首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have isolated and examined the gene for the heart isoform of cytochromecoxidase subunit VIIa (COX VIIa-H) in mouse, an isoform gene previously thought to be lacking in rodents. Interspecies amino acid comparisons indicate that mouse COX VIIa-H protein displays 82.5 and 70.9% identity with the bovine and human heart isoforms of COX VIIa, but only 53.7% identity with the paralogous mouse liver isoform (COX VIIa-L). Expression in adult mouse tissues is limited to heart and skeletal muscle, as found in other species. In the early mouse embryo,Cox7alwas the exclusive isoform expressed andCox7ahmRNA was not detectable until day 17postcoitum.That the mouseCox7ahgene characterized in this study is orthologous to the humanCOX7AHgene was also suggested by its mapping to mouse chromosome 7, to a conserved region syntenic with the human chromosome location ofCOX7AH,19q13.1. As a result, all three COX heart isoform genes in mouse group to chromosome 7. Interestingly, mapping of the mouseCox7alto chromosome 9 suggests a new syntenic region between the mouse and the human genomes.  相似文献   

2.
3.
4.
Subunit VIIa of mammalian cytochrome c oxidase (COX; EC 1.9.3.1) exists in at least two isoforms, one present in all tissue types ('liver' isoform; COX VIIa-L) and the other specific for cardiac and skeletal muscle (COX VIIa-M). We have isolated a full-length cDNA encoding human COX VIIa-M. The deduced polypeptide represents the human ortholog of COX VIIa-M, as it shares 78% identity with bovine COX VIIa-M, but only 63% identity with human COX VIIa-L. Northern-blot analysis of primate tissues demonstrated that COXVIIa-M mRNA is present only in muscle tissues; in contrast, the COXVIIa-L mRNA is present in both muscle and nonmuscle tissues. Southern-blot hybridization of human-rodent cell hybrid genomic DNA indicates that the COXVIIa-M gene maps to a single locus on chromosome 19, designated COX7AM. In contrast, COXVIIa-L cDNA probes hybridized to fragments from two COX7AL loci, on chromosomes 4 and 14.  相似文献   

5.
Molecular evolution of the COX7A gene family in primates.   总被引:2,自引:0,他引:2  
COX VIIa is one of 10 nuclear-encoded subunits of the COX holoenzyme, and one of three that have isoforms with tissue-specific differences in expression. Analysis of nucleotide substitution rates revealed an accelerated rate of nonsynonymous substitutions relative to that of synonymous substitutions for the heart isoform gene (COX7AH) in six primate lineages. Rate accelerations have been noted for four other COX-related genes in this time period, suggesting that the COX holoenzyme has experienced an episode of adaptive evolution. A third member of the gene family, COX7AR, has recently been described. Although its function is currently unknown, low nonsynonymous substitution/synonymous substitution (N/S) ratios in mammalian evolution suggest that COX7AR is of functional importance. When the COX7A isoforms were divided into domains, examination of nucleotide substitution rates suggested that mitochondrial targeting residues experienced an accelerated nonsynonymous substitution rate in the period following gene duplication. In contrast, paralogous comparisons of the targeting residues of each isoform show they have been relatively conserved in mammalian evolution. This pattern is consistent with the evolution of tissue-specific function.  相似文献   

6.
7.
8.
9.
10.
11.
12.
Cloning of the gene coding for human L apoferritin.   总被引:12,自引:2,他引:10       下载免费PDF全文
  相似文献   

13.
建立一种用于克隆全长基因的、限制性内切酶介导的重叠延伸法 .对全长基因进行分段扩增 ,并利用适当的限制性内切酶对基因序列内相应的限制性位点进行酶切 ,从而使分段扩增片段得以重叠并互为模板 ,在DNA聚合酶的作用下延伸获得全长基因 .将环氧合酶 1 (COX 1 )基因的外显子 9巧妙地拼接到了缺失外显子 9的COX 1cDNA片段中 ,获得了COX 1基因的全长cDNA .该方法分 3步进行 .首先 ,通过RT PCR分别扩增跨外显子 9的cDNA片段和缺失外显子 9的cDNA片段 ,并克隆到pMD1 8 T载体上 ;其次 ,PCR扩增外显子 9片段 ,限制性内切酶StuI酶切缺失外显子9cDNA片段的重组质粒 ,二者以一定的比例混合 ,互为模板 ,在pfuDNA聚合酶的作用下进行延伸 ,从而产生一个双链的DNA分子 .最后 ,以延伸产物为模板 ,用COX 1cDNA两端的引物进行PCR扩增 ,产生包含外显子 9的COX 1基因的全长cDNA .这种限制性内切酶介导的重叠延伸方法 ,对于克隆mRNA剪接水平上受调控的基因尤为有用 ,同时也为基因的重组和修饰提供一个新的思路  相似文献   

14.
15.
16.
17.
Cytochrome c oxidase (COX) consists of 13 subunits, 3 encoded in the mitochondrial genome and 10 in the nucleus. Little is known of the role of the nuclear-encoded subunits, some of which exhibit tissue-specific isoforms. Subunit VIa is unique in having tissue-specific isoforms in all mammalian species examined. We examined relative evolutionary rates for the COX6A heart (H) and liver (L) isoform genes along the length of the molecule, specifically in relation to the tissue-specific function(s) of the two isoforms. Nonsynonymous (amino acid replacement) substitutions in the COX6AH gene occurred more frequently than in the ubiquitously expressed COX6AL gene. Maximum-parsimony analysis and sequence divergences from reconstructed ancestral sequences revealed that after the ancestral COX6A gene duplicated to yield the genes for the H and L isoforms, the sequences encoding the mitochondrial matrix region of the COX VIa protein experienced an elevated rate of nonsynonymous substitutions relative to synonymous substitutions. This is expected for relaxed selective constraints after gene duplication followed by purifying selection to preserve the replacements with tissue-specific functions.   相似文献   

18.
Nucleotide sequence of the gene for the b subunit of human factor XIII   总被引:9,自引:0,他引:9  
R E Bottenus  A Ichinose  E W Davie 《Biochemistry》1990,29(51):11195-11209
Factor XIII (Mr 320,000) is a blood coagulation factor that stabilizes and strengthens the fibrin clot. It circulates in blood as a tetramer composed of two a subunits (Mr 75,000 each) and two b subunits (Mr 80,000 each). The b subunit consists of 641 amino acids and includes 10 tandem repeats of 60 amino acids known as GP-I structures, short consensus repeats (SCR), or sushi domains. In the present study, the human gene for the b subunit has been isolated from three different genomic libraries prepared in lambda phage. Fifteen independent phage with inserts coding for the entire gene were isolated and characterized by restriction mapping, Southern blotting, and DNA sequencing. The gene was found to be 28 kilobases in length and consisted of 12 exons (I-XII) separated by 11 intervening sequences. The leader sequence was encoded by exon I, while the carbonyl-terminal region of the protein was encoded by exon XII. Exons II-XI each coded for a single sushi domain, suggesting that the gene evolved through exon shuffling and duplication. The 12 exons in the gene ranged in size from 64 to 222 base pairs, while the introns ranged in size from 87 to 9970 nucleotides and made up 92% of the gene. The introns contained four Alu repetitive sequences, one each in introns A, E, I, and J. A fifth Alu repeat was present in the flanking 3' end of the gene. Two partial KpnI repeats were also found in the introns, including one in intron I and one in intron J. The KpnI repeat in intron J was 89% homologous to a sequence of approximately 2200 nucleotides flanking the gene coding for human beta globin and approximately 3800 nucleotides from the L1 insertion present in the gene for human factor VIII. Intron H also contained an "O" family repeat, while two potential regions for Z-DNA were identified within introns G and J. One nucleotide change was found in the coding region of the gene when its sequence was compared to that of the cDNA. This difference, however, did not result in a change in the amino acid sequence of the protein.  相似文献   

19.
20.
Subunit Vb of mammalian cytochrome c oxidase (COX; EC 1.9.3.1) is encoded by a nuclear gene and assembled with the other 12 COX subunits encoded in both mitochondrial and nuclear DNA. We have cloned the gene for human COX subunit Vb (COX5B) and determined the exon-intron structure by both hybridization analysis and DNA sequencing. The gene contains five exons and four introns; the four coding exons span a region of approximately 2.4 kb. The 5' end of the COX5B gene is GC-rich and contains many HpaII sites. Genomic Southern blot analysis of human DNA probed with the human COX Vb cDNA identified eight restriction fragments containing COX Vb-related sequences that were mapped to different chromosomes with panels of human x Chinese hamster somatic cell hybrids. Because only one of these fragments hybridized with a 210-bp probe from intron 4, we conclude that there is a single expressed gene for COX subunit Vb in the human genome. We have mapped this gene to chromosome 2, region cen-q13.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号