共查询到20条相似文献,搜索用时 0 毫秒
1.
Hutchinson-Gilford progeria syndrome (HGPS) is caused by de novo dominant point mutations of the genes encoding nuclear
lamina proteins, leading towards premature aging. A protein sequence is subjected to mutations in nature which can affect the
function and folding pattern of the protein by different ways. Mutations involved in HGPS were identified and were substituted in
the seed sequence retrieved from the UniProt database to get the mutated versions. Tertiary structure of the Lamin A protein was
previously unpredicted so was performed for all the mutated as well as for the seed protein to analyze the effects of mutations on
the protein structure, folding and interactions. All the predicted models were refined and validated through multiple servers for
multiple parameters. The validated 3D structure of seed protein was then successfully submitted to the Protein Model Database
and was assigned with the PMDB ID PM0077829. All the predicted structures were superimposed with a root mean square
deviation value of 7.0 Å and a high Dali Z-score of 1.9. It was observed that mutations affected physiochemical properties as well as
instability index and thus is affecting the domains in specific and the whole structure in general. It was further analyzed that HGPS
is the result of affected Lamin a protein interactions with other integral and binding proteins in the inner nuclear membrane
affecting the link in between the nuclear membrane and the network of the lamina. 相似文献
2.
Hutchinson-Gilford progeria syndrome (HGPS or progeria) is a very rare genetic disorder with clinical features suggestive of premature aging. Here, we show that induced expression of the most common HGPS mutation (LMNA c.1824C>T, p.G608G) results in a decreased epidermal population of adult stem cells and impaired wound healing in mice. Isolation and growth of primary keratinocytes from these mice demonstrated a reduced proliferative potential and ability to form colonies. Downregulation of the epidermal stem cell maintenance protein p63 with accompanying activation of DNA repair and premature senescence was the probable cause of this loss of adult stem cells. Additionally, upregulation of multiple genes in major inflammatory pathways indicated an activated inflammatory response. This response has also been associated with normal aging, emphasizing the importance of studying progeria to increase the understanding of the normal aging process. 相似文献
3.
《Autophagy》2013,9(1):147-151
While rapamycin has been in use for years in transplant patients as an antirejection drug, more recently it has shown promise in treating diseases of aging, such as neurodegenerative disorders and atherosclerosis. We recently reported that rapamycin reverses the cellular phenotype of fibroblasts from children with the premature aging disease Hutchinson-Gilford progeria syndrome (HGPS). We found that the causative aberrant protein, progerin, was cleared through autophagic mechanisms when the cells were treated with rapamycin, suggesting a new potential treatment for HGPS. Recent evidence shows that progerin is also present in aged tissues of healthy individuals, suggesting that progerin may contribute to physiological aging. While it is intriguing to speculate that rapamycin may affect normal aging in humans, as it does in lower organisms, it will be important to identify safer analogues of rapamycin for chronic treatments in humans in order to minimize toxicity. In addition to its role in HGPS and normal aging, we discuss the potential of rapamycin for the treatment of age-dependent neurodegenerative diseases. 相似文献
4.
A common feature of progeria syndromes is a premature aging phenotype and an enhanced accumulation of DNA damage arising from a compromised repair system. HGPS (Hutchinson-Gilford progeria syndrome) is a severe form of progeria in which patients accumulate progerin, a mutant lamin A protein derived from a splicing variant of the lamin A/C gene (LMNA). Progerin causes chromatin perturbations which result in the formation of DSBs (double-strand breaks) and abnormal DDR (DNA-damage response). In the present article, we review recent findings which resolve some mechanistic details of how progerin may disrupt DDR pathways in HGPS cells. We propose that progerin accumulation results in disruption of functions of some replication and repair factors, causing the mislocalization of XPA (xeroderma pigmentosum group A) protein to the replication forks, replication fork stalling and, subsequently, DNA DSBs. The binding of XPA to the stalled forks excludes normal binding by repair proteins, leading to DSB accumulation, which activates ATM (ataxia telangiectasia mutated) and ATR (ATM- and Rad3-related) checkpoints, and arresting cell-cycle progression. 相似文献
5.
We report an 82-year-old girl with premature aging, a karyotype of 46,XX and a de novo c.1824C>T mutation encoding p.G608G in the lamin A gene. The clinical features of accelerated aging and the molecular finding were consistent with the diagnosis of Hutchinson-Gilford progeria syndrome (HGPS). In this presentation, we demonstrate the radiological imaging findings of skeletal, oral and craniofacial phenotypes of abnormalities associated with HGPS. The oral and craniofacial abnormalities caused dental caries, severe malocclusion, and swallowing, feeding and speech problems. Dural calcification, and granulation in the ear drum and external ear canal were additionally observed. 相似文献
6.
Hutchinson-Gilford progeria syndrome (HGPS) is a childhood premature aging disease caused by a spontaneous point mutation in lamin A (encoded by LMNA), one of the major architectural elements of the mammalian cell nucleus. The HGPS mutation activates an aberrant cryptic splice site in LMNA pre-mRNA, leading to synthesis of a truncated lamin A protein and concomitant reduction in wild-type lamin A. Fibroblasts from individuals with HGPS have severe morphological abnormalities in nuclear envelope structure. Here we show that the cellular disease phenotype is reversible in cells from individuals with HGPS. Introduction of wild-type lamin A protein does not rescue the cellular disease symptoms. The mutant LMNA mRNA and lamin A protein can be efficiently eliminated by correction of the aberrant splicing event using a modified oligonucleotide targeted to the activated cryptic splice site. Upon splicing correction, HGPS fibroblasts assume normal nuclear morphology, the aberrant nuclear distribution and cellular levels of lamina-associated proteins are rescued, defects in heterochromatin-specific histone modifications are corrected and proper expression of several misregulated genes is reestablished. Our results establish proof of principle for the correction of the premature aging phenotype in individuals with HGPS. 相似文献
7.
8.
Wang L Yang W Ju W Wang P Zhao X Jenkins EC Brown WT Zhong N 《Biochemical and biophysical research communications》2012,417(4):1119-1126
The Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disease characterized by segmental premature aging. Applying a two-dimensional chromatographic proteomic approach, the 2D Protein Fractionation System (PF2D), we identified 30 differentially expressed proteins in cultured HGPS fibroblasts. We categorized them into five groups: methylation, calcium ion binding, cytoskeleton, duplication, and regulation of apoptosis. Among these 30 proteins, 23 were down-regulated, while seven were up-regulated in HGPS fibroblasts as compared to normal fibroblasts. Three differentially expressed cytoskeleton proteins, vimentin, actin, and tubulin, were validated via Western blotting and characterized by immunostaining that revealed densely thickened bundles and irregular structures. Furthermore in the HGPS cells, the cell cycle G1 phase was elongated and the concentration of free cytosolic calcium was increased, suggesting intracellular retention of calcium. The results that we obtained have implications for understanding the aging process. 相似文献
9.
Yang SH Qiao X Farber E Chang SY Fong LG Young SG 《The Journal of biological chemistry》2008,283(11):7094-7099
Hutchinson-Gilford progeria syndrome is caused by the synthesis of a mutant form of prelamin A, which is generally called progerin. Progerin is targeted to the nuclear rim, where it interferes with the integrity of the nuclear lamina, causes misshapen cell nuclei, and leads to multiple aging-like disease phenotypes. We created a gene-targeted allele yielding exclusively progerin (Lmna HG) and found that heterozygous mice (Lmna HG/+) exhibit many phenotypes of progeria. In this study, we tested the hypothesis that the phenotypes elicited by the Lmna HG allele might be modulated by compositional changes in the nuclear lamina. To explore this hypothesis, we bred mice harboring one Lmna HG allele and one Lmna LCO allele (a mutant allele that produces lamin C but no lamin A). We then compared the phenotypes of Lmna HG/LCO mice (which produce progerin and lamin C) with littermate Lmna HG/+ mice (which produce lamin A, lamin C, and progerin). Lmna HG/LCO mice exhibited improved HG/LCO fibroblasts had fewer misshapen nuclei than Lmna HG/+ fibroblasts (p < 0.0001). A likely explanation for these differences was uncovered; the amount of progerin in Lmna HG/LCO fibroblasts and tissues was lower than in Lmna HG/+ fibroblasts and tissues. These studies suggest that compositional changes in the nuclear lamina can influence both the steady-state levels of progerin and the severity of progeria-like disease phenotypes. 相似文献
10.
Treatment with a farnesyltransferase inhibitor improves survival in mice with a Hutchinson-Gilford progeria syndrome mutation 总被引:2,自引:0,他引:2
Hutchinson-Gilford progeria syndrome (HGPS) is a progeroid syndrome characterized by multiple aging-like disease phenotypes. We recently reported that a protein farnesyltransferase inhibitor (FTI) improved several disease phenotypes in mice with a HGPS mutation (Lmna(HG/+)). Here, we investigated the impact of an FTI on the survival of Lmna(HG/+) mice. The FTI significantly improved the survival of both male and female Lmna(HG/+) mice. Treatment with the FTI also improved body weight curves and reduced the number of spontaneous rib fractures. This study provides further evidence for a beneficial effect of an FTI in HGPS. 相似文献
11.
While rapamycin has been in use for years in transplant patients as an antirejection drug, more recently it has shown promise in treating diseases of aging, such as neurodegenerative disorders and atherosclerosis. We recently reported that rapamycin reverses the cellular phenotype of fibroblasts from children with the premature aging disease Hutchinson-Gilford progeria syndrome (HGPS). We found that the causative aberrant protein, progerin, was cleared through autophagic mechanisms when the cells were treated with rapamycin, suggesting a new potential treatment for HGPS. Recent evidence shows that progerin is also present in aged tissues of healthy individuals, suggesting that progerin may contribute to physiological aging. While it is intriguing to speculate that rapamycin may affect normal aging in humans, as it does in lower organisms, it will be important to identify safer analogues of rapamycin for chronic treatments in humans in order to minimize toxicity. In addition to its role in HGPS and normal aging, we discuss the potential of rapamycin for the treatment of age-dependent neurodegenerative diseases. 相似文献
12.
Background
Hutchinson-Gilford progeria syndrome (HGPS) is a premature ageing syndrome that affects children leading to premature death, usually from heart infarction or strokes, making this syndrome similar to normative ageing. HGPS is commonly caused by a mutation in the A-type lamin gene, LMNA (G608G). This leads to the expression of an aberrant truncated lamin A protein, progerin. Progerin cannot be processed as wild-type pre-lamin A and remains farnesylated, leading to its aberrant behavior during interphase and mitosis. Farnesyltransferase inhibitors prevent the accumulation of farnesylated progerin, producing a less toxic protein.Results
We have found that in proliferating fibroblasts derived from HGPS patients the nuclear location of interphase chromosomes differs from control proliferating cells and mimics that of control quiescent fibroblasts, with smaller chromosomes toward the nuclear interior and larger chromosomes toward the nuclear periphery. For this study we have treated HGPS fibroblasts with farnesyltransferase inhibitors and analyzed the nuclear location of individual chromosome territories. We have found that after exposure to farnesyltransferase inhibitors mis-localized chromosome territories were restored to a nuclear position akin to chromosomes in proliferating control cells. Furthermore, not only has this treatment afforded chromosomes to be repositioned but has also restored the machinery that controls their rapid movement upon serum removal. This machinery contains nuclear myosin 1β, whose distribution is also restored after farnesyltransferase inhibitor treatment of HGPS cells.Conclusions
This study not only progresses the understanding of genome behavior in HGPS cells but demonstrates that interphase chromosome movement requires processed lamin A. 相似文献13.
Hutchinson-Gilford progeria syndrome (HGPS) is a rare genetic disorder because of a LMNA gene mutation that produces a mutant lamin A protein (progerin). Progerin also has been correlated to physiological aging and related diseases. However, how progerin causes the progeria remains unknown. Here, we report that the large subunit (RFC1) of replication factor C is cleaved in HGPS cells, leading to the production of a truncated RFC1 of ~ 75 kDa, which appears to be defective in loading proliferating cell nuclear antigen (PCNA) and pol δ onto DNA for replication. Interestingly, the cleavage can be inhibited by a serine protease inhibitor, suggesting that RFC1 is cleaved by a serine protease. Because of the crucial role of RFC in DNA replication, our findings provide a mechanistic interpretation for the observed early replicative arrest and premature aging phenotypes of HPGS and may lead to novel strategies in HGPS treatment. Furthermore, this unique truncated form of RFC1 may serve as a potential marker for HGPS. 相似文献
14.
Dan Constantinescu Antonei B. Csoka Gerald P. Schatten 《Experimental cell research》2010,316(17):2747-2759
Impaired DSB repair has been implicated as a molecular mechanism contributing to the accelerating aging phenotype in Hutchinson-Gilford progeria syndrome (HGPS), but neither the extent nor the cause of the repair deficiency has been fully elucidated. Here we perform a quantitative analysis of the steady-state number of DSBs and the repair kinetics of ionizing radiation (IR)-induced DSBs in HGPS cells. We report an elevated steady-state number of DSBs and impaired repair of IR-induced DSBs, both of which correlated strongly with abnormal nuclear morphology. We recreated the HGPS cellular phenotype in human coronary artery endothelial cells for the first time by lentiviral transduction of GFP-progerin, which also resulted in impaired repair of IR-induced DSBs, and which correlated with abnormal nuclear morphology. Farnesyl transferase inhibitor (FTI) treatment improved the repair of IR-induced DSBs, but only in HGPS cells whose nuclear morphology was also normalized. Interestingly, FTI treatment did not result in a statistically significant reduction in the higher steady-state number of DSBs. We also report a delay in localization of phospho-NBS1 and MRE11, MRN complex repair factors necessary for homologous recombination (HR) repair, to DSBs in HGPS cells. Our results demonstrate a correlation between nuclear structural abnormalities and the DSB repair defect, suggesting a mechanistic link that may involve delayed repair factor localization to DNA damage. Further, our results show that similar to other HGPS phenotypes, FTI treatment has a beneficial effect on DSB repair. 相似文献
15.
Hutchinson-Gilford progeria syndrome (HGPS, OMIM 176670) is a rare disorder characterized by accelerated aging and early death, frequently from stroke or coronary artery disease. 90% of HGPS cases carry the LMNA G608G (GGC>GGT) mutation within exon 11 of LMNA, activating a splice donor site that results in production of a dominant negative form of lamin A protein, denoted progerin. Screening 150 skin biopsies from unaffected individuals (newborn to 97 years) showed that a similar splicing event occurs in vivo at a low level in the skin at all ages. While progerin mRNA remains low, the protein accumulates in the skin with age in a subset of dermal fibroblasts and in a few terminally differentiated keratinocytes. Progerin-positive fibroblasts localize near the basement membrane and in the papillary dermis of young adult skin; however, their numbers increase and their distribution reaches the deep reticular dermis in elderly skin. Our findings demonstrate that progerin expression is a biomarker of normal cellular aging and may potentially be linked to terminal differentiation and senescence in elderly individuals. 相似文献
16.
Corso C Parry EM Faragher RG Seager A Green MH Parry JM 《Cytogenetic and genome research》2005,111(1):27-33
Hutchinson-Gilford Progeria Syndrome (HGPS) is an extremely rare genetic disorder characterized by premature ageing in childhood and serves as a valuable model for the human ageing process in general. Most recently, point mutations in the lamin A (LMNA) gene on chromosome 1q have been associated with the disease, however how these mutations relate to the complex phenotype of HGPS remains to be established. It has been shown that fibroblasts from HGPS patients are frequently resistant to immortalization with telomerase (hTERT), consistent with the idea that the loss of a dominant acting HGPS gene is a pre-requisite for immortalization. In this study we report the first detailed cytogenetic analysis of hTERT-immortalised HGPS cell lines from three patients and one corresponding primary fibroblast culture. Our results provide evidence for a cytogenetic mosaicism in HGPS with a distinctive pattern of chromosome aberrations in all the HGP clones. Chromosome 11 alterations were observed at a high frequency in each immortalised HGPS cell line but were also present at a lower frequency in the corresponding primary cells. Moreover, we were able to identify the 11q13-->q23 region as a potential site of breakage. Our results are therefore consistent with a role of chromosome 11 alterations in the escape from senescence observed in HGPS cells. In addition to this defined rearrangement, we consistently observed complex chromosomal rearrangements, suggesting that HGPS displays features of chromosomal instability. 相似文献
17.
Proteomics has revealed differential protein expression and glycosylation in membrane proteins from premature aging Hutchinson-Gilford progeria syndrome fibroblasts (progeria). Progeria is a rare autosomal dominant genetic disorder of premature aging characterized by marked growth retardation and specific, progressive, premature senescent changes of the skin and other tissues. Affected children live to an average age of 13 years. The 1q20-24 region of chromosome 1 which codes for one of these proteins, lamin A/C, has previously been implicated by Brown et al. (1990) who described identical twins with progeria, where cytogenetic analysis showed an inverted insertion in the long arm of the chromosome in 70% of cells. Luengo et al. (2002) similarly reported an interstitial deletion of chromosome 1q23, in a 9-year-old patient with a classic clinical picture of progeria. 相似文献
18.
Conneely KN Capell BC Erdos MR Sebastiani P Solovieff N Swift AJ Baldwin CT Budagov T Barzilai N Atzmon G Puca AA Perls TT Geesaman BJ Boehnke M Collins FS 《Aging cell》2012,11(3):475-481
A mutation in the LMNA gene is responsible for the most dramatic form of premature aging, Hutchinson-Gilford progeria syndrome (HGPS). Several recent studies have suggested that protein products of this gene might have a role in normal physiological cellular senescence. To explore further LMNA's possible role in normal aging, we genotyped 16 SNPs over a span of 75.4 kb of the LMNA gene on a sample of long-lived individuals (LLI) (US Caucasians with age ≥ 95 years, N=873) and genetically matched younger controls (N=443). We tested all common nonredundant haplotypes (frequency ≥ 0.05) based on subgroups of these 16 SNPs for association with longevity. The most significant haplotype, based on four SNPs, remained significant after adjustment for multiple testing (OR=1.56, P=2.5 × 10(-5) , multiple-testing-adjusted P=0.0045). To attempt to replicate these results, we genotyped 3619 subjects from four independent samples of LLI and control subjects from (i) the New England Centenarian Study (NECS) (N=738), (ii) the Southern Italian Centenarian Study (SICS) (N=905), (iii) France (N=1103), and (iv) the Einstein Ashkenazi Longevity Study (N= 702). We replicated the association with the most significant haplotype from our initial analysis in the NECS sample (OR=1.60, P=0.0023), but not in the other three samples (P > 0.15). In a meta-analysis combining all five samples, the best haplotype remained significantly associated with longevity after adjustment for multiple testing in the initial and follow-up samples (OR=1.18, P=7.5 × 10(-4) , multiple-testing-adjusted P=0.037). These results suggest that LMNA variants may play a role in human lifespan. 相似文献
19.
《Epigenetics》2013,8(1):28-33
DNA methylation gradiently changes with age and is likely to be involved in aging-related processes with subsequent phenotype changes and increased susceptibility to certain diseases. The Hutchinson-Gilford Progeria (HGP) and Werner Syndrome (WS) are two premature aging diseases showing features of common natural aging early in life. Mutations in the LMNA and WRN genes were associated to disease onset; however, for a subset of patients the underlying causative mechanisms remain elusive. We aimed to evaluate the role of epigenetic alteration on premature aging diseases by performing comprehensive DNA methylation profiling of HGP and WS patients. We observed profound changes in the DNA methylation landscapes of WRN and LMNA mutant patients, which were narrowed down to a set of aging related genes and processes. Although of low overall variance, non-mutant patients revealed differential DNA methylation at distinct loci. Hence, we propose DNA methylation to have an impact on premature aging diseases. 相似文献
20.
LMNA基因编码A型和C型核纤层蛋白,参与细胞核核膜的组织,影响基因组稳定性并对细胞分化产生影响。人类肿瘤中LMNA表达异常普遍存在,其突变造成多种核纤层蛋白病,如Emery-Dreifuss肌营养不良症(Emery-Dreifussmusculardystrophy,EDMD)、扩张型心肌病(dilatedcardiomyopathy,DCM)和儿童早老症(Hutchinson-Glifordprogeriasyndrome,HGPS)等。为进一步研究LMNA在细胞内的功能,本研究利用CRISPR/Cas9技术对体外培养的293T与HepG2细胞株的LMNA基因进行编辑,获得两株LMNA基因敲除(LMNA KO)的稳定细胞系。与野生型相比,LMNAKO细胞系增殖能力相对减弱,凋亡增加。同时,细胞形态上也发生显著改变,核膜凹凸不平。本研究首次报道了LMNA KO永生细胞系构建和形态研究结果,为后续LMNA基因功能研究和致病突变体研究奠定基础。 相似文献