首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bone marrow stroma consists of a heterogeneous population of cells which participate in osteogenic, adipogenic, and hematopoietic events. The murine stromal cell line, BMS2, exhibits the adipocytic and osteoblastic phenotypes in vitro. BMS2 differentiation was examined in response to cytokines which share the gp130 signal transducing protein within their receptor complex. Four of the cytokines (interleukin 6, interleukin 11, leukemia inhibitory factor, and oncostatin M) inhibited hydrocortisone-induced adipocyte differentiation in a dose dependent manner based on lipid accumulation and lipoprotein lipase enzyme activity. Inhibition occurred only when the cytokines were present during the initial 24 h of the induction period; after 48 h, their effects were diminished. Likewise, these cytokines increased alkaline phosphatase enzyme activity twofold in preadipocyte BMS2 cells. Both leukemia inhibitory factor and oncostatin M induced early active gene expression in resting preadipocyte BMS2 cells and decreased the steady state mRNA level of a unique osteoblastic gene marker, osteocalcin. A fifth cytokine whose receptor complex shares the gp130 protein, ciliary neurotrophic factor, did not significantly regulate stromal cell differentiation when added by itself. However, with the addition of a missing component of its receptor complex, ciliary neurotrophic factor receptor α protein, this cytokine also inhibited BMS2 adipogenesis. Together, these data indicate that the cytokines whose receptors share the gp130 protein can modulate stromal cell commitment to the adipocyte and osteoblast differentiation pathways.  相似文献   

2.
The bone morphogenetic proteins were originally identified based on their ability to induce ectopic bone formation in vivo and have since been identified as members of the transforming growth factor-β gene superfamily. It has been well established that the bone morphogenetic cytokines enhance osteogenic activity in bone marrow stromal cells in vitro. Recent reports have described how bone morphogenetic proteins inhibited myogenic differentiation of bone marrow stromal cells in vitro. In vivo, bone marrow stromal cells differentiate along the related adipogenic pathway with advancing age. The current work reports the inhibitory effects of the bone morphorphogenetic proteins on adipogenesis in a multipotent murine bone marrow stromal cell line, BMS2. When exposed to bone morphogenetic protein-2, the pre-adipocyte BMS2 cells exhibited the expected induction of the osteogenic-related enzyme, alkaline phosphatase. Following induction of the BMS2 cells with adipogenic agonists, adipocyte differentiation was assessed by morphologic, enzymatic, and mRNA markers. Flow cytometric analysis combined with staining by the lipophilic fluorescent dye, Nile red, was used to quantitate the extent of lipid accumulation within the BMS2 cells. By this morphologic criteria, the bone morphogenetic proteins inhibited adipogenesis at concentrations of 50 to 500 ng/ml. This correlated with decreased levels of adipocyte specific enzymes and mRNAs. The BMS2 pre-adipocytes constitutively expressed mRNA encoding bone morphogenetic protein-4 and this was inhibited by adipogenic agonists. Together, these findings demonstrate that bone morphogenetic proteins act as adipogenic antagonists. This supports the hypothesis that adipogenesis and osteogenesis in the bone marrow microenvironment are reciprocally regulated.  相似文献   

3.
Adipogenesis in a myeloid supporting bone marrow stromal cell line.   总被引:3,自引:0,他引:3  
The bone marrow stroma contains pre-adipocyte cells which are part of the hemopoietic microenvironment. Cloned stromal cell lines differ both in their ability to support myeloid and lymphoid development and in their ability to undergo adipocyte differentiation in vitro. These processes have been examined in the +/+2.4 murine stromal cell line and compared to other stromal and pre-adipocyte cell lines. In long-term cultures, the +/+2.4 stromal cells support myeloid cell growth, consistent with their expression of macrophage-colony stimulating factor mRNA. However, despite the presence of mRNA for the lymphoid supportive cytokines interleukins 6 and 7, +/+2.4 cells failed to support stromal cell dependent B lineage lymphoid cells in vitro, suggesting that these stromal cells exhibit only a myelopoietic support function. The +/+2.4 cells differentiate into adipocytes spontaneously when cultured in 10% fetal bovine serum. The process of adipogenesis can be accelerated by a number of agonists based on morphologic and gene marker criteria. Following induction with hydrocortisone, methylisobutylxanthine, indomethacin, and insulin in combination, a time dependent increase in the steady state mRNA and enzyme activity levels of the following adipocyte specific genes was observed: adipocyte P2, adipsin, CAAT/enhancer binding protein, and lipoprotein lipase. In contrast, adipogenesis was accompanied by a slight decrease in the signal intensity of the macrophage-colony stimulating factor mRNA level, similar to that which has been reported in other bone marrow stromal cell lines. These data demonstrate that although the lympho-hematopoietic support function of pre-adipocyte bone marrow stromal cell lines is heterogeneous, they share a common mechanism of adipogenesis.  相似文献   

4.
The regulation of human bone marrow stromal precursor cell differentiation toward the chondrocyte, osteoblast or adipocyte lineages is not known. In this study, we assessed the lineage-specific differentiation and conversion of immortalized clonal F/STRO-1(+) A human fetal bone marrow stromal cells under the control of dexamethasone (Dex), indomethacin/insulin (Indo/Ins) and linoleic acid (LA). Under basal conditions, F/STRO-1(+) A cells expressed markers mRNAs or proteins of the osteoblast lineage [CBFA1, osteocalcin (OC), alkaline phosphatase (ALP), type 1 collagen], of the chondrocyte lineage (aggrecan, types 2, 9 and 10 collagen), and of the adipocyte lineage (PPARgamma2, C/EBPalpha, aP2, G3PDH, lipoprotein lipase, leptin). Treatment with Dex increased CBFA1, OC and ALP mRNA and protein levels. Exposure to LA enhanced expression of adipocytic genes and cytoplasmic triglycerides accumulation, and suppressed the Dex-induced stimulation of osteoblast marker genes. Indo/Ins stimulated the synthesis of aggrecan and type 2 collagen and increased types 9 and 10 collagen mRNA levels, and suppressed both basal and Dex-promoted expression of osteoblast markers. Conversely, stimulation of osteoblastogenesis by Dex suppressed both basal and Indo/Ins-stimulated chondrocyte genes. Thus, the clonal human fetal bone marrow stromal F/STRO-1(+) A cell line is a lineage-unrestricted common progenitor that expresses tripotential adipocyte, osteoblast or chondrocyte characteristics. Our data also show that differentiation towards one pathway in response to Dex, Indo/Ins and LA restricts expression of other lineage-specific genes, and provide evidence for a controlled reciprocal regulation of osteoblast/chondroblast and osteoblast/adipocyte differentiation of clonal F/STRO-1(+) human bone marrow stromal cells.  相似文献   

5.
Saidak Z  Haÿ E  Marty C  Barbara A  Marie PJ 《Aging cell》2012,11(3):467-474
With aging, bone marrow mesenchymal stromal cell (MSC) osteoblast differentiation decreases whereas MSC differentiation into adipocytes increases, resulting in increased adipogenesis and bone loss. Here, we investigated whether activation of cell signaling by strontium ranelate (SrRan) can reverse the excessive adipogenic differentiation associated with aging. In murine MSC cultures, SrRan increased Runx2 expression and matrix mineralization and decreased PPARγ2 expression and adipogenesis. This effect was associated with increased expression of the Wnt noncanonical representative Wnt5a and adipogenic modulator Maf and was abrogated by Wnt- and nuclear factor of activated T-cells (NFAT)c antagonists, implying a role for Wnt and NFATc/Maf signaling in the switch in osteoblastogenesis to adipogenesis induced by SrRan. To confirm this finding, we investigated the effect of SrRan in SAMP6 senescent mice, which exhibit decreased osteoblastogenesis, increased adipogenesis, and osteopenia. SrRan administration at a clinically relevant dose level increased bone mineral density, bone volume, trabecular thickness and number, as shown by densitometric, microscanning, and histomorphometric analyses in long bones and vertebrae. This attenuation of bone loss was related to increased osteoblast surface and bone formation rate and decreased bone marrow adipocyte volume and size. The restoration of osteoblast and adipocyte balance induced by SrRan was linked to increased Wnt5a and Maf expression in the bone marrow. The results indicate that SrRan acts on lineage allocation of MSCs by antagonizing the age-related switch in osteoblast to adipocyte differentiation via mechanisms involving NFATc/Maf and Wnt signaling, resulting in increased bone formation and attenuation of bone loss in senescent osteopenic mice.  相似文献   

6.
To clarify the mechanism of the stimulatory effect of statins on bone formation, we investigated the effect of simvastatin, a widely used statin, on osteoblastic and adipocytic differentiation in primary cultured mouse bone marrow stromal cells (BMSCs). Simvastatin treatment enhanced the expression level of mRNA for osteocalcin and protein for osteocalcin and osteopontin, and increased alkaline phosphatase activity significantly (p<0.05). After BMSCs were exposed to an adipocyte differentiation agonist, Oil Red O staining, fluorescence activated cell sorting, and decreased expression level of lipoprotein lipase mRNA showed that treatment with simvastatin significantly inhibits adipocytic differentiation compared to controls that did not receive simvastatin (p<0.05). Lastly, we found that simvastatin induces high expression of BMP(2) in BMSCs. These observations suggested that simvastatin acts on BMSCs to enhance osteoblastic differentiation and inhibits adipocytic differentiation; this effect is at least partially mediated by inducing BMP(2) expression in BMSCs.  相似文献   

7.
8.
The bone marrow contains mesenchymal stem cells (MSCs) that differentiate to the osteogenic and adipogenic lineages. The fact that the decrease in bone volume of age-related osteoporosis is accompanied by an increase in marrow adipose tissue implies the importance that the adipogenic process may have in bone loss. We previously observed that MSCs from control and osteoporotic women showed differences in their capacity to differentiate into the osteogenic and adipogenic pathways. In vitro studies indicate that bone marrow stromal cells are responsive to leptin, which increases their proliferation, differentiation to osteoblasts, and the number of mineralized nodules, but inhibits their differentiation to adipocytes. The aim of the present report was to study the direct effect of leptin on control and osteoporotic MSCs analyzing whether the protective effect of leptin against osteoporosis could be expressed by inhibition of adipocyte differentiation. MSCs from control, and osteoporotic donors were subjected to adipogenic conditions, in the absence or in the presence of 62.5 nM leptin. The number of adipocytes, the content of PPARgamma protein, and mRNA, and leptin mRNA were measured by flow cytometry, Western blot, and RT-PCR, respectively. Results indicate that control and osteoporotic MSCs differ in their adipogenic potential as shown by expression of active PPARgamma protein. Leptin exerted an antiadipogenic effect only on control MSCs increasing the proportion of inactive phosphorylated PPARgamma protein. Finally, results obtained during adipogenesis of osteoporotic cells suggest that this process is abnormal not only because of increased adipocyte number, but because of impaired leptin cells response.  相似文献   

9.
10.
Cumulative evidence indicates that bone marrow mesenchymal stem cells (MSCs) are multipotent cells capable of differentiating to osteogenic and adipogenic lineages when stimulated under appropriate conditions. Whether OGP(10-14) directly regulates the progenitor cells differentiating into osteoblasts or adipocytes remains unknown. In the present study, we investigated the roles of OGP(10-14) in differentiation along these separate lineages using rat bone marrow MSCs. Our results showed that OGP(10-14) promoted osteogenic differentiation of the stem cells and concurrently inhibited adipocyte formation. OGP(10-14) increased alkaline phosphatase (ALP) activity and mineralized nodule formation, and stimulated osteoblast-specific mRNA expression of core-binding factor 1 (cbfa1). In contrast, OGP(10-14) decreased adipocyte numbers and inhibited adipocyte-specific mRNA expression of peroxisome proliferator-activated receptor-gamma 2 (PPARgamma2). These observations suggest that commitment of MSCs into osteogenic or adipogenic lineages is regulated by OGP(10-14).  相似文献   

11.
12.
A growing body of data suggests that the bone marrow stroma contains a population of pluripotent cells capable of differentiating into adipocytes, osteoblasts, and lymphohematopoietic supporting cells. In this work, the murine stromal cell lines BMS2 and +/+ 2.4 have been examined as preadipocytes and adipocytes for evidence of osteoblastic gene expression. Adipocyte differentiation has been quantitated using fluorescence activated cell sorting. Within 7–10 days of adipocyte induction by treatment with glucocorticoids, indomethacin, and methylisobutylxanthine, between 40% to 50% of the cells contain lipid vacuoles and exhibit a characteristic adipocyte morphology. Based on immunocytochemistry, both the adipocytes and preadipocytes express a number of osteoblastic markers; these include alkaline phosphatase, osteopontin, collagen (I, III), bone sialoprotein II, and fibronectin. Based on biochemical assays, the level of alkaline phosphatase expression is not significantly different between preadipocyte and adipocyte cells. However, unlike rat cell lines, dexamethasone exposure causes a dose-dependent decrease in enzyme activity. The steady-state mRNA levels of the osteoblast associated genes varies during the process of adiopogenesis. The relative level of collagen I and collagen III mRNA is lower in adipocyte-induced cells when compared to the uninduced controls. Osteocalcin mRNA is detected in preadipocytes but absent in adipocytes. These data indicate that osteoblastic gene expression is detected in cells capable of undergoing adipocyte differentiation, consistent with the hypothesis that these cell lineages are interrelated. © 1993 Wiley-Liss, Inc.  相似文献   

13.
14.
15.
16.
Bone marrow stromal cell lines (TBR cell lines) established from temperature-sensitive Simian Virus 40 T-antigen gene transgenic mice exhibited myogenic, osteogenic, and adipogenic differentiation. The effect of oncostatin M (OSM) on such mesenchymal cell differentiation of marrow stromal cell lines was examined. One of those stromal cell lines, TBRB, differentiated into skeletal muscle, and its differentiation was stimulated by OSM, whereas differentiation of TBR10-1 into smooth muscle was inhibited by OSM. TBR31-2 is a bipotent progenitor for adipocytes and osteoblasts, and OSM stimulated osteogenic differentiation while inhibiting adipogenic differentiation. On the other hand, TBR cell lines exhibited various potentials for supporting hematopoiesis in culture. When hematopoietic progenitor cells were cocultured with OSM-stimulated stromal cell lines, TBR10-1 and TBR31-2 exhibited enhanced hematopoietic supportive activity. As responsible molecules for stromal cell dependent hematopoiesis, expression of stem cell factor (SCF) (a ligand of c-Kit), vascular cell adhesion molecule (VCAM-1) (a ligand of VLA-4), and secretion of interleukin (IL)-6 were increased by OSM. OSM affected mesenchymal cell differentiation and promoted the hematopoietic supportive activity of marrow stromal cell lines. As OSM production is induced by cytokines from hematopoietic cells, OSM may be a key factor in mutual regulation between hematopoietic cells and stromal cells in the bone marrow. OSM may play a role as a regulator in maintaining the hematopoietic microenvironment in marrow by coordinating mesenchymal differentiation.  相似文献   

17.
18.
Adipocyte dysfunction is associated with the development of obesity. In this study, artemisinic acid, which was isolated from Artemisia annua L., inhibited adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells (hAMSCs) and its mechanism of action was determined. The mRNA levels of peroxidase proliferation-activated receptor (PPAR) γ and CCAAT/enhancer binding protein (C/EBP) α, late adipogenic factors, were reduced by artemisinic acid. Moreover, the mRNA levels of the PPAR γ target genes lipoprotein lipase, CD36, adipocyte protein, and liver X receptor were down-regulated by artemisinic acid. Artemisinic acid reduced expression of the C/EBP δ gene without impacting C/EBP β. In addition, attempts to elucidate a possible mechanism underlying the artemisinic acid-mediated effects revealed that reduced expression of the C/EBP δ gene was mediated by inhibiting Jun N-terminal kinase (JNK). Additionally, artemisinic acid also reduced the expression of the adipogenesis-associated genes glucose transporter-4 and vascular endothelial growth factor. In addition to the interference of artemisinic acid with adipogenesis, artemisinic acid significantly attenuated tumor necrosis factor-α-induced secretion of interleukin-6 by undifferentiated hAMSCs, thus influencing insulin resistance and the inflammatory state characterizing obesity. Taken together, these findings indicate that inhibiting adipogenic differentiation of hAMSCs by artemisinic acid occurs primarily through reduced expression of C/EBP δ, which is mediated by the inhibition of JNK and suggest that aremisinic acid may be used as a complementary treatment option for obesity associated with metabolic syndrome.  相似文献   

19.
20.
Adiponectin, an adipocyte-derived hormone, is attracting considerable interest as a potential drug for diabetes and obesity. Originally cloned from human s.c. fat, the protein is also found in bone marrow fat cells and has an inhibitory effect on adipocyte differentiation. The aim of the present study is to explore possible influences on lymphohematopoiesis. Recombinant adiponectin strongly inhibited B lymphopoiesis in long-term bone marrow cultures, but only when stromal cells were present and only when cultures were initiated with the earliest category of lymphocyte precursors. Cyclooxygenase inhibitors abrogated the response of early lymphoid progenitors to adiponectin in stromal cell-containing cultures. Furthermore, PGE(2), a major product of cyclooxygenase-2 activity, had a direct inhibitory influence on purified hematopoietic cells, suggesting a possible mechanism of adiponectin action in culture. In contrast to lymphopoiesis, myelopoiesis was slightly enhanced in adiponectin-treated bone marrow cultures, and even when cultures were initiated with single lymphomyeloid progenitors. Finally, human B lymphopoiesis was also sensitive to adiponectin in stromal cell cocultures. These results suggest that adiponectin can negatively and selectively influence lymphopoiesis through induction of PG synthesis. They also indicate ways that adipocytes in bone marrow can contribute to regulation of blood cell formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号