首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Even though DNA alkylating agents have been used for many decades in the treatment of cancer, it remains unclear what happens when replication forks encounter alkylated DNA. Here, we used the DNA fibre assay to study the impact of alkylating agents on replication fork progression. We found that the alkylator methyl methanesulfonate (MMS) inhibits replication elongation in a manner that is dose dependent and related to the overall alkylation grade. Replication forks seem to be completely blocked as no nucleotide incorporation can be detected following 1 h of MMS treatment. A high dose of 5 mM caffeine, inhibiting most DNA damage signalling, decreases replication rates overall but does not reverse MMS-induced replication inhibition, showing that the replication block is independent of DNA damage signalling. Furthermore, the block of replication fork progression does not correlate with the level of DNA single-strand breaks. Overexpression of O6-methylguanine (O6meG)-DNA methyltransferase protein, responsible for removing the most toxic alkylation, O6meG, did not affect replication elongation following exposure to N-methyl-N′-nitro-N-nitrosoguanidine. This demonstrates that O6meG lesions are efficiently bypassed in mammalian cells. In addition, we find that MMS-induced γH2AX foci co-localise with 53BP1 foci and newly replicated areas, suggesting that DNA double-strand breaks are formed at MMS-blocked replication forks. Altogether, our data suggest that N-alkylations formed during exposure to alkylating agents physically block replication fork elongation in mammalian cells, causing formation of replication-associated DNA lesions, likely double-strand breaks.  相似文献   

2.
Escherichia coli cells made permeable to deoxynucleoside triphosphates by brief treatment with toluene (permeablized) were used to measure the effect of the following chemical alkylating agents on either DNA replication or DNA repair synthesis: methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS), N-methyl-N-nitrosourea (MNU), N-ethyl-N-nitrosourea (ENU), N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) and N-ethyl-N′-nitro-N-nitrosoguanidine (ENNG). Replication of DNA in this pseudo-in vivo system was completely inhibited 10–15 min after exposure to MMS at concentrations of 5 mM or higher or to MNU or MNNG at concentrations of 1 mM or higher. The ethyl derivatives of the alkylating agents were less inhibitory than their corresponding methyl derivatives, and inhibition of DNA replication occurred in the following order: EMS < ENNG < ENU. Maximum inhibition of DNA replication by all of the alkylating agents tested except EMS occurred at a concentration of 20 mM or lower. The extent of replication in cells exposed to EMS continued to decrease with concentrations of EMS up to 100 mM (the highest concentration tested).The experiments in which the inhibition of DNA replication by MMS, MNU, or MNNG was measured were repeated under similar assay conditions except that a density label was included and the DNA was banded in CsCl gradients. The bulk of the newly synthesized DNA from the untreated cells was found to be of the replicative (semi-conservative) type. The amount of replicative DNA decreased with increasing concentration of methylating agent in a manner similar to that observed in the incorporation experiments.Polymerase I (Pol I)-directed DNA repair synthesis induced by X-irradiation of permeablized cells was assayed under conditions that blocked the activity of DNA polymerases II and III. Exposure of cells to MNNG or ENNG at a concentration of 20 mM resulted in reductions in Pol I activity of 40 and 30%, respectively, compared with untreated controls. ENU was slightly inhibitory to Pol I activity, while MMS, EMS, and MNU all caused some enhancement of Pol I activity.These data show that DNA replication in a pseudo-in vivo bacterial system is particularly sensitive to the actions of known chemical mutagens, whereas DNA repair carried out by the Pol I repair enzyme is much less sensitive and in some cases apparently unaffected by such treatment. Possible mechanisms for this differential effect on DNA metabolism and its correlation with current theories of chemically induced mutagenesis and carcinogenesis are discussed.  相似文献   

3.
The cytotoxicity of three structurally-related direct-acting carcinogens, N-acetoxy-2-acetylaminofluorene, N-acetoxy-2-acetylaminophenanthrene and N-acetoxy-4-acetylaminobiphenyl, was compared in normal cells and in excision repair deficient xeroderma pigmentosum cells (XP12BE). All three proved significantly more cytotoxic to the XP cells than to the normal cells. At equicytoxic levels, substantially more residues were initially bound to the DNA of the normal cells than to the XP cells, suggesting that the former are able to remove a large percentage of the DNA bound residues before these can result in cell death. The ability of these cell strains to remove bound residues from DNA, to incorporate thymidine into parental strands of DNA during repair replication, and to recover from potentially lethal damage if held in the non-replicating, density-inhibited Go state was compared as a function of dose and time. The XP12BE cells proved virtually incapable of excision repair of DNA damage induced by these carcinogens and of recovery. In contrast, normal cells recovered from the potentially lethal effects of these three compounds and did so at a rate comparable to their rate of removal of bound residues and of repair synthesis. In the excision-deficient XP12BE cells, DNA adducts induced by N-acetoxy-2-acetylaminophenanthrene proved 3- to 6-fold more cytotoxic than adducts induced by the other two carcinogens.  相似文献   

4.
A cell extract prepared from the lig-ts7 mutant of Escherichia coli is able to carry out a complete round of DNA replication of colicin E1 plasmid at 25 °C. However, the apparent rate of elongation of the progeny strands at this temperature is much smaller than in an extract from the thermoresistant revertant cells. Chain elongation in the lig-ts extract is depressed by raising the incubation temperature from 25 °C to 32 °C, whereas that in the lig+ revertant extract is not. The rate of closure of the progeny strands of newly formed open circular molecules is also reduced in the lig-ts extract, even at 25 °C.The DNA pulse-labelled with the lig-ts extract for 30 seconds at 32 °C contains a large amount of short DNA fragments of approximately 7 S, in addition to DNA chains of various sizes between 7 S and 17 S (unit length). Most of these replicating molecules are converted to completely replicated closed circular molecules upon chasing with a lig+ extract. DNA-DNA hybridization experiments show that molecules replicated to various extents contain 7 S DNA fragments of both strands, but more of the L-strand component, whose 5′-to-3′ direction corresponds to the overall direction of unidirectional replication. The longer DNA chains are enriched in the H-strand component.The cell extracts used for the plasmid DNA replication have an activity which converts alkali-labile closed circular plasmid DNA containing apurinic sites to alkali-stable closed circular molecules. Addition of nicotinamide mononucleotide leads to conversion of the alkali-labile DNA to open circular molecules. In the replication system with the cell extract, however, the compound does not interfere with elongation of progeny strands. Chain elongation in the lig-ts extract at 25 °C is not significantly affected by nicotinamide mononucleotide. Thus, the 7 S DNA fragments formed with the lig-ts extract are unlikely to be generated as a result of incomplete repair of misincorporated nucleotides. We conclude that both strands of colicin E1 plasmid DNA replicate discontinuously.  相似文献   

5.
Aphidicolin is a highly specific inhibitor of DNA polymerase α and has been most useful for assessing the role of this enzyme in various replication processes (J. A. Huberman, Cell 23:647-648, 1981). Both nuclear DNA replication and simian virus 40 DNA replication are highly sensitive to this drug (Krokan et al., Biochemistry 18:4431-4443, 1979), whereas mitochondrial DNA synthesis is completely insensitive (Zimmerman et al., J. Biol. Chem. 255:11847-11852, 1980). Adenovirus DNA replication is sensitive to aphidicolin, but only at much higher concentrations. These patterns of sensitivity are seen both in vivo and in vitro (Krokan et al., Biochemistry 18:4431-4443, 1979). A temperature-sensitive mutant of adenovirus type 5 known as H5ts125 is able to complete but not initiate new rounds of replication at nonpermissive temperatures (P. C. van der Vliet and J. S. Sussenbach, Virology 67:415-426, 1975). When cells infected with H5ts125 were shifted from permissive (33°C) to nonpermissive (41°C) conditions, the residual DNA synthesis (elongation) showed a striking increase in sensitivity to aphidicolin. The temperature-sensitive mutation of H5ts125 is in the gene for the 72-kilodalton single-stranded DNA-binding protein. This demonstrated that the increased resistance to aphidicolin shown by adenovirus DNA replication was dependent on that protein. It also supports an elongation role for both DNA polymerase α and the 72-kilodalton single-stranded DNA-binding protein in adenovirus DNA replication. Further support for an elongation role of DNA polymerase α came from experiments with permissive temperature conditions and inhibiting levels of aphidicolin in which it was shown that newly initiated strands failed to elongate to completion.  相似文献   

6.
In the fission yeast, Schizosaccharomyces pombe, blocks to DNA replication elongation trigger the intra-S phase checkpoint that leads to the activation of the Cds1 kinase. Cds1 is required to both prevent premature entry into mitosis and to stabilize paused replication forks. Interestingly, although Cds1 is essential to maintain the viability of mutants defective in DNA replication elongation, mutants defective in DNA replication initiation require the Chk1 kinase. This suggests that defects in DNA replication initiation can lead to activation of the DNA damage checkpoint independent of the intra-S phase checkpoint. This might result from reduced origin firing that leads to an increase in replication fork stalling or replication fork collapse that activates the G2 DNA damage checkpoint. We refer to the Chk1-dependent, Cds1-independent phenotype as the rid phenotype (for replication initiation defective). Chk1 is active in rid mutants, and rid mutant viability is dependent on the DNA damage checkpoint, and surprisingly Mrc1, a protein required for activation of Cds1. Mutations in Mrc1 that prevent activation of Cds1 have no effect on its ability to support rid mutant viability, suggesting that Mrc1 has a checkpoint-independent role in maintaining the viability of mutants defective in DNA replication initiation.  相似文献   

7.
Fanconi anemia (FA) cells are abnormally sensitive to DNA cross-linking agents with increased levels of apoptosis and chromosomal instability. Defects in eight FA complementation groups inhibit monoubiquitination of FANCD2, and subsequent recruitment of FANCD2 to DNA damage and S-phase-associated nuclear foci. The specific functional defect in repair or response to DNA damage in FA cells remains unknown. Damage-resistant DNA synthesis is present 2.5-5 h after cross-linker treatment of FANCC, FANCA and FANCD2-deficient cells. Analysis of the size distribution of labeled DNA replication strands revealed that diepoxybutane treatment suppressed labeling of early but not late-firing replicons in FANCC-deficient cells. In contrast, normal responses to ionizing radiation were observed in FANCC-deficient cells. Absence of this late S-phase response in FANCC-deficient cells leads to activation of secondary checkpoint responses.  相似文献   

8.
Replicating molecules of Simian virus 40 DNA labeled during a short pulse with [3H]thymidine have been fractionated by ultracentrifugation methods and the open circular form (DNA component II) has been characterized. The pulse-labeled DNA component II is a relatively small constituent (1 to 3%) of the pool of replicating molecules. Examination of the circular (18 S) and linear (16 S) strands of DNA component II by alkaline sedimentation and by degradation using exonuclease III of Escherichia coli reveals that the newly synthesized DNA is principally in the linear strand. Cleavage of pulse-labeled DNA component II by an fi+, R-factor restriction endonuclease from E. coli demonstrates that the interruption in the pulse-labeled strand is specifically located at the termination point for replication.During a chase period of 20 minutes the amount of DNA component II increases to about 6 to 8% of the total labeled viral DNA. The kinetics of formation of superhelical, DNA component I and disappearance of replicative intermediates are linear during the chase period. After several hours of continuous labeling of replicating viral DNA, the DNA component II pool consists mainly of molecules labeled in both strands with the interruption non-specifically located in either strand. These molecules probably arise by the random introduction of single-strand breaks in newly synthesized DNA component I. During short periods of continuous labeling with [3H]thymidine, the ratio of DNA components I to II increases as a function of the pulse duration. These results support a model for 8V 40 DNA replication in which the open circular form is a precursor of the superhelical form.  相似文献   

9.
DNA replication patterns were determined in the autosomes and sex chromosomes of phytohemagglutinin-stimulated lymphocytes from the opossum (Didelphis virginiana) by employing thymidine-3H labeling and high-resolution radioautography. Opossum chromosomes are desirable experimental material due to their large size, low number (2n = 22), and morphologically distinct sex chromosomes. The autosomes in both sexes began DNA synthesis synchronously and terminated replication asynchronously. One female X chromosome synthesized DNA throughout most of the S phase. Its homologue, however, began replication approximately 3.5 hr later. The two X's terminated DNA synthesis synchronously, slightly later than the autosomes. This form of late replication, in which one X chromosome begins DNA synthesis later than its homologue but completes replication at the same time as its homologue, is apparently unique in the opossum. The male X synthesized DNA throughout S while the Y chromosome exhibited late-replicating characteristics. The two sex chromosomes completed synthesis synchronously, slightly later than the autosomes. Grain counts were performed on all chromosomes to analyze trends in labeling intensity at hourly intervals of S. By analyzing the percent of labeled mitotic figures on radioautographs at various intervals after introduction of arginine-3H, chromosomal protein synthesis was found not to be restricted to any portion of interphase but to increase throughout S and into G2.  相似文献   

10.
Effect of Caffeine on DNA Synthesis in Mammalian Cells   总被引:1,自引:0,他引:1       下载免费PDF全文
Alkaline sucrose sedimentation studies of DNA from mouse lymphoma cells (L5178Y) treated with caffeine have demonstrated the following effects. Caffeine (at a concentration of 1.6 mM) does not introduce strand breaks into preformed DNA nor does it inhibit the rejoining of γ-ray-induced strand breaks. Although it does not affect the over-all rate of DNA synthesis, pulse labeling experiments show that the DNA strands synthesized in its presence are smaller than those made in its absence. This could be the result of (a) DNA being made in shorter replicating units or (b) small gaps in the daughter DNA strands within normal-sized replicating units. These two alternative models were indirectly distinguished as follows. After a pulse label with thymidine-3H in the presence of caffeine, cells were incubated without caffeine in bromodeoxyuridine (BrdUrd). During this incubation, growing strands are elongated and hypothetical gaps (model b) filled in with bromuracil (BrUra)-substituted DNA. The BrUra-containing DNA segments will now be of different lengths on the two models. With smaller replicating units (a) the “elongation segments” will be somewhat smaller than but the same order of magnitude as those in untreated cells, whereas with small gaps (b) the “filled-in gap segments” would be expected to be at least an order of magnitude smaller. The BrUra-containing regions of DNA can be selectively broken open by exposing the cells to light at 313 nm. The exposure required to break open the BUra-substituted regions is inversely related to, and hence gives a measure of, the size of these regions. In caffeine-treated cells these regions were found to be somewhat smaller than but of comparable size with those in untreated cells; this is consistent with the DNA being synthesized in smaller units and argues against the presence of small gaps in the daughter strands.  相似文献   

11.
A temperature-sensitive DNA synthesis mutant of Haemophilus influenzae (strain dna9) was treated with the N-nitroso compound N-nitrosocarbaryl, then incubated at the permissive (36°) and nonpermissive (41°) temperatures. At various times lysates were made and used to transform a second culture to novobiocin resistance (a measure of the extent of mutation fixation). At the permissive temperature mutation fixation continued approximately linearly during at least half of the first round of DNA replication after treatment with N-nitrosocarbaryl. In the absence of DNA replication (41°), most but not all of the mutation fixation was eliminated. The nonreplicative type of mutation fixation was greater after treatment with a higher concentration of N-nitrosocarbaryl. The data indicate that premutational lesions occur over the entire chromosome and that the bulk of the mutation fixation requires DNA replication, but that a process independent of replication, quite possibly an erro-prone repair system, also is responsible for part of the mutation fixation in cells exposed to alkylating agents.When strain dna9 was treated with N-nitrosocarbaryl and then incubated at 41° for some time (stopping DNA replication and the bulk of the mutation fixation) before being grown at 36°, a large decrease in the final frequency was seen. This suggests that a repair mechanism still functional in the absence of DNA replication is capable of removing premutational lesions from H. influenzae DNA.  相似文献   

12.
Incubation of mouse cells with N-methyl-N′-nitro-N-nitrosoguanidine causes a strong inhibition of DNA replication the extent of which varies with the cell line used. Analysis of the products synthesized in drug-treated cells indicates a particularly severe effect on the joining of replicons while other steps in DNA synthesis like initiation and chain elongation are much less affected. The data indicate that replicon fusion may be extremely sensitive to changes in the topology of DNA induced by the introduction of rare single-strand breaks during repair of N-methylated purines produced by incubation of cells with small amounts of the methylating agent  相似文献   

13.
A transformation assay has been used to follow the fixation of mutations to novobiocin resistance induced by N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) in Haemophilus influenzae. Very few mutations are produced by recently treated DNA, but many are produced by the DNA from cells that have been incubated for a time after exposure to MNNG. The time course of this mutation fixation is shown to coincide reasonably well with the time course of semiconservative DNA synthesis, as judged by uptake studies and by isopycnic centrifugation of density-labeled cells. Incubation with bromodeoxyuridine (BrdUrd) during the fixation period decreases the number of mutations that are fixed, showing in another way the importance of DNA synthesis for fixation.Mutations fixed in the presence of BrdUrd are not more sensitive to 313-nm radiation than those fixed in its absence, suggesting that these residual mutations are fixed in the absence of extensive DNA replication. Mutations newly fixed in the absence of BrdUrd are much more sensitive to 313-nm radiation than are the same mutations some cell generations later. This shows that the newly fixed mutations are in a state that is different from their final form, either because they are in regions of DNA with special configurations of the strands or because they are in a region of DNA that is a hybrid between an old, alkylated strand and a new strand with some bases different from normal. The data suggest that it is unlikely that anything like all the mutations that are fixed in H. influenzae arise by direct action of MNNG on the replication fork. Many of the results can be explained in terms of fixation during semiconservative replication of premutational lesions, some of which are initially located some distance from the replication fork. The final yield would then depend on the relative rates of removal of the lesions by repair and of fixation by replication.  相似文献   

14.
15.
Every cell has to duplicate its entire genome during S-phase of the cell cycle. After replication, the newly synthesized DNA is rapidly assembled into chromatin. The newly assembled chromatin ‘matures’ and adopts a variety of different conformations. This differential packaging of DNA plays an important role for the maintenance of gene expression patterns and has to be reliably copied in each cell division. Posttranslational histone modifications are prime candidates for the regulation of the chromatin structure. In order to understand the maintenance of chromatin structures, it is crucial to understand the replication of histone modification patterns. To study the kinetics of histone modifications in vivo, we have pulse-labeled synchronized cells with an isotopically labeled arginine (15N4) that is 4 Da heavier than the naturally occurring 14N4 isoform. As most of the histone synthesis is coupled with replication, the cells were arrested at the G1/S boundary, released into S-phase and simultaneously incubated in the medium containing heavy arginine, thus labeling all newly synthesized proteins. This method allows a comparison of modification patterns on parental versus newly deposited histones. Experiments using various pulse/chase times show that particular modifications have considerably different kinetics until they have acquired a modification pattern indistinguishable from the parental histones.  相似文献   

16.
Haemophilus influenzae was labeled with thymidine-3H (dThd), then grown in the presence of 5-bromodeoxyuridine (BrdUrd), and then irradiated with 313 nm light (a wavelength that selectively photolyzes DNA containing 5-bromouracil [BrUra]). Irradiation with 313 nm light induced breaks in the 3H-labeled strands in cells grown with BrdUrd at a much higher frequency than in 14C-labeled DNA of cells not exposed to BrdUrd. Breakage of the 3H-labeled strands was about 0.6% as efficient as that of fully BrUra-substituted DNA. During growth in the presence of BrdUrd, susceptibility to 313 nm-induced breakage of the 3H-labeled DNA strands increased, reaching a maximum in about one generation, and it decreased to zero during subsequent growth for one generation in medium containing dThd instead of BrdUrd. Heat denaturation of DNA extracted from dThd-3H-labeled cells grown in the presence of BrdUrd eliminated 313 nm-induced breakage of the 3H-labeled strands. It is concluded that breakage of the 3H-labeled DNA strands resulted from reaction with photoproducts in the base-paired, BrUra-containing strands, rather than from photolysis of BrdUrd incorporated into parental strands. It may be possible to utilize the phenomenon of interstrand breakage in physical studies of DNA replication.  相似文献   

17.
DNA helicases of the RecD2 family are ubiquitous. Bacillus subtilis RecD2 in association with the single-stranded binding protein SsbA may contribute to replication fork progression, but its detailed action remains unknown. In this work, we explore the role of RecD2 during DNA replication and its interaction with the RecA recombinase. RecD2 inhibits replication restart, but this effect is not observed in the absence of SsbA. RecD2 slightly affects replication elongation. RecA inhibits leading and lagging strand synthesis, and RecD2, which physically interacts with RecA, counteracts this negative effect. In vivo results show that recD2 inactivation promotes RecA–ssDNA accumulation at low mitomycin C levels, and that RecA threads persist for a longer time after induction of DNA damage. In vitro, RecD2 modulates RecA-mediated DNA strand-exchange and catalyzes branch migration. These findings contribute to our understanding of how RecD2 may contribute to overcome a replicative stress, removing RecA from the ssDNA and, thus, it may act as a negative modulator of RecA filament growth.  相似文献   

18.
The cytotoxicity of SN1-type alkylating agents such as N-methyl-N′-nitrosourea (MNU), N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), or the cancer chemotherapeutics temozolomide, dacarbazine and streptozotocin has been ascribed to the persistence of O6-methylguanine (meG) in genomic DNA. One hypothesis posits that meG toxicity is caused by futile attempts of the mismatch repair (MMR) system to process meG/C or meG/T mispairs arising during replication, while an alternative proposal suggests that the latter lesions activate DNA damage signaling, cell cycle arrest and apoptosis directly. Attempts to elucidate the molecular mechanism of meG-induced cell killing in vivo have been hampered by the fact that the above reagents induce several types of modifications in genomic DNA, which are processed by different repair pathways. In contrast, defined substrates studied in vitro did not undergo replication. We set out to re-examine this phenomenon in replication-competent Xenopus laevis egg extracts, using either phagemid substrates containing a single meG residue, or methylated sperm chromatin. Our findings provide further support for the futile cycling hypothesis.  相似文献   

19.
20.
We have used a thymidine auxotroph of the simple eukaryote, Dictyostelium discoideum and alkaline sucrose gradients of isolated nuclei to study alterations in DNA synthesis following irradiation of replicating haploid cells with 254 nm UV light. Three responses were characterized using pulse-chase protocols: (1) Lags in DNA synthesis as measured by the amount of label incorporated were 4, 9, and 20 h after 10, 50, and 200 J/m2. (2) The DNA synthesized during a 15-min pulse immediately after irradiation was of lower single strand molecular weight: 7, 3.5, and 3 x 10(6) dalton after 0, 50, and 200 J/m2. (3) The time required for maturation of the nascent DNA to full-sized single strands of about 2 x 10(8) dalton was 45-50 min for unirradiated cells, 3 h after 10 J/m2, and 20 h after 200 J/m2. The DNA of the irradiated cells did not mature uniformly during these delays; instead, a period of no increase in size was followed by a rapid, nearly control rate of maturation. We conclude: (a) at least some UV lesions block elongation of replicons; (b) the elongation of the replicons and their subsequent joining to yield mature high molecular weight DNA occurs after most of the lesions are repaired; (c) the timing of the different aspects of recovery suggest that initiation of replication is also inhibited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号