首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Triple fluorescence labelling was employed to reveal the distribution of chemically identified neurons within the pontine laterodorsal tegmental nucleus and dorsal raphe nucleus which supply branching collateral input to the central nucleus of the amygdala and hypothalamic paraventricular nucleus. The chemical identity of neurons in the laterodorsal tegmental nucleus was revealed by immunocytochemical detection of choline-acetyltransferase or substance P; in the dorsal raphe nucleus, the chemical content of the neurons was revealed with antibody recognizing serotonin. The projections were defined by injections of two retrograde tracers, rhodamine-and fluorescein-labelled latex microspheres, in the central nucleus of the amygdala and paraventricular nucleus, respectively. Neurons projecting to both the central nucleus of the amygdala and the paraventricular nucleus were distributed primarily within the caudal extensions of the laterodorsal tegmental nucleus and dorsal raphe nucleus. Approximately 11% and 7% of the labelled cells in the laterodorsal tegmental nucleus and dorsal raphe nucleus projected via branching collaterals to the paraventricular nucleus and central nucleus of the amygdala. About half of these neurons in the laterodorsal tegmental nucleus were cholinergic, and one-third were substance-P-ergic; in the dorsal raphe nucleus, approximately half of the neurons containing both retrograde tracers were serotonergic. These results indicate that pontine neurons may simultaneously transmit signals to the central nucleus of the amygdala and paraventricular nucleus and that several different neuroactive substances are found in the neurons participating in these pathways. This coordinated signalling may lead to synchronized responses of the central nucleus of the amygdala and paraventricular nucleus for the maintenance of homeostasis. Interactions between different neuroactive substances at the target site may serve to modulate the responses of individual neurons.  相似文献   

2.
The neuroanatomical basis of central cardiovascular control   总被引:7,自引:0,他引:7  
A brief review is given of some of the recent neuroanatomical studies of the central autonomic pathways. Two major points are discussed. 1) There are several descending inputs to the intermediolateral cell column that have recently been demonstrated; these include the A5 catecholamine cell group, certain of the raphe nuclei, the nucleus of the solitary tract, the K?lliker Fuse nucleus, and the paraventricular nucleus of the hypothalamus. 2) Certain nuclei of the brain that function as autonomic centers are extensively interconnected: the nucleus of the solitary tract, the parabrachial nucleus, the paraventricular nucleus of the hypothalamus, the central nucleus of the amygdala, and the bed nucleus of the stria terminalis. This network may play an important role in cardiovascular regulation and related neuroendocrine functions.  相似文献   

3.
The spread of herpes simplex virus (HSV) was studied in the mouse central nervous system (CNS) after ocular inoculation. Sites of active viral replication in the CNS were identified by autoradiographic localization of neuronal uptake of tritiated thymidine. Labeled neurons were first noted in the CNS at 4 days postinoculation in the Edinger-Westphal nucleus, ipsilateral spinal trigeminal nucleus, pars caudalis, pars interpolaris, and ipsilateral dorsal horn of the rostral cervical spinal cord. By 5 days postinoculation, additional sites of labeling included the seventh nerve nucleus, nucleus locus coeruleus, and the nuclei raphe magnus and raphe pallidus. None of these sites are contiguous to nuclei infected at 4 days, but all are synaptically related to these nuclei. By 7 days postinoculation, no new foci of labeled cells were noted in the brain stem, but labeled neurons were noted in the amygdala, hippocampus, and somatosensory cortex. Neurons in both the amygdala and hippocampus receive axonal projections from the locus coeruleus. On the basis of these findings, we conclude that the spread of HSV in the CNS after intracameral inoculation is not diffuse but is restricted to a small number of noncontiguous foci in the brain stem and cortex which become infected in a sequential fashion. Since these regions are synaptically related, the principal route of the spread of HSV in the CNS after ocular infection appears to be along axons, presumably via axonal transport rather than by local spread.  相似文献   

4.
Summary In the suprachiasmatic nucleus (NSC) of hibernating and non-hibernating ground squirrels, the distribution of serotonin-immunoreactive (5HT-IR) fibers was studied by the use of the peroxidase-antiperoxidase technique. The cytology of perikarya giving rise to these suprachiasmatic 5HT-IR fibers was investigated in the anterior raphe nuclei. Differences in the immunoreactivity of suprachiasmatic fibers between hibernating and non-hibernating ground squirrels were determined by digital image analysis. The cellular activity was determined densitometrically after RNA-staining in anterior raphe neurons and suprachiasmatic perikarya. Abundant 5HT-IR fibers were observed in the medial and ventromedial portions of the NSC. Frequently, the fibers were found in close contact with perikarya of suprachiasmatic neurons. The central portion of the nucleus and the surrounding hypothalamic areas contained only a few scattered 5HT-IR fibers. Inside the raphe nuclei, 5HT-IR fibers and perikarya formed a dense network. In hibernating ground squirrels, the immunoreactivity to serotonin was approximately 45% higher than in non-hibernating controls. This difference is in accordance with signs of higher neuronal activity (40% higher RNA-content, 20% larger cell nuclei) in 5HT-IR perikarya of the raphe nucleus and the persisting activity of the NSC during hibernation; the activity of other brain regions dropped conspicuously in torpid animals.Supported by the Deutsche Forschungsgemeinschaft (Nu 36/2-1)  相似文献   

5.
The development of central serotoninergic neurons has been investigated with immunohistochemical techniques using the indirect peroxidase-antiperoxidase (PAP) method in 16-and 19-day-old rat embryos, in 1, 10 and 26 days old young and in adult animals. Immunoreactive neurons were present on embryonic day 16 in the subventricular area of the brain stem. First the countour of nucleus raphe dorsalis became distinct in the subventricular cell mass of the lower midbrain. In the ventral part of the tegmentum, cells were grouped along the midline in bilateral columns from which the nucleus centralis superior, the nucleus raphe pontis and the nuclei pontis differentiated. These nuclei were well defined in the newborn on either side of the midline, and the nucleus centralis superior and nucleus raphe pontis were fused on the midline in 10-day old rat. In the ventral part of the pons and medulla, a bilateral cell mass was also found along the midline. A number of immunoreactive cells moving off the midline constituted the nucleus raphe magnus which was formed on 19. embryonis day. Another contingent of immunoreactive cells remained at the midline and formed the nuclei raphe obscurus and pallidus. In newborn rat, these nuclei were well separated from the nucleus raphe magnus. They would later fuse on the midline, whereas the nucleus raphe magnus would remain a bilateral structure.  相似文献   

6.
The distribution of glutamate decarboxylase (GAD) and δ-amino butyric acid have been studied in the amygdaloid complex and in the stria terminalis system of the rat. The central and medial nuclei of the amygdala had significantly higher activities of GAD than the lateral olfactory tract nucleus, anterior amygdala, anterior lateral nucleus, posterior lateral nucleus, cortical nucleus, basomedial nucleus, basolateral nucleus, and pyriform cortex. The enzyme activity was about two and a half times higher in the central and medial nuclei than in the pyriform cortex. GABA was also significantly more concentratcd in these nuclei than in the pyriform cortex although this was not true for four other amino acids studied–glutamic acid, aspartic acid, taurine and glycine. GAD activity was also measured in the stria terminalis (the major afferent and efferent pathway of the amygdala) and in its bed nucleus. The enzyme activity was higher in the stria terminalis than in four other fibre tracts studied–the optic tract, anterior commissure, corpus callosum, and fimbria. GAD activity was exceptionally high in the bed nucleus of the stria terminalis particularly in its ventral part. The significance of the results are discussed in terms of what is known about the evolution and anatomy of the amygdala.  相似文献   

7.
After injection of 3H 1,25 (OH)2 vitamin D3 to adult rats and mice, under normal or vitamin D deficient diet, the hormone was found to be accumulated in nuclei of neurons in certain brain regions. Nuclear concentration was prevented or diminished, when excess unlabeled 1,25 (OH)2 vitamin D3 was injected before 3H 1,25 (OH)2 vitamin D3, while excess 25 (OH) vitamin D3 did not prevent nuclear labeling. Highest nuclear concentration of 3H 1,25 (OH)2 vitamin D3 is observed in certain neurons in the nucleus interstitialis striae terminalis, involving its septo-preoptic pars dorsolateralis and its anterior hypothalamic-thalamic portion, and in the nucleus centralis of the amygdala, all constituting a system of target neurons linked by a component of the stria terminalis. Nuclear concentration of 3H 1,25 (OH)2 vitamin D3 is also found in neurons in the periventricular nucleus of the preoptic-hypothalamic region, including its extensions, the parvocellular paraventricular and arcuate nucleus, in the ventromedial nucleus, supramammillary nucleus, reticular nucleus of the thalamus, ventral hippocampus, caudate nucleus, pallium, in the midbrain-pontine central gray, dorsal raphe nucleus, parabrachial nuclei, cranial motor nuclei, substantia gelatinosa of the sensory nucleus of the trigeminus, Golgi type II cells of the cerebellum, and others. The extensive distribution of target neurons suggests that 1,25 (OH)2 vitamin D3 regulates the production of several aminergic and peptidergic messengers, and influences the activity of certain endocrine-autonomic, sensory and motor systems.  相似文献   

8.
Projections into rat ventromedial hypothalamus were studied with retrograde transport of horseradish peroxidase (HRP). Following injection of HRP into ventromedial hypothalamus, labeled neurons were found in cortical and medial amygdaloid nuclei, ipsilateral mediodorsalis thalamus (MD), dorsal raphe nucleus, and contralateral sensorimotor cortex. Futhermore, labeled axons that connect directly amygdala with hypothalamus (DAH) also were found.  相似文献   

9.
 Monoclonal antibodies were generated against serotonin (5-HT) and the C-terminal portion of the neuronal form of nitric oxide synthase (nNOS), the enzyme producing nitric oxide in neurons. These antibodies were used to compare the distribution of 5-HT- and nNOS-containing neurons in the raphe nuclei of four animal species (rat, mouse, guinea pig, and cat). It was found that the rat was the only species in which the raphe nuclei contain a substantial number of nNOS-immunoreactive (IR) cell bodies. In this species and as observed by other authors, all mesencephalic raphe nuclei contained nNOS-IR cells, the largest group being located in the nucleus raphe dorsalis. The coexistence of nNOS and 5-HT immunoreactivities in these nuclei was visualized by double labeling. In the medulla, the nuclei raphe magnus and obscurus displayed a rather low number of nNOS-IR neurons. In the other species, nNOS-IR cell bodies were found in very low numbers, whatever raphe nucleus was considered. The rostral pole of the nucleus raphe dorsalis and the nuclei raphe magnus and obscurus contained a few nNOS-IR neurons which did not show any coincidence with the 5-HT neurons. In addition, nNOS-IR axons were rare. It is concluded that in the mouse, guinea pig, and cat the involvement of nitric oxide in functions subserved by 5-HT within the raphe nuclei might be minimal. Accepted: 5 May 1998  相似文献   

10.
The descending influences of the septal nuclei (lateral nucleus--LSN and bed nucleus stria terminalis--BNST) on activity of viscero-sensory neurons of the nucleus of tractus solitarius (NTS) identified by stimulation of cervical part of the n. vagus were investigated in the cat anaesthetised by chloraloze-nembutal combination. It was found that out of 70 units recorded in the NTS area 50 were identified as those of primary and secondary input vagal neurons. Influence of single, paired and frequency stimulation on the septal structures was studied on these neurons. It was revealed that 30% (15 un) reacted by phase-specific response to the single stimulation of the septal nuclei. The latent period of initial excitation was in the range 5-25 ms. During the paired stimulation these neurons were not able to react to the second stimulus for the equal 10-300 ms. It was revealed that 34% (17 un) of the identified vagal neurons reacted by a tonic change of their spontaneous activity. The increase of frequency stimulation to 20 Hz evoked different changes of the rhythmical activity of the vagal neurons (increase, diminishing or inhibition). The study of interaction between central and peripheral signals in the solitary neurons induced blocking influence of descending septal discharge on the vagal test response. It is possible that the septal downward impulses reach the vago-sensitive solitary neurons indirectly through other structures of the limbic brain (amygdala, hypothalamus) and participate in modulation of the spontaneous activity of these neurons.  相似文献   

11.
By means of retrograde and anterograde transport of horseradish peroxidase method it has been demonstrated in two series of experiments with injecting the enzyme into separate septal nuclei and the amygdaloid complex in cats that most of amygdaloid nuclei (cortico-medial, central and baso-lateral) are reciprocally connected only with two nuclei in the septum: with the nucleus of the diagonal bundle of Broca and with the nucleus of the terminal strip bed. The projections studied are topically organized. The cortico-medial and basal nuclei of the amygdaloid complex are reciprocally connected with the ventral part of the diagonal bundle of Broca and with the terminal strip bed nucleus. The central nucleus of the amygdala has reciprocal projections only with the terminal strip bed nucleus, and with the ventral part of the diagonal bundle of Broca it has only a unilateral connection. On the contrary, the lateral nucleus of the amygdala is reciprocally connected with the ventral part of the diagonal bundle of Broca, and is only projected on the terminal strip bed nucleus without getting any projections from it.  相似文献   

12.
Summary The distribution of substance P-immunoreactivity (SP-IR) in the brainstem and spinal cord of normal and colchicine-pretreated cats was analysed using the peroxidase-antiperoxidase (PAP) technique. Numerous SP-IR fibers are present in the nucleus solitarius, nucleus dorsalis nervi vagi and nucleus spinalis nervi trigemini, various parts of the formatio reticularis, substantia grisea centralis mesencephali, locus coeruleus and nucleus parabrachialis. SP-IR perikarya occur in the substantiae gelatinosa and intermedia of the spinal cord, the nucleus spinalis nervi trigemini-pars caudalis, the nucleus dorsalis nervi vagi, and the nucleus solitarius, as well as in the adjacent formatio reticularis and the medullary nuclei of the raphe. In addition, SP-IR cell bodies are located in the nuclei raphe magnus and incertus, ventral and dorsal to the nucleus tegmentalis dorsalis (Gudden), nucleus raphe dorsalis, substantia grisea centralis mensencephali, locus coeruleus, nucleus parabrachialis and colliculus superior.The results indicate that SP-IR neurons may be involved in the regulation of cardiovascular functions both at the central and peripheral level. A peripheral afferent portion seems to terminate in the nucleus solitarius and an efferent part is postulated to originate from the nucleus dorsalis nervi vagi and from the area of the nuclei retroambiguus, ambiguus and retrofacialis.  相似文献   

13.
大鼠脑内5-HT能神经元对咽肌的支配及调控   总被引:3,自引:0,他引:3  
用PRV和5-HT免疫组织化学双标记方法研究脑内5-HT能神经元对咽肌的神经支配及调控。观察到中缝核群的中缝苍白核、中缝隐核、中缝大核、中缝桥核、中缝正中核、中缝背核、和中缝尾侧线形核等部位有PRV和5-HT双标记细胞,直接证明中缝核群的5-HT能神经元投射到支配咽肌的疑核运动神经元和孤束核中的前运动神经元,调控咽肌的运动。并推测脑干中缝核群中的5-HT能神经元对咽肌运动的调控可能经由5HT3和5HT1A两种受体介导。  相似文献   

14.
T S Gray  D J Magnuson 《Peptides》1992,13(3):451-460
The central nucleus of the amygdala, bed nucleus of the stria terminalis, and central gray are important components of the neural circuitry responsible for autonomic and behavioral responses to threatening or stressful stimuli. Neurons of the amygdala and bed nucleus of the stria terminalis that project to the midbrain central gray were tested for the presence of peptide immunoreactivity. To accomplish this aim, a combined immunohistochemical and retrograde tracing technique was used. Maximal retrograde labeling was observed in the amygdala and bed nucleus of the stria terminalis after injections of retrograde tracer into the caudal ventrolateral midbrain central gray. The majority of the retrogradely labeled neurons in the amygdala were located in the medial central nucleus, although many neurons were also observed in the lateral subdivision of the central nucleus. Most of the retrogradely labeled neurons in the BST were located in the ventral and posterior lateral subdivisions, although cells were also observed in most other subdivisions. Retrogradely labeled neurotensin, corticotropin releasing factor (CRF), and somatostatin neurons were mainly observed in the lateral central nucleus and the dorsal lateral BST. Retrogradely labeled substance P-immunoreactive cells were found in the medial central nucleus and the posterior and ventral lateral BST. Enkephalin-immunoreactive retrogradely labeled cells were not observed in the amygdala or bed nucleus of the stria terminalis. A few cells in the hypothalamus (paraventricular and lateral hypothalamic nuclei) that project to the central gray also contained CRF and neurotensin immunoreactivity. The results suggest the amygdala and the bed nucleus of the stria terminalis are a major forebrain source of CRF, neurotensin, somatostatin, and substance P terminals in the midbrain central gray.  相似文献   

15.
The distribution of somatostatinlike immunoreactive (SLI) perikarya, axons, and terminals was mapped in subcortical areas of the brain of the little brown bat, Myotis lucifugus, using light microscopic immunocytochemistry. A preponderance of immunoreactivity was localized in reticular, limbic, and hypothalamic areas including: 1) in the forebrain: the bed nucleus of the stria terminalis; lateral preoptic, dorsal, anterior, lateral and posterior hypothalamic areas; amygdaloid, periventricular, arcuate, supraoptic, suprachiasmatic, ventromedial, dorsomedial, paraventricular, lateral and medial mammillary, and lateral septal nuclei; the nucleus of the diagonal band of Broca and nucleus accumbens septi; 2) in the midbrain: the periaqueductal gray, interpeduncular, dorsal and ventral tegmental, pretectal, and Edinger-Westphal nuclei; and 3) in the hindbrain: the superior central and parabrachial nuclei, nucleus incertus, locus coeruleus, and nucleus reticularis gigantocellularis. Other areas containing SLI included the striatum (caudate nucleus and putamen), zona incerta, infundibulum, supramammillary and premammillary nuclei, medial and dorsal lateral geniculate nuclei, entopeduncular nucleus, lateral habenular nucleus, central medial thalamic nucleus, central tegmental field, linear and dorsal raphe nuclei, nucleus of Darkschewitsch, superior and inferior colliculi, nucleus ruber, substantia nigra, mesencephalic nucleus of V, inferior olivary nucleus, inferior central nucleus, nucleus prepositus, and deep cerebellar nuclei. While these results were similar in some respects to those previously reported in rodents, they also provided interesting contrasts.  相似文献   

16.
Single neuron firing rate was recorded from dorsal raphe nucleus of anesthetized rats. The firing rate of raphe neurons varied from 4 to 8 discharge per second before drug administration and this neuronal activity was decreased by L-701,324 (2 mg/kg i.v. injection), a competitive antagonist of glycineB binding site of N-methyl-D-aspartate (NMDA) receptors. The glycine transporter type-1 (GlyT1) antagonists Org-24461 (10 mg/kg i.v.) and NFPS (3 mg/kg i.v.) reversed the inhibitory effect of L-701,324 on single neuron activity recorded from dorsal raphe nucleus of the rat. Org-24461 and NFPS both tended to increase the raphe neuronal firing rate also when given alone but their effect was not significant. This finding serves further evidence that glutamate released from axon terminals of the cortico-striatal projection neurons stimulates serotonergic neurons in the raphe nuclei and this effect is mediated at least in part by postsynaptic NMDA receptors. Thus, GlyT1 inhibitors are able to reverse the hypofunctional state of NMDA receptors, suggesting that these drugs may have beneficial therapeutic effects in neurological and psychiatric disorders characterized with impaired NMDA receptor-mediated transmission.  相似文献   

17.
The spontaneous activity of single neurons in the nucleus raphe dorsalis was recorded in vitro in mouse brain slices. The neurons displayed the slow and regular discharge pattern characteristic of raphe neurons recorded in vivo. When magnesium ion was added to increase the medium concentration to 20-30 mM for the purpose of inhibiting all synaptic transmission, raphe neurons continued to display the same discharge pattern and rate. The data suggest that the steady rhythmic firing of nucleus raphe dorsalis neurons is generated by an intracellular pacemaker mechanism.  相似文献   

18.
A large corpus of research suggests that there are changes in the manner and degree to which the amygdala supports cognitive and emotional function across development. One possible basis for these developmental differences could be the maturation of amygdalar connections with the rest of the brain. Recent functional connectivity studies support this conclusion, but the structural connectivity of the developing amygdala and its different nuclei remains largely unstudied. We examined age related changes in the DWI connectivity fingerprints of the amygdala to the rest of the brain in 166 individuals of ages 5-30. We also developed a model to predict age based on individual-subject amygdala connectivity, and identified the connections that were most predictive of age. Finally, we segmented the amygdala into its four main nucleus groups, and examined the developmental changes in connectivity for each nucleus. We observed that with age, amygdalar connectivity becomes increasingly sparse and localized. Age related changes were largely localized to the subregions of the amygdala that are implicated in social inference and contextual memory (the basal and lateral nuclei). The central nucleus’ connectivity also showed differences with age but these differences affected fewer target regions than the basal and lateral nuclei. The medial nucleus did not exhibit any age related changes. These findings demonstrate increasing specificity in the connectivity patterns of amygdalar nuclei across age.  相似文献   

19.
The effect of injections of 5,6-dihydroxytryptamine, a potent and selective neurotoxic of serotonin neurons, into amygdala and dorsal raphe mesencephalic nucleus on the plasma renin activity has been studied in male Wistar rats. Plasma renin activity was estimated on 2nd, 4th, Tth and 14th day after injections in both areas. The administration of 5,6-dihydroxytryptamine in amigdala produced a significant decrease in plasmatic renin activity between 2nd and 4th day, but the inverse effect between 7th and 14th day. Similar effects were found after injections in dorsal raphe nucleus. The contents of cerebral 5-HT were simultaneously evaluated in the entire brain when the drug was implanted in dorsal raphe, and only in amygdaloid tissue when the injection was restricted to this area. A significant decrease in serotonin content was produced 7th day in both places, while partial recuperation was found toward 14th day. The results, especially the ones related to the chemical lesion of dorsal raphe nucleus, suggest that serotoninergic brain systems are involved, as stimulators, in the control of the dynamics of renin-angiotensin system.  相似文献   

20.
The social behavior of both human and nonhuman primates relies on specializations for the recognition of individuals, their facial expressions, and their direction of gaze. A broad network of cortical and subcortical structures has been implicated in face processing, yet it is unclear whether co-occurring dimensions of face stimuli, such as expression and direction of gaze, are processed jointly or independently by anatomically and functionally segregated neural structures. Awake macaques were presented with a set of monkey faces displaying aggressive, neutral, and appeasing expressions with head and eyes either averted or directed. BOLD responses to these faces as compared to Fourier-phase-scrambled images revealed widespread activation of the superior temporal sulcus and inferotemporal cortex and included activity in the amygdala. The different dimensions of the face stimuli elicited distinct activation patterns among the amygdaloid nuclei. The basolateral amygdala, including the lateral, basal, and accessory basal nuclei, produced a stronger response for threatening than appeasing expressions. The central nucleus and bed nucleus of the stria terminalis responded more to averted than directed-gaze faces. Independent behavioral measures confirmed that faces with averted gaze were more arousing, suggesting the activity in the central nucleus may be related to attention and arousal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号