca2+ levels appeared to be due in part to lowered levels of inositol trisphosphate. Lowering of inositol phosphate levels correlated with inhibition of fMLP-induced hydrolysis of inositol-containing phospholipids, particularly phosphatidylinositol 4,5-bisphosphate. PMA did not inhibit (and in fact augmented at early time points) formation of [32P] phosphatidic acid in response to fMLP, indicating that the increase in DG was not due to inhibition of cellular diglyceride kinase. Thus, the data suggest that PMA enhances fMLP-stimulated DG generation concomitant with switching the source of DG from phosphatidylinositol 4,5-bisphosphate to an alternative lipid(s). Increased DG and inhibition of activation by sphinganine are consistent with a role for protein kinase C in activation of the respiratory burst in PMA-primed neutrophils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号