首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The relative amount of DNA in defined segments of salivary gland chromosomes of Drosophila melangogaster from the Oregon R stock was determined by autoradiography. The data obtained were then used to estimate the possible correlation between DNA content and the degree of manifestation of charcters such as weak-point behavior, late replication, strong synapsis, breaks of chromosome rearrangements, hybridization with cRNA, and localization of mobile elements. Of 380 regions investigated 274 have showed deviations in the degree of manifestation of these features from that predicted on the basis of the DNA content of these regions. Regions, previously shown to consist of intercalary heterochromatin (IH, Zhimulev et al. 1982), were found to have a significantly higher frequency of the simultaneous manifestation of several of the above-mentioned features, with the exception of localization of mobile elements. These findings support the earlier suggestion that a high frequency and a simultaneous manifestation of IH features depend on some peculiarities of the molecular organization of IH regions, but not on a high DNA content.  相似文献   

3.
The modern concept of intercalary heterochromatin as polytene chromosome regions exhibiting a number of specific characteristics is formulated. DNA constituting these regions is replicated late in the S period; therefore, some strands of polytene chromosomes are underrepresented; i.e., they are underreplicated. Late-replicating regions account for about 7% of the genome; genes are located there in clusters of as many as 40. In general, the gene density in the clusters is substantially lower than in the main part of the genome. Late-replicating regions have an inactivating capacity: genes incorporated into these regions as parts of transposons are inactivated with a higher probability. These regions contain a specific protein SUUR affecting the rate of replication completion.  相似文献   

4.
5.
The morphological characteristics of intercalary heterochromatin (IH) are compared with those of other types of silenced chromatin in the Drosophila melanogaster genome: pericentric heterochromatin (PH) and regions subject to position effect variegation (PEV). We conclude that IH regions in polytene chromosomes are binding sites of silencing complexes such as PcG complexes and of SuUR protein. Binding of these proteins results in the appearance of condensed chromatin and late replication of DNA, which in turn may result in DNA underreplication. IH and PH as well as regions subject to PEV have in common the condensed chromatin appearance, the localization of specific proteins, late replication, underreplication in polytene chromosomes, and ectopic pairing.  相似文献   

6.
Intercalary heterochromatin consists of extended chromosomal domains which are interspersed throughout the euchromatin and contain silent genetic material. These domains comprise either clusters of functionally unrelated genes or tandem gene duplications and possibly stretches of noncoding sequences. Strong repression of genetic activity means that intercalary heterochromatin displays properties that are normally attributable to classic pericentric heterochromatin: high compaction, late replication and underreplication in polytene chromosomes, and the presence of heterochromatin-specific proteins. Late replication and underreplication occurs when the suppressor of underreplication protein is present in intercalary heterochromatic regions. Intercalary heterochromatin underreplication in polytene chromosomes results in free double-stranded ends of DNA molecules; ligation of these free ends is the most likely mechanism for ectopic pairing between intercalary heterochromatic and pericentric heterochromatic regions. No support has been found for the view that the frequency of chromosome aberrations is elevated in intercalary heterochromatin.  相似文献   

7.
Characterization of Drosophila heterochromatin   总被引:11,自引:0,他引:11  
A number of preliminary experiments have shown that the fluorescence pattern of Hoechst 33258, as opposed to that of quinacrine, varies with the concentration of dye. The metaphase chromosomes of D. melanogaster, D. simulans, D. virilis, D. texana, D. hydei and D. ezoana have therefore been stained with two concentrations of H 33258 (0.05 and 0.5 mug/ml in phosphate buffer at pH 7) and with a single concentration of quinacrine (0.5% in absolute alcohol). The three fluorescence patterns so obtained were shown to be somewhat different in some of the species and the coincide in others. All three stainings gave an excellent longitudinal differentiation of heterochromatin while euchromatin fluoresced homogeneously. Living ganglion cells of the six species mentioned above were treated with quinacrine and H 33258. Quinacrine induced a generalized lengthening and swelling of the chromosomes and H 33258 the decondensation of specific heterochromatic regions. A correlation of the base composition of the satellite DNAs contained in the heterochromatin of the species studied with the relative fluorescence and decondensation patterns showed that: 1) the extremely fluorochrome bright areas and those decondensed are present only in species containing AT rich satellite DNA; 2) the opposite is not true since some AT-rich satellite DNAs are neither fluorochrome bright nor decondensed; 3) there is no good correspondence between Hoechst bright areas and the decondensed ones. AT richness therefore appears to be a necessary but not sufficient condition both for bright fluorescence and decondensation. Some cytological evidence suggests that similarly AT rich satellite DNAs respond differently in fluorescence and decondensation because they are bound to different chromosomal proteins. A combination of the results of fluorescence and decondensation revealed at least 14 types of heterochromatin; 4-7 of which are simultaneously present in the same species. Since closely related species (i.e. D. melanogaster and D. simulans; D. virilis and D. texana) show marked differences in the heterochromatic types they contain, it can be suggested that within the genus Drosophila qualitative variations of heterochromatin have played an important role in speciation.  相似文献   

8.
The C- and N-banding patterns of D. melanogaster, D. simulans, D. virilis, D. texana, D. ezoana and D. hydei were studied in comparison with quinacrine and Hoechst banding patterns. In all these Drosophila species the C bands correspond to the heterochromatin as revealed by the positive heteropycnosis in the prometaphase chromosomes. The N bands have the following characteristics: 1) they are always localized on the heterochromatin and generally do not correspond to the C bands; 2) they do not correspond to the nucleolar organizing regions; 3) they are inversely correlated with fluorescence, i.e., they correspond to regions which are scarcely, if at all, fluorescent after Hoechst 33258 or quinacrine staining; 4) they are localized both on regions containing AT rich satellite DNA and on those containing GC rich satellite DNA.  相似文献   

9.
Carlotta Halfer 《Chromosoma》1981,84(2):195-206
Neuroblast chromosomes of 16 Drosophila melanogaster laboratory stocks (15 wild type and 1 carrying the mutant vermilion) were carefully analyzed for Q-banding patterns and morphological characteristics, in all the mitotic phases. Two forms of intraspecific heterochromatin variations, involving three types of chromosomes, are described: 1) differences in the fluorescence pattern with regard to the Y chromosome and the centromeric heterochromatin of the pair II; 2) differences in the size of the heterochromatic segment of the X chromosome. An unambigous evidence of such variants was obtained by comparing homologous chromosomes in the F1 hybrids, as well as in the F2 offspring, where differences in appearance of the heteromorphic chromosomes was readily identified as to the parental origin. The possible evolutionary significance and the usefulness of such cytologically detectable genetic differences between various strains, are considered.This paper is dedicated to Prof. Claudio Barigozzi with gratitude for his guidance and the long collaboration  相似文献   

10.
11.
Patrizio Dimitri 《Genetica》1997,100(1-3):85-93
Several families of transposable elements (TEs), most of them belonging to the retrotransposon catagory, are particularly enriched in Drosophila melanogaster constitutive heterochromatin. The enrichment of TE-homologous sequences into heterochromatin is not a peculiar feature of the Drosophila genome, but appears to be widespread among higher eukaryotes. The constitutive heterochromatin of D. melanogaster contains several genetically active domains; this raises the possibility that TE-homologous sequences inserted into functional heterochromatin compartments may be expressed. In this review, I present available data on the genetic and molecular organization of D. melanogaster constitutive heterochromatin and its relationship with transposable elements. The implications of these findings on the possible impact of heterochromatic TEs on the function and evolution of the host genome are also discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
13.
C. Halfer 《Genetica》1983,61(2):131-137
The analysis of inter-strain heterochromatin polymorphism in mitotic chromosomes of Drosophila melanogaster was extended to some stocks characterized by chromosomal mutations. In particular, the present investigation aims to compare, in the same cell, the quinacrine banding of two different Y chromosomes of male hybrids derived from crosses using special stocks. A direct comparison of homologous heteromorphic chromosomes in F1 hybrids provided additional evidence of differences in the fluorescence pattern of the Y chromosome, as well as in the length of the heterochromatin segment of the X chromosome.  相似文献   

14.
A novel retrotransposon, aurora, containing 324 by long terminal repeats (LTRs) was detected in Drosophila melanogaster as a 5 kb insertion in the heterochromatic Stellate gene. This insertion causes a 5 bp duplication of the integration site. Southern analysis and in situ hybridization data show that all detectable copies of aurora are immobilized in the D. melanogaster heterochromatin. However, mobile copies of aurora were revealed in the cuchromatin of D. simulans. The element was also found in various species of the melanogaster subgroup and in the D. virilis genome.  相似文献   

15.
Mia T Levine  Harmit S Malik 《Fly》2013,7(3):137-141
Heterochromatin is the enigmatic eukaryotic genome compartment found mostly at telomeres and centromeres. Conventional approaches to sequence assembly and genetic manipulation fail in this highly repetitive, gene-sparse, and recombinationally silent DNA. In contrast, genetic and molecular analyses of euchromatin-encoded proteins that bind, remodel, and propagate heterochromatin have revealed its vital role in numerous cellular and evolutionary processes. Utilizing the 12 sequenced Drosophila genomes, Levine et al1 took a phylogenomic approach to discover new such protein “surrogates” of heterochromatin function and evolution. This paper reported over 20 new members of what was traditionally believed to be a small and static Heterochromatin Protein 1 (HP1) gene family. The newly identified HP1 proteins are structurally diverse, lineage-restricted, and expressed primarily in the male germline. The birth and death of HP1 genes follows a “revolving door” pattern, where new HP1s appear to replace old HP1s. Here, we address alternative evolutionary models that drive this constant innovation.  相似文献   

16.
Labelled RNA preparations (total newly synthesized RNA, as well as stable cytoplasmic RNA) isolated from a cell culture of D. melanogaster were hybridized in situ with polytene chromosomes. Apart from the nucleolus, in all cases the regions adjacent to the chromocentre in the polytene chromosomes and the intercalary heterochromatin regions in the X chromosome and the autosomes are the most intensively labelled. In the case of asynapsis of polytene chromosomes in heterozygotes the label is detected in a number of intercalary heterochromatin sites in one homologue only ("the asymmetrical label"). The same kind of radioactivity distribution in intercalary heterochromatin regions was observed after a hybridization of polytene chromosomes with cloned DNA fragments (Ananiev et al., 1978, 1979) coding for the abundant classes of messenger RNA (Ilyin et al., 1978) in a cultured D. melanogaster cells. In some regions of intercalary heterochromatin which do not contain these fragments the "'asymmetrical" type of label distribution is observed after hybridization with cell RNA. - These results lead one to regard the intercalary heterochromatin regions as "nests" comprising different types of actively transcribable genes, the composition of each nest varying in different stocks of D. melanogaster.  相似文献   

17.
We have further characterized essential loci within the centric heterochromatin of the left arm of chromosome 3 (3L) of Drosophila melanogaster, using EMS, radiation and P element mutagenesis. We failed to find any new essential genes, a result that suggests a lower-than-average gene density in this region. Mutations affecting expression of the most proximal gene [lethal 1, l1 or l(3)80Fj] act as dominant suppressors of Polycomb (Pc), behavior which is consistent with a putative trithorax group (trx-G) gene. The third gene to the left of the centromere [lethal 3, l3 or l(3)80Fh] is likely to correspond to verthandi (vtd), a known trx-G gene that plays a role in the regulation of hedgehog (hh) expression and signalling. The intervening gene [lethal 2, l2 or l(3)80Fi] is required throughout development, and mutant alleles have interesting phenotypes; in various allelic combinations that survive, we observe fertility, bristle, wing, eye and cuticle defects.  相似文献   

18.
Yan CM  Dobie KW  Le HD  Konev AY  Karpen GH 《Genetics》2002,161(1):217-229
Approximately one-third of the human and Drosophila melanogaster genomes are heterochromatic, yet we know very little about the structure and function of this enigmatic component of eukaryotic genomes. To facilitate molecular and cytological analysis of heterochromatin we introduced a yellow(+) (y(+))-marked P element into centric heterochromatin by screening for variegated phenotypes, that is, mosaic gene inactivation. We recovered >110 P insertions with variegated yellow expression from approximately 3500 total mobilization events. FISH analysis of 71 of these insertions showed that 69 (97%) were in the centric heterochromatin, rather than telomeres or euchromatin. High-resolution banding analysis showed a wide but nonuniform distribution of insertions within centric heterochromatin; variegated insertions were predominantly recovered near regions of satellite DNA. We successfully used inverse PCR to clone and sequence the flanking DNA for approximately 63% of the insertions. BLAST analysis of the flanks demonstrated that either most of the variegated insertions could not be placed on the genomic scaffold, and thus may be inserted within novel DNA sequence, or that the flanking DNA hit multiple sites on the scaffold, due to insertions within different transposons. Taken together these data suggest that screening for yellow variegation is a very efficient method for recovering centric insertions and that a large-scale screen for variegated yellow P insertions will provide important tools for detailed analysis of centric heterochromatin structure and function.  相似文献   

19.
In Drosophila melanogaster, crossing males carrying autonomous P elements with females devoid of P copies results in hybrid dysgenesis in the germline of progeny. The reciprocal cross produces non-dysgenic progeny due to a maternally inherited state non-permissive for P transposition. The capacity of a P copy to repress transposition depends on both its structure and its chromosomal location. Naturally occuring regulatory P elements inserted at the telomere of the X chromosome have been genetically isolated in a genomic context devoid of other P elements. One or two copies of autonomous P elements at this site (1A) are sufficient to elicit a strong P repression in the germline. These elements are flanked by Telomeric Associated Sequences, previously identified and described by Karpen and Spradling (1992) as having heterochromatic properties. The regulatory properties of P elements at 1A are strongly impaired by mutations affecting Su(var)205, which encodes Heterochromatin Protein 1, a non-histone heterochromatin protein. The regulatory properties of classical P strains are not sensitive to Su(var)205. Models based on chromatin structure or on nuclear localisation of the telomeres are discussed in order to explain both the strong regulatory properties of P elements at the X chromosome telomere and their sensitivity to Su(var)205. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
We have examined the female meiotic behaviour of three X chromosomes which have large deletions of the basal heterochromatin in Drosophila melanogaster. We find that most of this heterochromatin can be removed without substantially altering pairing and segregation of the two Xs. To compare the role of heterochromatin in male meiosis we have constructed individuals which carry two extra identical heterochromatic mini X chromosomes. These minis behave as univalents even though their heterochromatin is known to contain satellite DNA. We conclude therefore that this satellite DNA is not sufficient to allow effectively normal meiotic behaviour. In all other respects our results in the male extend and confirm Cooper's postulate that there exist specific pairing sites in the X heterochromatin. Thus we find no support in either female or male meiosis for the concept that satellite DNA is involved in meiotic chromosome pairing of either a chiasmate or an achiasmate kind.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号