首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ia antigens are polymorphic cell-surface molecules that control the immune response. We have begun to localize important functional sites on one of the Ia molecules, A alpha. Herein, we focus on the A alpha k and A alpha b alleles and ask what defines "b-ness" and "k-ness" for a panel of monoclonal antibodies. Two independent experimental strategies are employed: the ability of 12 monoclonal antibodies to recognize L cell transfectants bearing chimeric and mutant A alpha chains is assessed, and the amino acid sequences of A alpha chains expressed by immunoselected B lymphoma mutants are deduced. For each antibody, we identify a stretch of polymorphic residues critical for recognition; for several, we can pinpoint a single amino acid. Certain stretches of A alpha (depending on the allele) appear strikingly immunodominant.  相似文献   

2.
TANK-binding kinase 1 (TBK1) and inducible IκB-kinase (IKK-i) are central regulators of type-I interferon induction. They are associated with three adaptor proteins called TANK, Sintbad (or TBKBP1) and NAP1 (or TBKBP2, AZI2) whose functional relationship to TBK1 and IKK-i is poorly understood. We performed a systematic affinity purification-mass spectrometry approach to derive a comprehensive TBK1/IKK-i molecular network. The most salient feature of the network is the mutual exclusive interaction of the adaptors with the kinases, suggesting distinct alternative complexes. Immunofluorescence data indicated that the individual adaptors reside in different subcellular locations. TANK, Sintbad and NAP1 competed for binding of TBK1. The binding site for all three adaptors was mapped to the C-terminal coiled-coil 2 region of TBK1. Point mutants that affect binding of individual adaptors were used to reconstitute TBK1/IKK-i-deficient cells and dissect the functional relevance of the individual kinase-adaptor edges within the network. Using a microarray-derived gene expression signature of TBK1 in response virus infection or poly(I∶C) stimulation, we found that TBK1 activation was strictly dependent on the integrity of the TBK1/TANK interaction.  相似文献   

3.
Functional dissection of the apicomplexan glideosome molecular architecture   总被引:1,自引:0,他引:1  
The glideosome of apicomplexan parasites is an actin- and myosin-based machine located at the pellicle, between the plasma membrane (PM) and inner membrane complex (IMC), that powers parasite motility, migration, and host cell invasion and egress. It is composed of myosin A, its light chain MLC1, and two gliding-associated proteins, GAP50 and GAP45. We identify GAP40, a polytopic protein of the IMC, as an additional glideosome component and show that GAP45 is anchored to the PM and IMC via its N- and C-terminal extremities, respectively. While the C-terminal region of GAP45 recruits MLC1-MyoA to the IMC, the N-terminal acylation and coiled-coil domain preserve pellicle integrity during invasion. GAP45 is essential for gliding, invasion, and egress. The orthologous Plasmodium falciparum GAP45 can fulfill this dual function, as shown by transgenera complementation, whereas the coccidian GAP45 homolog (designated here as) GAP70 specifically recruits the glideosome to the apical cap of the parasite.  相似文献   

4.
Soluble guanylate cyclase is a heterodimeric hemoprotein composed of alpha- and beta-subunits with a homologous motif to the nucleotide-binding sites of adenylate cyclases. Homology modeling of guanylate cyclase, based on the crystal structure of adenylate cyclase, reveals a single GTP-binding site and a putative second site pseudosymmetric to the GTP-binding site. However, the role of this pseudosymmetric site has remained unclear. Using equilibrium dialysis, we identified two nucleotide-binding sites with high and low affinity for alpha,beta-methylene guanosine 5'-triphosphate (GMP-CPP). In contrast, 2'-dADP occupied both sites with equivalent affinities. Adenosine-5'-beta,gamma-imido triphosphate (AMP-PNP), which competitively inhibited the cyclase reaction, bound solely to the high affinity site, indicating the role of this site as the catalytic site. The function of the low affinity site was examined using allosteric activators YC-1 and BAY 41-2272. YC-1 significantly reduced the affinity of 2'-dADP, probably by competing for the same site as 2'-dADP. BAY 41-2272 totally inhibited the specific binding of one molecule of 2'-dADP as well as GMP-CPP. This suggests that the activators compete with these nucleotides for the low affinity site. Infrared and EPR analyses of the enzymic CO- and NO-hemes also supported the suggested role of the low affinity site as a target for the activators. Our results imply that the low affinity site is the pseudosymmetric site, which binds YC-1 or BAY 41-2272.  相似文献   

5.
In embryonic skeletal muscle, a large amount of non-polymerized actin exists in the cytoplasm (Shimizu and Obinata [1986] J. Biochem. 99, 751-759). A 19-kDa protein (called 19K protein) which binds to G-actin was purified by sequential chromatography on DNase I-agarose, hydroxylapatite, SP-Sephadex, and Sephadex G-75, from the sarcoplasmic fraction of embryonic chicken skeletal muscle. This protein decreased the extent of actin polymerization at a steady state and increased the monomeric actin in a concentration-dependent fashion; it also caused quick depolymerization of F-actin, as determined by spectrophotometry at 237 nm, viscometry, DNase I inhibition assay, and electron microscopy. The molar ratio of 19K protein and actin interacting with each other was estimated to be 1:1. From these results, 19K protein was regarded as being actin depolymerizing protein. The amount of 19K protein in muscle decreased during development. The inhibitory action of 19K protein was removed by myosin or heavy meromyosin, and actin filaments were formed on the surface of myosin filaments when myosin filaments were added to a mixture of actin and 19K protein in a physiological salt solution. We propose that actin assembly is dually controlled in the developing muscle by the inhibitor(s) and an accelerator (myosin); this mechanism may enable the ordered assembly of actin and myosin in the early phase of myofibrillogenesis.  相似文献   

6.
Receptors for galanin are identified and characterized in rat brain membranes. Interaction of [125I]-galanin with its receptors is saturable, time, pH, and ionic strength-dependent. It is reversible and highly peptide specific. Scatchard analysis of binding data reveals the existence of one single class of high affinity binding sites with a KD of 0.9 nM and a capacity of 101 fmoles/mg membranes protein. Chemical cross-linking of [125I]-galanin to its brain receptor followed by SDS-PAGE analysis leads to the identification of one major protein of 56 kD corresponding to the galanin-receptor complex. Our findings provide the first biochemical characterization of galanin receptors in the central nervous system supporting a role for galanin in the control of brain functions.  相似文献   

7.
ApoB mRNA editing involves site-specific deamination of cytidine 6666 producing an in-frame translation stop codon. Editing minimally requires APOBEC-1 and APOBEC-1 complementation factor (ACF). Metabolic stimulation of apoB mRNA editing in hepatocytes is associated with serine phosphorylation of ACF localized to editing competent, nuclear 27S editosomes. We demonstrate that activation of protein kinase C (PKC) stimulated editing and enhanced ACF phosphorylation in rat primary hepatocytes. Conversely, activation of protein kinase A (PKA) had no effect on editing. Recombinant PKC efficiently phosphorylated purified ACF64 protein in vitro, whereas PKA did not. Mutagenesis of predicted PKC phosphorylation sites S154 and S368 to alanine inhibited ethanol-stimulated induction of editing suggesting that these sites function in the metabolic regulation of editing. Consistent with this interpretation, substitution of S154 and S368 with aspartic acid stimulated editing to levels comparable to ethanol treatment in control McArdle RH7777 cells. These data suggest that phosphorylation of ACF by PKC may be a key regulatory mechanism of apoB mRNA editing in rat hepatocytes.  相似文献   

8.
Calcium-sensitive forms of adenylyl cyclase (AC) were revealed in most vertebrates and invertebrates and also in some unicellular organisms, in particular ciliates. We have shown for the first time that calcium cations influence the AC activity of ciliate Tetrahymena pyriformis. These cations at the concentrations of 0.2-20 microM stimulated the enzyme activity, and maximum of catalytic effect was observed at 2 microM Ca2+. Calcium cations at a concentrations of 100 microM or higher inhibited the AC activity. Calmodulin antagonists W-5 and W-7 at the concentrations of 20-100 microM inhibited the catalytic effect induced by 5 microM Ca2+ and blocked the effect at higher concentrations of Ca2+. Chloropromazine, another calmodulin antagonist, reduced Ca2+-stimulated AC activity only at the concentrations of 200-1000 microM. AC stimulating effects of serotonin, EGF and cAMP increased in the presence of 5 microM Ca2+. AC stimulating effects of EGF, cAMP and insulin decreased in the presence of 100 microM Ca2+, and AC stimulating effect of cAMP decreased also in the presence of calmodulin antagonists (1 mM). At the same time, stimulating effect of D-glucose in the presence of Ca2+ and calmodulin antagonists did not change essentially. The data obtained speak in favor of the presence of calcium-sensitive forms of AC in ciliate T. pyriformis which mediate enzyme stimulation by EGF, cAMP, insulin, and serotonin.  相似文献   

9.
gamma-Tubulin is essential to microtubule organization in eukaryotic cells. It is believed that gamma-tubulin interacts with tubulin to accomplish its cellular functions. However, such an interaction has been difficult to demonstrate and to characterize at the molecular level. gamma-Tubulin is a poorly soluble protein, not amenable to biochemical studies in a purified form as yet. Therefore basic questions concerning the existence and properties of tubulin binding sites on gamma-tubulin have been difficult to address. Here we have performed a systematic search for tubulin binding sites on gamma-tubulin using the SPOT peptide technique. We find a specific interaction of tubulin with six distinct domains on gamma-tubulin. These domains are clustered in the central part of the gamma-tubulin primary amino acid sequence. Synthetic peptides corresponding to the tubulin binding domains of gamma-tubulin bind with nanomolar K(d)s to tubulin dimers. These peptides do not interfere measurably with microtubule assembly in vitro and associate with microtubules along the polymer length. On the tertiary structure, the gamma-tubulin peptides cluster to surface regions on both sides of the molecule. Using SPOT analysis, we also find peptides interacting with gamma-tubulin in both the alpha- and beta-tubulin subunits. The tubulin peptides cluster to surface regions on both sides of the alpha- and beta- subunits. These data establish gamma-tubulin as a tubulin ligand with unique tubulin-binding properties and suggests that gamma-tubulin and tubulin dimers associate through lateral interactions.  相似文献   

10.
A cDNA clone, LMP131A, which is preferentially expressed in mature anther was isolated from a lily cDNA library. Northern blot analysis and plaque hybridization expriments showed that the LMP131A mRNA is present at ca. 0.3% of the mRNA in mature pollen and is not detectable in carpel, petal, floral bud, leaf, or root. The clone contains an open reading frame of 139 amino acid residues which shows greater than 40% sequence identity in a 91 amino acid overlap to animal actin-depolymerizing factors (ADF), cofilin and destrin. The sequences at and near the actin-binding site are most conserved. Using the lily clone as a probe, a cDNA clone, BMP1, was isolated from a mature anther library of Brassica napus. The expression pattern of the BMP1 clone was the same as that of the lily clone. The Brassica anther-preferential clone contains an open reading frame which is 79% identical to the lily LMP131A protein. Southern blot analysis showed that there are one or a few copies of the putative ADF genes in B. napus and Arabidopsis thaliana.  相似文献   

11.
The aim of this study was to analyze the function and expression of tachykinins, tachykinin receptors, and neprilysin (NEP) in the mouse uterus. A previous study showed that the uterotonic effects of substance P (SP), neurokinin A (NKA), and neurokinin B (NKB) in estrogen-treated mice were mainly mediated by the tachykinin NK1 receptor. In the present work, further contractility studies were undertaken to determine the nature of the receptors mediating responses to tachykinins in uteri of late pregnant mice. Endpoint and real-time quantitative RT-PCR were used to analyze the expression of the genes that encode the tachykinins SP/NKA, NKB, and hemokinin-1 (HK-1) (Tac1, Tac2, and Tac4); and the genes that encode tachykinin NK1 (Tacr1), NK2 (Tacr2), and NK3 (Tacr3) receptors in uteri from pregnant and nonpregnant mice. The data show that the mRNAs of tachykinins (particularly NKB and HK-1), tachykinin receptors, and NEP are locally expressed in the mouse uterus, and their expression changes during the estrous cycle and during pregnancy. The tachykinin NK1 receptor is the predominant tachykinin receptor in the nonpregnant and early pregnant mouse and may mediate tachykinin-induced uterine contractions in the nonpregnant mouse. The tachykinin NK2 receptor is predominant in the late pregnant mouse and is the main receptor mediating uterotonic responses to tachykinins at late pregnancy. The tachykinin NK3 receptor is expressed in considerable amounts only in uteri from nonpregnant diestrous animals, and its physiological significance remains to be clarified.  相似文献   

12.
13.
14.
Twinfilin is an evolutionarily conserved actin monomer-binding protein that regulates cytoskeletal dynamics in organisms from yeast to mammals. It is composed of two actin-depolymerization factor homology (ADF-H) domains that show approximately 20% sequence identity to ADF/cofilin proteins. In contrast to ADF/cofilins, which bind both G-actin and F-actin and promote filament depolymerization, twinfilin interacts only with G-actin. To elucidate the molecular mechanisms of twinfilin-actin monomer interaction, we determined the crystal structure of the N-terminal ADF-H domain of twinfilin and mapped its actin-binding site by site-directed mutagenesis. This domain has similar overall structure to ADF/cofilins, and the regions important for actin monomer binding in ADF/cofilins are especially well conserved in twinfilin. Mutagenesis studies show that the N-terminal ADF-H domain of twinfilin and ADF/cofilins also interact with actin monomers through similar interfaces, although the binding surface is slightly extended in twinfilin. In contrast, the regions important for actin-filament interactions in ADF/cofilins are structurally different in twinfilin. This explains the differences in actin-interactions (monomer versus filament binding) between twinfilin and ADF/cofilins. Taken together, our data show that the ADF-H domain is a structurally conserved actin-binding motif and that relatively small structural differences at the actin interfaces of this domain are responsible for the functional variation between the different classes of ADF-H domain proteins.  相似文献   

15.
Abstract. The distribution of the mRNA encoding for villin, the major actin-binding protein of intestinal brush border, was studied during the differentiation of mouse intestinal epithelial cells and compared to the distribution of the protein. In situ hybridization using a cRNA clone specific for villin indicated that the distribution of the mRNA did not fully parallel that of the protein, although the overall labeling pattern for mRNA and protein along the crypt-villus axis was similar. While villin was present in equal amounts in all cells along the villi, villin-specific mRNA was mainly accumulated in the cells at the villus base, the area of the epithelium where terminal differentiation takes place and where the brush border is formed.  相似文献   

16.
Serous cells secreteCl and HCO3 and play an importantrole in airway function. Recent studies suggest that aCl/HCO3 anion exchanger (AE) maycontribute to Cl secretion by airway epithelial cells.However, the molecular identity, the cellular location, and thecontribution of AEs to Cl secretion in serous epithelialcells in tracheal submucosal glands are unknown. The goal of thepresent study was to determine the molecular identity, the cellularlocation, and the role of AEs in the function of serous epithelialcells. To this end, Calu-3 cells, a human airway cell line with aserous-cell phenotype, were studied by RT-PCR, immunoblot, andelectrophysiological analysis to examine the role of AEs inCl secretion. In addition, the subcellular location of AEproteins was examined by immunofluorescence microscopy. Calu-3 cellsexpressed mRNA and protein for AE2 as determined by RT-PCR and Westernblot analysis, respectively. Immunofluorescence microscopy identified AE2 in the basolateral membrane of Calu-3 cells in culture and rattracheal serous cells in situ. InCl/HCO3/Na+-containingmedia, the 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate(CPT-cAMP)-stimulated short-circuit anion current (Isc) was reduced by basolateral but not byapical application of 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid(50 µM) and 4,4'-dinitrostilbene-2,2'-disulfonic acid [DNDS (500 µM)], inhibitors of AEs. In the absence of Na+ in thebath solutions, to eliminate the contributions of the Na+/HCO3 andNa+/K+/2Cl cotransporters toIsc, CPT-cAMP stimulated a small DNDS-sensitive Isc. Taken together with previous studies, theseobservations suggest that a small component of cAMP-stimulatedIsc across serous cells may be referable toCl secretion and that uptake of Cl acrossthe basolateral membrane may be mediated by AE2.

  相似文献   

17.
We investigated the function and expression of voltage-gated Na(+) channels (VGSC) in the uteri of nonpregnant rats using organ bath techniques, intracellular [Ca(2+)] fluorescence measurements, and RT-PCR. In longitudinally arranged whole-tissue uterine strips, veratridine, a VGSC activator, caused the rapid appearance of phasic contractions of irregular frequency and amplitude. After 50-60 min in the continuous presence of veratridine, rhythmic contractions of very regular frequency and slightly increasing amplitude occurred and were sustained for up to 12 h. Both the early and late components of the contractile response to veratridine were inhibited in a concentration-dependent manner by tetrodotoxin (TTX). In small strips dissected from the uterine longitudinal smooth muscle layer and loaded with Fura-2, veratridine also caused rhythmic contractions, accompanied by transient increases in [Ca(2+)](i), which were abolished by treatment with 0.1 microM TTX. Using end-point and real-time quantitative RT-PCR, we detected the presence of the VGSC alpha subunits Scn2a1, Scn3a, Scn5a, and Scn8a in the cDNA from longitudinal muscle. The mRNAs of the auxiliary beta subunits Scbn1b, Scbn2b, Scbn4b, and traces of Scn3b were also present. These data show for the first time that Scn2a1, Scn3a, Scn5a, and Scn8a, as well as all VGSC beta subunits are expressed in the longitudinal smooth muscle layer of the rat myometrium. In addition, our data show that TTX-sensitive VGSC are able to mediate phasic contractions maintained over long periods of time in the uteri of nonpregnant rats.  相似文献   

18.
LeCPK2 (GenBank GQ205414), a versatile calcium-dependent protein kinase (CDPK or CPK) gene was isolated from tomato in our previous study. In this study, the biochemical properties of LeCPK2 were further investigated. To examine the role of the C-terminal calmodulin-like domain (CLD) of LeCPK2 with respect to Ca2+ activation, the kinase activities of recombinant full-length and truncated LeCPK2 were measured by Kinase-Glo Luminescent kinase assay (Promega). The results showed that LeCPK2 activity was Ca(2+)-dependent and the C-terminal CLD of 161 residues was essential for the activation of LeCPK2. The activity of LeCPK2 was sharply stimulated by Ca2+ with K0.5 (concentration of Ca2+ for half-maximal activity) of 48.8 and 45.5 nM with substrate histone IIIs and syntide 2, respectively. The optimal concentration of Mg2+ for LeCPK2 activity was 20 and 10 mM for substrate histone IIIs and syntide 2, respectively. The K(m) value of LeCPK2 towards histone IIIs and syntide 2 was 44.9 microg/ml and 89.52 microM, respectively. The determination of biochemical properties of LeCPK2 would provide some clues on how its activity was regulated in vivo.  相似文献   

19.
20.
In vitro, the infection of human B-cells with the lymphotropic gammaherpesvirus Epstein-Barr virus (EBV) induces formation of permanently growing lymphoblastoid cell lines (LCL). In a spontaneously outgrown LCL (cell line CSIII), we detected nucleotide sequence variations of the EBV nuclear antigen 1 (EBNA1) RNA that was different from the reference sequence of EBNA1 in the prototypic EBV strain B95-8. In the present study, we molecularly and functionally characterized this virus isolate in comparison to LCL with the prototypic nucleotide sequence. Although we detected high functional similarity between CSIII and the other LCL, our data suggest that the lytic cycle might be ineffective in the CSIII LCL. DNA microarray analysis indicated that RNA binding motif, single stranded interacting protein 1 (RBMS1), which is typically expressed in latency III of EBV to prevent the lytic cycle, was the most overexpressed gene in CSIII LCL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号