首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Edwardsiella tarda glyceraldehyde-3-phosphate dehydrogenase (GAPDH) may be an effective vaccine candidate against infection by E. tarda in Japanese flounder Paralichthys olivaceus. The GAPDH of E. tarda is highly homologous to that of Vibrio cholerae (91%), and therefore E. tarda GAPDH may have protective antigenicity against Vibrio species. In this study, we immunized Japanese flounder with GAPDH of E. tarda and infected the fish with V anguillarum. The result showed that GAPDH prepared from E. tarda protected Japanese flounder effectively in a challenge of V anguillarum. Therefore, E. tarda GAPDH should be considered as a multi-purpose vaccine candidate against several kinds of pathogenic bacteria.  相似文献   

2.
Bacterial sialidases are a group of glycohydrolases that are known to play an important role in invasion of host cells and tissues. In this study, we examined in a model of Japanese flounder (Paralichthys olivaceus) the potential function of NanA, a sialidase from the fish pathogen Edwardsiella tarda. NanA is composed of 670 residues and shares low sequence identities with known bacterial sialidases. In silico analysis indicated that NanA possesses a sialidase domain and an autotransporter domain, the former containing five Asp-boxes, a RIP motif, and the conserved catalytic site of bacterial sialidases. Purified recombinant NanA (rNanA) corresponding to the sialidase domain exhibited glycohydrolase activity against sialic acid substrate in a manner that is pH and temperature dependent. Immunofluorescence microscopy showed binding of anti-rNanA antibodies to E.?tarda, suggesting that NanA was localized on cell surface. Mutation of nanA caused drastic attenuation in the ability of E.?tarda to disseminate into and colonize fish tissues and to induce mortality in infected fish. Likewise, cellular study showed that the nanA mutant was significantly impaired in the infectivity against cultured flounder cells. Immunoprotective analysis showed that rNanA in the form of a subunit vaccine conferred effective protection upon flounder against lethal E.?tarda challenge. rNanA vaccination induced the production of specific serum antibodies, which enhanced complement-mediated bactericidal activity and reduced infection of E.?tarda into flounder cells. Together these results indicate that NanA plays an important role in the pathogenesis of E.?tarda and may be exploited for the control of E.?tarda infection in aquaculture.  相似文献   

3.
Park SB  Jang HB  Nho SW  Cha IS  Hikima J  Ohtani M  Aoki T  Jung TS 《PloS one》2011,6(3):e17629
Infection with Edwardsiella tarda, a gram-negative bacterium, causes high morbidity and mortality in both marine and freshwater fish. Outer membrane vesicles (OMVs) released from gram-negative bacteria are known to play important roles in bacterial pathogenesis and host immune responses, but no such roles for E. tarda OMVs have yet been described. In the present study, we investigated the proteomic composition of OMVs and the immunostimulatory effect of OMVs in a natural host, as well as the efficacy of OMVs when used as a vaccine against E. tarda infection. A total of 74 proteins, from diverse subcellular fractions, were identified in OMVs. These included a variety of important virulence factors, such as hemolysin, OmpA, porin, GAPDH, EseB, EseC, EseD, EvpC, EvpP, lipoprotein, flagellin, and fimbrial protein. When OMVs were administrated to olive flounder, significant induction of mRNAs encoding IL-1β, IL-6, TNFα, and IFNγ was observed, compared with the levels seen in fish injected with formalin-killed E. tarda. In a vaccine trial, olive flounder given OMVs were more effectively protected (p<0.0001) than were control fish. Investigation of OMVs may be useful not only for understanding the pathogenesis of E. tarda but also in development of an effective vaccine against edwardsiellosis.  相似文献   

4.
The aims of the present study were to find more powerful promoter for DNA vaccines in olive flounder (Paralichthys olivaceus) and to evaluate the availability of the auxotrophic Edwardsiella tarda mutant (Δalr Δasd E. tarda) as a delivery vehicle for DNA vaccine against VHSV in olive flounder. The marine medaka (Oryzias dancena) β-actin promoter was clearly stronger than cytomegalovirus (CMV) promoter when the vectors were transfected to Epithelioma papulosum cyprini (EPC) cells or injected into the muscle of olive flounder, suggesting that marine medaka β-actin promoter would be more appropriate promoter for DNA vaccines in olive flounder than CMV promoter. Olive flounder immunized with the Δalr Δasd E. tarda harboring viral hemorrhagic septicemia virus (VHSV) DNA vaccine vector driven by the marine medaka β-actin promoter showed significantly higher serum neutralization titer and higher survival rates against challenge with VHSV than fish immunized with the bacteria carrying VHSV DNA vaccine vector driven by CMV promoter. These results indicate that auxotrophic E.?tarda mutant harboring marine medaka β-actin promoter-driven DNA vaccine vectors would be a potential system for prophylactics of infectious diseases in olive flounder.  相似文献   

5.
Group B Streptococcus (GBS) is the leading cause of neonatal pneumonia, septicemia, and meningitis. We have previously shown that in adult mice GBS glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is an extracellular virulence factor that induces production of the immunosuppressive cytokine interleukin-10 (IL-10) by the host early upon bacterial infection. Here, we investigate whether immunity to neonatal GBS infection could be achieved through maternal vaccination against bacterial GAPDH. Female BALB/c mice were immunized with rGAPDH and the progeny was infected with a lethal inoculum of GBS strains. Neonatal mice born from mothers immunized with rGAPDH were protected against infection with GBS strains, including the ST-17 highly virulent clone. A similar protective effect was observed in newborns passively immunized with anti-rGAPDH IgG antibodies, or F(ab')(2) fragments, indicating that protection achieved with rGAPDH vaccination is independent of opsonophagocytic killing of bacteria. Protection against lethal GBS infection through rGAPDH maternal vaccination was due to neutralization of IL-10 production soon after infection. Consequently, IL-10 deficient (IL-10(-/-)) mice pups were as resistant to GBS infection as pups born from vaccinated mothers. We observed that protection was correlated with increased neutrophil trafficking to infected organs. Thus, anti-rGAPDH or anti-IL-10R treatment of mice pups before GBS infection resulted in increased neutrophil numbers and lower bacterial load in infected organs, as compared to newborn mice treated with the respective control antibodies. We showed that mothers immunized with rGAPDH produce neutralizing antibodies that are sufficient to decrease IL-10 production and induce neutrophil recruitment into infected tissues in newborn mice. These results uncover a novel mechanism for GBS virulence in a neonatal host that could be neutralized by vaccination or immunotherapy. As GBS GAPDH is a structurally conserved enzyme that is metabolically essential for bacterial growth in media containing glucose as the sole carbon source (i.e., the blood), this protein constitutes a powerful candidate for the development of a human vaccine against this pathogen.  相似文献   

6.
Two auxotrophic genes that play essential roles in bacterial cell wall biosynthesis--alanine racemase (alr) gene and aspartate semialdehyde dehydrogenase (asd) gene--knock-out Edwardsiella tarda (Δalr Δasd E. tarda) was generated by the allelic exchange method to develop a combined vaccine system. Green fluorescent protein (GFP) was used as a model foreign protein, and was expressed by transformation of the mutant E. tarda with antibiotic resistant gene-free plasmids harboring cassettes for GFP and asd expression (pG02-ASD-EtPR-GFP). In vitro growth of the mutant E. tarda was similar to wild-type E. tarda when D-alanine and diaminopimelic acid (DAP) were supplemented to growth medium. However, without d-alanine and/or DAP supplementation, the mutant showed very limited growth. The Δalr Δasd E. tarda transformed with pG02-ASD-EtPR-GFP showed a similar growth pattern of wild-type E. tarda when D-alanine was supplemented in the medium, and the expression of GFP could be observed even with naked eyes. The virulence of the auxotrophic mutant E. tarda was decreased, which was demonstrated by approximately 10? fold increase of LD?? dose compared to wild-type E. tarda. To assess vaccine potential of the present combined vaccine system, olive flounder (Paralichthys olivaceus) were immunized with the GFP expressing mutant E. tarda, and analyzed protection efficacy against E. tarda challenge and antibody titers against E. tarda and GFP. Groups of fish immunized with 10? CFU of the Δalr Δasd E. tarda harboring pG02-ASD-EtPR-GFP showed no mortality, which was irrespective to boost immunization. The cumulative mortality rates of fish immunized with 10? or 10? CFU of the mutant bacteria were lowered by a boost immunization. Fish immunized with the mutant E. tarda at doses of 10?-10? CFU/fish showed significantly higher serum agglutination activities against formalin-killed E. tarda than PBS-injected control fish. Furthermore, fish immunized with 10?-10? CFU/fish of the mutant E. tarda showed significantly higher ELISA titer against GFP antigen than fish in other groups. These results indicate that the present double auxotrophic genes knock-out E. tarda coupled with a heterologous antigen expression has a great strategic potential to be used as combined vaccines against various fish diseases.  相似文献   

7.
8.
In vivo infection studies in Japanese flounder (Paralichthys olivaceus) demonstrated that the number of viable cells of the virulent strain (NUF251) of Edwardsiella tarda increased gradually in kidney and hepato-pancreas after intraperitoneal injection, but the low virulent strain (NUF194) did not. To gain insight into the virulence factors of E. tarda, in vitro responses of Japanese flounder (P. olivaceus) peritoneal macrophages to these strains were compared in terms of phagocytosis, bactericidal activity, and reactive oxygen species (ROS) generation as measured by chemiluminescence (CL) responses. Microscopic observation revealed that these two strains of E. tarda were phagocytosed by the peritoneal macrophages, and there was no significant difference in the mean numbers of ingested bacteria per macrophage between these strains. A gradual increase in the number of viable cells of the highly virulent strain within macrophages was observed during 9h post-phagocytosis, whereas no significant replication of the low virulent strain within macrophages was detected. These results suggest that the virulent strain of E. tarda has an ability to survive and replicate within macrophages, while the low virulent strain has no such ability. When the peritoneal macrophages were exposed to the opsonized low virulent E. tarda strain, a rapid increase in CL response was induced. However, the highly virulent strain caused only background level of CL response. By the subsequent stimulation with phorbol myristate acetate, the macrophages exposed to the virulent E. tarda strain showed extremely higher CL response than that of the one exposed to the low virulent E. tarda strain. These results suggest that the virulent E. tarda prevents the activation of ROS generation system during phagocytosis, though the system is still capable of responding to other stimulation. The virulent strain significantly reduced the CL response induced by xanthine/xanthine oxidase system, while the low virulent strain had almost no effect. Furthermore, the virulent strain showed greater resistance to H(2)O(2) than the low virulent strain. Our results suggest that the virulent strain of E. tarda is highly resistant to ROS, and such ability might allow the organism to survive and multiply within phagocytes, and may serve to disseminate E. tarda throughout the host during in vivo infection.  相似文献   

9.
In this paper, we focused on the detection of differentially expressed genes in peripheral blood leucocytes (PBL) during the course of Edwardsiella tarda infection in vaccinated and non-vaccinated Japanese flounder (Paralichthys olivaceus). cDNA microarray analysis was performed to compare the gene expression patterns of the PBL between the vaccinated and non-vaccinated fish in response to E. tarda inoculation. Fish were vaccinated twice, at a two-week interval and experimentally challenged with E. tarda two weeks after the second vaccination. Among the 1187 analyzed genes, 42 genes were up-regulated during the course of infection either in vaccinated or non-vaccinated fish. These genes included immune-related genes, such as MMP-9, MMP-13, CXC chemokine, CD20 receptor and hepcidin. Some immune-related genes were down-regulated after the E. tarda challenge, i.e. interferon inducible Mx protein, MHC class II-associated invariant chain, MHC class II alpha and MHC class II beta encoding genes, immunoglobulin light chain precursor, immunoglobulin light chain and IgM. These responses are thought to be a common reaction of Japanese flounder PBL in the course of edwardsiellosis, irrespective of immunized condition. Ten genes were significantly up-regulated only in vaccinated fish, and 11 genes were significantly up-regulated only in non-vaccinated fish. These genes may have a correlation with the efficacy of vaccination, although we have no evidence to link the different gene expression patterns and the efficacy of vaccination at present.  相似文献   

10.
To study the direct cause of liver enlargement in the Japanese flounder Paralichthys olivaceus infected with Edwardsiella tarda, the fish were challenged with E. tarda and reared without feeding. The liver of fish exposed to the bacteria was markedly enlarged compared to that of the controls while no severe histopathological change appeared in the organ during the experiments. No notable difference was observed in the crude fat, glycogen, and water content of the liver between challenged and control fish. The size of liver cells and nuclei of the challenged fish was apparently larger than that of the controls. Analysis of crude DNA in the liver suggested that the number of liver cells of starved control fish significantly decreased during the experiment while that of the challenged fish was maintained at a level of the initial control. RNA/DNA ratio of the liver of challenged fish clearly increased while it decreased in the control fish during the experiment. These observations suggest that liver enlargement of flounder infected with E. tarda, at least in the early stage of infection, is not a result of any readily observable histopathological changes and that E. tarda infection causes hypertrophy of the cells, as well as preventing decrease in liver cell number.  相似文献   

11.
12.
13.
Edwardsiella tarda, which is known to be the causative agent of edwardsiellosis in freshwater and marine fish, has two motility phenotypes. Typical strains exhibiting motility are isolated mainly from freshwater fish and Japanese flounder. Atypical strains exhibiting non-motility are isolated mainly from marine fish, with the exception of Japanese flounder. Subtractive hybridization was performed to identify genomic differences between these two phenotypes. Two fragments which showed homology to potential virulence factors were isolated from atypical strains: the autotransporter adhesin AIDA and a component of T6SS. We analysed DNA sequences of about 5 kbp containing these fragments and identified two partial ORF, and ORF encoding for other components of T6SS. The predicted amino acid sequences showed remarkably low homology to components of T6SS reported in the typical E. tarda strain PPD130/91. Furthermore, the organization of these ORF was different from the gene cluster of the typical E. tarda strain. AIDA and T6SS may therefore be associated with different pathogenicity in typical and atypical E. tarda hosts.  相似文献   

14.
15.
Members of the DnaJ/Hsp40 family play an important role in protein homeostasis by regulating the activity of DnaK/Hsp70. In this study, we examined the activity and function of the DnaJ from Edwardsiella tarda, a serious fish pathogen that can also infect humans and birds. In silico analysis indicated that E. tarda DnaJ contains structural features, i.e. the J domain, the glycine/phenylalanine-rich region, and the zinc-finger domain, that are conserved among Type I Hsp40. Purified recombinant DnaJ was able to stimulate the ATPase activity of DnaK. Pull-down assay indicated that DnaJ could interact specifically with DnaK. Mutation of the conserved HPD site in the J domain completely abolished the DnaK-stimulating effect of DnaJ. To examine the functional importance of DnaJ, a dnaJ-defective mutant was constructed. Compared to the wild type, the dnaJ mutant (i) was retarded in growth and more sensitive to H?O?-induced oxidative damage, (ii) dramatically reduced in general bacterial virulence and in blood dissemination capacity, and (iii) significantly weakened in the ability to block macrophage activation and to survive within macrophages. Furthermore, when used as a subunit vaccine, purified recombinant DnaJ induced protective immunity in Japanese flounder (Paralichthys olivaceus). Taken together, these results indicate that DnaJ plays an important role in the pathogenesis of E. tarda probably by functioning as a DnaK partner and that DnaJ, with its immunoprotective property, may be useful in the control of E. tarda infection in aquaculture.  相似文献   

16.
Here we report a rapid and sensitive method (using loop-mediated isothermal amplification [LAMP]) for the diagnosis of edwardsiellosis, a fish disease caused by Edwardsiella tarda, in Japanese flounder. A set of four primers was designed, and conditions for the detection were optimized for the detection of E. tarda in 45 min at 65 degrees C. No amplification of the target hemolysin gene was detected in other related bacteria. When the LAMP primers were used, detection of edwardsiellosis in infected Japanese flounder kidney, and spleen and seawater cultures was possible. We have developed a rapid and sensitive diagnostic protocol for edwardsiellosis detection in fish. This is the first report of the application of LAMP for the diagnosis of a fish pathogen.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号