首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Retinoic acid (RA) induces F9 cells, the mouse teratocarcinoma cells, to differentiate into primitive endoderm and further into visceral and parietal endoderm depending on the culture conditions. To elucidate the instructive mechanisms involved in the differentiation steps we investigated the effects of Wnt-signaling members, Wnt3a and β-catenin, on the differentiation of F9 cells and β-catenin-deficient F9 cells (βT cells). RA up-regulated the expression of differentiation markers for primitive, visceral and parietal endoderm in F9 cells but not for visceral endoderm in βT cells. Wnt3a or leukemia inhibitory factor (LIF) inhibited the RA-induced differentiation in F9 cells. LIF but not Wnt3a could inhibit differentiation in βT cells. RA evoked ZO-1α+ signals at cell-to-cell contacts in F9 cells in a Wnt3a sensitive manner. The results suggest that Wnt3a inhibits differentiation into endoderm through a pathway involving β-catenin, and β-catenin might be necessary in the process leading from primitive to visceral endoderm in F9 cells.  相似文献   

3.
Aberrant activation of the Wnt signaling pathway is a common event in human tumor progression. Wnt signaling has also been implicated in maintaining a variety of adult and embryonic stem cells by imposing a restraint to differentiation. To understand the effect of Wnt signaling on the differentiation of epithelial cells, we used mouse teratocarcinoma F9 cells as a model. The F9 cells can be differentiated into visceral endoderm (VE) resembling absorptive columnar epithelial cells. We performed comparative gene expression analysis on retinoic acid-differentiated and undifferentiated F9 cells and confirmed that markers of VE and intestinal epithelium were induced upon differentiation. The induction of these markers by retinoic acid was reduced in the presence of Wnt, although Wnt alone did not change their expression. This suggests that Wnt signaling inhibited the differentiation of F9 cells by altering gene expression. This inhibition was also reflected in the morphology of the F9 cells as their apical-basal polarity was disrupted by inclusion of Wnt during differentiation. These results support a model in which Wnt modulates the expression of genes required for normal terminal differentiation of the stem cells. However, it follows that progenitor cells must escape from Wnt signaling to attain the differentiated state. Accordingly, we found that differentiated F9 cells no longer responded to Wnt and that a blockade in Wnt signaling occurred upstream of Axin. Consistent with this, Wnt negative regulators, such as Dickkopf-1 and Disabled-2, were induced upon the differentiation of F9 cells. We propose that a similar system to produce Wnt inhibitors regulates homeostasis of certain stem cell compartments in vivo.  相似文献   

4.
Mouse F9 cells differentiate into primitive endoderm when treated with retinoic acid (RA) and into parietal endoderm in response to RA and dibutyryl (db-) cAMP. G protein signaling either blocks or mimics RA-induced differentiation, the latter signaling through the Wnt-beta-catenin pathway. In our study, we found that a constitutively active Galpha13 mutant induces F9 cells to differentiate into parietal endoderm in the absence of exogenous agents. Galpha13 expression and subsequent differentiation are accompanied by beta-catenin translocation to the nucleus. Differentiation and changes in cell morphology are supported by rearrangements to the F-actin cytoskeleton. ERM (ezrin-radixin-moesin) proteins, known to link F-actin to transmembrane receptors, are also redistributed during differentiation. Furthermore, morpholino antisense and shRNA approaches show that moesin expression is essential since its knockdown leads to altered F-actin distribution and subsequent apoptosis. Moesin-depleted cells, however, remain attached to the substrate when Galpha13 is constitutively expressed, but they do not differentiate into extraembryonic endoderm. Our study demonstrates a link between Galpha13 signaling that regulates differentiation of F9 cells through primitive to parietal endoderm and a moesin requirement for cell survival.  相似文献   

5.
Summary F9 cells maintained in culture were shown to have a reduced ability to differentiate. The cells produced decreased amounts of alphafetoprotein when induced with retinoic acid. We show that consistent responses can be recovered after passage of F9 cells as a tumor. In addition, optimal differentiation of F9 cells to visceral endoderm may be achieved by the addition of very low concentrations of dibutyryl cyclic AMP (dbcAMP) to the medium. This work was supported by grants HD 18782 and P30 CA 30199 from the National Institutes of Health, Bethesda, MD.  相似文献   

6.
7.
8.
In vitro differentiation of spermatogonial stem cells (SSCs) promotes the understanding of the mechanism of spermatogenesis. The purpose of this study was to isolate spermatogonial stem cell-like cells from murine testicular tissue, which then were induced into haploid germ cells by retinoic acid (RA). The spermatogonial stem cell-like cells were purified and enriched by a two-step plating method based on different adherence velocities of SSCs and somatic cells. Cell colonies were present after culture in M1-medium for 3 days. Through alkaline phosphatase, RT-PCR and indirect immunofluorescence cell analysis, cell colonies were shown to be SSCs. Subsequently, cell colonies of SSCs were cultured in M2-medium containing RA for 2 days. Then the cell colonies of SSCs were again cultured in M1-medium for 6–8 days, RT-PCR and indirect immunofluorescence cell analysis were chosen to detect haploid male germ cells. It could be demonstrated that 10−7 mol l−1 of RA effectively induced the SSCs into haploid male germ cells in vitro.  相似文献   

9.
Summary F9 teratocarcinoma cells differentiate into parietal endodermlike cells when treated with retinoic acid (RA) and cyclic AMP (cAMP). We have previously found that F9 cells can be induced to differentiate by treatment with cAMP in the absence of RA. In the course of determining why other investigators had failed to observe cAMP-induced differentiation, we found that the growth medium played an important role in determining the response of F9 cells to differentiating agents. When F9 cells were grown in minimal essential medium (MEM) and treated with either 8-bromo-cAMP (8BrcA) + 1-methyl, 3-isobutylxanthine (MIX), or dibutyryl cAMP (DBcA) + theophylline (T), they differentiated to parietal endodermlike cells without any requirement for exogenous RA. However, when F9 cells were grown in Dulbecco’s modified Eagle’s medium (DME), DBcA/T failed to induce differentiation alone and required exogenous RA to induce formation of parietal endoderm-like cells. 8BrcA/MIX alone was still able to induce some differentiation, although the extent was not as great as those cells grown in MEM. These results could not be explained by the different growth-promoting properties of the two culture media because there was no difference in the doubling time of F9 cells grown in either medium. Likewise, RA and cAMP both inhibited growth to the same extent in either medium. Inasmuch as almost all published reports on F9 cell differentiation have used DME as a growth medium, and RA with or without DBcA/T as the differentiating agents, these studies would not have had the appropriate conditions to detect the cAMP-induced differentiation of F9 cells.  相似文献   

10.
Treatment of mouse embryonal carcinoma (F9) cells with retinoic acid, an inducer of F9 cell differentiation, greatly increased the level of mRNA specific to one of the heat-shock proteins (HSP86). Experiments including the one employing differentiation-resistant mutant F9 cells suggested that the increase represents early molecular events associated with the embryonal differentiation. The increased HSP86 mRNA declined to the original level during further incubation. The presence of cyclic AMP, which stimulates conversion of the retinoic acid-induced primitive endoderm cells to parietal endoderm cells, prevented the decline. These results suggest that not only the elevation of HSP86 mRNA level represents early molecular events in F9 cell differentiation but also that sustaining the elevated level (by cyclic AMP) is associated with further differentiation of the embryonal cells.  相似文献   

11.
Teratocarcinoma stem cell F9 expressed a potent fucosyltransferase activity acting on asialofetuin. A majority of the product was susceptible to alpha-L-fucosidase I from almond emulsin, indicating that the linkage formed was mainly Fuc alpha 1 leads to 3GlcNAc. The specific activity of the transferase decreased when the stem cells were induced to differentiate into parietal endoderm cells by retinoic acid and dibutyryl cyclic AMP. Furthermore, PYS-2 cell, a parietal endoderm cell line virtually lacked the transferase. The change in the fucosyltransferase activity could be correlated with cell surface changes occurring during differentiation.  相似文献   

12.
13.
14.
We investigated the expression of protein disulfide isomerase family proteins (PDI, ERp61, and ERp72) in mouse F9 teratocarcinoma cells during differentiation induced by treatment with retinoic acid and dibutyryl cAMP. Each member of this family was expressed at a constitutive level in undifferentiated F9 cells. During differentiation of F9 cells to parietal or visceral endodermal cells the protein level of all these enzymes increased, although the extent of this increase in both protein and mRNA levels varied among the enzymes. Certain proteins were found to be co-immunoprecipitated with PDI, ERp61, and ERp72 in the presence of a chemical crosslinker. Type IV collagen was significantly coprecipitated with PDI whereas laminin was equally coprecipitated with the three proteins. Furthermore, 210 kDa protein characteristically coprecipitated with ERp72. Thus, the induction of PDI family proteins during the differentiation of F9 cells and their association with different proteins may implicate specific functions of each member of this family despite the common redox activity capable of catalyzing the disulfide bond formation. J. Cell. Biochem. 68:436–445, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

15.
Gap junctional communication permits the direct intercellular exchange of small molecules and ions. In vertebrates, gap junctions are formed by the conjunction of two connexons, each consisting of a hexamer of connexin proteins, and are either established or degraded depending on the nature of the tissue formed. Gap junction function has been implicated in both directing developmental cell fate decisions and in tissue homeostasis/metabolite exchange. In mouse development, formation of the extra embryonal parietal endoderm from visceral endoderm is the first epithelial-mesenchyme transition to occur. This transition can be mimicked in vitro, by F9 embryonal carcinoma (EC) cells treated with retinoic acid, to form (epithelial) primitive or visceral endoderm, and then with parathyroid hormone-related peptide (PTHrP) to induce the transition to (mesenchymal) parietal endoderm. Here, we demonstrate that connexin43 mRNA and protein expression levels, protein phosphorylation and subcellular localization are dynamically regulated during F9 EC cell differentiation. Dye injection showed that this complex regulation of connexin43 is correlated with functional gap junctional communication. Similar patterns of connexin43 expression, localization and communication were found in visceral and parietal endoderm isolated ex vivo from mouse embryos at day 8.5 of gestation. However, in F9 cells this tightly regulated gap junctional communication does not appear to be required for the differentiation process as such.  相似文献   

16.
17.
Modulation of protein biosynthesis by retinoic acid during induction of differentiation of F9 teratocarcinoma stem cells was investigated by using computerized analysis of double label autoradiography of two-dimensional polyacrylamide gels. As early as 6 h after induction increased synthesis of 5 and decreased synthesis of 2 proteins occur. By 12 h after induction, synthesis of 13 proteins is elevated and by 24 h that of 17. At 24 h the range of stimulation is from two- to fourfold, as demonstrated by a 3H:14C ratio divided by the mode ratio. Examination of the Gaussian distributions of frequency of ratio indicates that many subtle changes in protein synthesis accompany the development of the new phenotype.  相似文献   

18.
D C Burke  C F Graham  J M Lehman 《Cell》1978,13(2):243-248
Pluripotential embryonal carcinoma (EC) cells do not produce interferon after treatment with a wide variety of inducers, nor are they sensitive to its action. Several differentiated lines derived from the EC cells, however, both produce and are sensitive to mouse interferon. Differentiation of EC cells in vitro is accompanied by development of interferon inducibility and sensitivity.  相似文献   

19.
We have previously shown that an F9 teratocarcinoma retinoic acid receptor beta(2) (RARbeta(2)) knockout cell line exhibits no growth arrest in response to all-trans-retinoic acid (RA), whereas F9 wild type (Wt), F9 RARalpha(-/-), and F9 RARgamma(-/-) cell lines do growth arrest in response to RA. To examine the role of RARbeta(2) in growth inhibition, we analyzed the cell cycle regulatory proteins affected by RA in F9 Wt and F9 RARbeta(2)(-/-) cells. Flow microfluorimetry analyses revealed that RA treatment of F9 Wt cells greatly increased the percentage of cells in the G1/G0 phase of the cell cycle. In contrast, RA did not alter the cell cycle distribution profile of RARbeta(2)(-/-) cells. In F9 Wt cells, cyclin D1, D3, and cyclin E protein levels decreased, while cyclin D2 and p27 levels increased after RA treatment. Compared to the F9 Wt cells, the F9 RARbeta(2)(-/-) cells exhibited lower levels of cyclins D1, D2, D3, and E in the absence of RA, but did not exhibit further changes in the levels of these cell cycle regulators after RA addition. Since RA significantly increased the level of p27 protein (approximately 24-fold) in F9 Wt as compared to the F9 RARbeta(2)(-/-) cells, we chose to study p27 in greater detail. The p27 mRNA level and the rate of p27 protein synthesis were increased in RA-treated F9 Wt cells, but not in F9 RARbeta(2)(-/-) cells. Moreover, RA increased the half-life of p27 protein in F9 Wt cells. Reduced expression of RARbeta(2) is associated with the process of carcinogenesis and RARbeta(2) can mediate the growth arrest induced by RA in a variety of cancer cells. Using both genetic and molecular approaches, we have identified some of the molecular mechanisms, such as the large elevation of p27, through which RARbeta(2) mediates these growth inhibitory effects of RA in F9 cells.  相似文献   

20.
Sphingosine 1-phosphate (S1P) is a ligand for S1P family receptors (S1P(1)-S1P(5)). Of these receptors, S1P(1), S1P(2), and S1P(3) are ubiquitously expressed in adult mice, while S1P(4) and S1P(5) are tissue specific. However, little is known of their expression during embryonal development. We performed Northern blot analyses in mouse embryonal tissue and found that such expression is developmentally regulated. We also examined the expression of these receptors during primitive endoderm (PrE) differentiation of mouse F9 embryonal carcinoma (EC) cells, a well-known in vitro endoderm differentiation system. S1P(2) mRNA was abundantly expressed in F9 EC cells, but little S1P(1) and no S1P(3), S1P(4), or S1P(5) mRNA was detectable. However, S1P(1) mRNA expression was induced during EC-to-PrE differentiation. Studies using small interference RNA of S1P(1) indicated that increased S1P(1) expression is required for PrE differentiation. Thus, S1P(1) may play an important function in PrE differentiation that is not substituted for by S1P(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号