首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Time- and dose-dependent patterns of depletion and regeneration of hemopoietic progenitor cells in mouse femora and spleens following treatment with the antileukemic agent Myleran (Busulphan, MY) were studied using the murine spleen colony system and the agar gel in vitro colony system. MY was found to depress granulopoiesis selectively, as manifested by the development of marked prolonged neutropenia, hypoplasia of the bone marrow and (to a lesser degree) of the spleen, reduction of the incidence of multipotential hemopoietic progenitor cells (CFU-S) and of granulocytic progenitor cells (CFU-C) in both femora and spleens, and impairment of the capacity of CFU-S from either tissue to generate granulocytic colonies in the spleens of irradiated hosts. The severity and duration was greatest at high dose levels of MY (800 microgram). The action of MY on CFU-S was more pronounced than that on CFU-C, suggesting that MY is a cycle-independent agent. Repopulation of the CFU-C pool preceded that of the CFU-S pool. Development of neutropenia and maximal marrow hypoplasia followed the onset of depression of CFU-S and CFU-C incidence, while recovery of normal nucleated cellularity in the blood, femur and spleen preceded repopulation of the CFU-S and CFU-C pools. MY treatment resulted in transitory stimulation of colony stimulating factor (CSF) generation by the femur but had no effect on serum CSF levels. The peak of femoral CSF generation coincided with the nadir of CFU-C depression. These findings indicated that the prolonged neutropenia following MY treatment was secondary to depletion of the progenitor cell pools, that during recovery granulopoietic repopulation took precedence over self-maintenance of the hemopoietic progenitor cell pools, and that increased generation of CSF may play a role in the early phase of granulopoietic recovery.  相似文献   

2.
Time- and dose-dependent patterns of depletion and regeneration of hemopoietic progenitor cells in mouse femora and spleens following treatment with the antileukemic agent Myleran (Busulphan, MY) were studied using the murine spleen colony system and the agar gel in vitro colony system. MY was found to depress granulopoiesis selectively, as manifested by the development of marked prolonged neutropenia, hypoplasia of the bone marrow and (to a lesser degree) of the spleen, reduction of the incidence of multipotential hemopoietic progenitor cells (CFU-S) and of granulocytic progenitor cells (CFU-C) in both femora and spleens, and impairment of the capacity of CFU-S from either tissue to generate granulocytic colonies in the spleens of irradiated hosts. the severity and duration was greatest at high dose levels of MY (800 μ). the action of MY on CFU-S was more pronounced than that on CFU-C, suggesting that MY is a cycle-independent agent. Repopulation of the CFU-C pool preceded that of the CFU-S pool. Development of neutropenia and maximal marrow hypoplasia followed the onset of depression of CFU-S and CFU-C incidence, while recovery of normal nucleated cellularity in the blood, femur and spleen preceded repopulation of the CFU-S and CFU-C pools. MY treatment resulted in transitory stimulation of colony stimulating factor (CSF) generation by the femur but had no effect on serum CSF levels. the peak of femoral CSF generation coincided with the nadir of CFU-C depression. These findings indicated that the prolonged neutropenia following MY treatment was secondary to depletion of the progenitor cell pools, that during recovery granulopoietic repopulation took precedence over self-maintenance of the hemopoietic progenitor cell pools, and that increased generation of CSF may play a role in the early phase of granulopoietic recovery.  相似文献   

3.
Migration of hemopoietic stem cells via the blood to sites of stem cell need is a principle that becomes established during the embryonic development of hemopoiesis and can be observed in the adult whenever bone marrow transplantations are being performed. The regular presence of stem cells in the peripheral blood lends itself to the study of their collection, storage, and use for transfusion purposes in cases of bone marrow failure. Both in dog and in man, granulocyte-macrophage progenitor cells (CFU-C) can be collected by leukapheresis from the blood in large quantities, particularly if the yield is increased by the administration of mobilizing agents such as dextran sulfate, and appear to be an indicator for the presence of stem cells. For collection and storage, a closed plastic bag system has been developed that allows the safe handling of the cells. The loss of CFU-C from freezing and thawing with DMSO as a cryoprotective agent is only 10%-20%. If frozen and thawed mononuclear leukocytes are transfused into 1200 rad whole-body X-irradiated autologous or allogeneic recipient dogs, a hemopoietic take is observed when 0.2 X 10(5) CFU-C are present among the mononuclear leukocytes (MNC). Graft-versus-host disease can be avoided in the allogeneic situation when a purified CFU-C rich cell fraction is being transfused. In man collection and storage of MNC including CFU-C is feasible and may eventually become a therapeutic tool.  相似文献   

4.
We have studied the pattern of CFU-C disappearance from the peripheral blood of normal and total-body-irradiated dogs given cryopreserved cell suspensions from bone marrow, foetal liver and peripheal blood containing known numbers of CFU-C under an autologous and allogeneic donor-recipient relationship. Only a small fraction of infused donor CFU-C could be detected in the circulation of recipients at the end of the infusion. There was an exponential fall in circulating CFU-C, indicating random loss of infused CFU-C. The CFU-C disappearance pattern in each experimental group was reproducible. The mean half life of autologous blood derived CFU-C in the circulating blood of normal recipients was 8.2 min and the mean blood CFU-C turnover was calculated to be 9.3 X 10(5) CFU-C/kg per day.  相似文献   

5.
W Schreml  H P Lohrmann 《Blut》1979,38(4):331-336
The effect of Levamisole on the human granulopoiesis was studied in patients randomized to receive, in addition to adjuvant chemotherapy for primary breast cancer, either no other treatment or additional unspecific immune therapy with Levamisole. The reaction of granulopoiesis to the cytostatic drugs, as characterized by changes of peripheral blood polymorphonuclear neutrophils (PMN), functional bone marrow granulocyte reserve, serial bone marrow cytology, and granulopoietic stem cells (CFU-C) in marrow and blood, was not affected by administration of Levamisole. The data support the concept that Levamisole has no direct effect on human bone marrow granulopoiesis, but that an allergic mechanism is involved in the pathogenesis of Levamisole-induced agranulocytosis. The expectation that Levamisole exerts a beneficial effect by stimulation of the granulopoiesis, as previously suggested for BCG and Corynebacterium parvum, could not be substantiated in our studies.  相似文献   

6.
Lymphocytes that inhibit hematopoiesis may have a pathogenic role in some forms of bone marrow failure, and lymphocyte-mediated suppression may also be important in the normal regulation of bone marrow function. We have investigated the mechanism of in vitro suppression of hematopoiesis by T cells by using the methylcellulose colony culture system. Total peripheral blood T cells and separated subpopulations of helper (OKT4+) and suppressor (OKT8+) cells that have been stimulated by exposure to lectin suppress autologous colony formation by bone marrow myeloid (CFU-C) and erythroid (BFU-E) progenitor cells. Medium conditioned by these cells is also inhibitory, indicating that the suppressor activity is a soluble factor. A strong correlation existed for the concentration of interferon and the degree of hematopoietic suppressor activity in these supernatants; both activities peaked at days 3 to 5 of incubation and had sharply declined by day 7. Interferon production was enhanced by exposure of lymphocytes to sheep red blood cells during the rosetting procedure. Specific antiserum and a monoclonal antibody directed against gamma-(immune) interferon abrogated the inhibitory activity for hematopoiesis produced by lectin-stimulated T cells; an antiserum to alpha-interferon was generally much less effective in neutralizing activity. We infer from these results that gamma-interferon is the mediator of hematopoietic suppression generated by lectin-treated T-cells.  相似文献   

7.
The aim of this prospective study was to define the flow cytometric characteristics of simultaneously investigated bone marrow and peripheral blood plasma cells antigens expression in 36 plasma cell leukemia (PCL) patients. The immunophenotypic profile of plasma cells was determined with a panel of monoclonal antibodies. The antigen expression intensity was calculated as relative fluorescence intensity (RFI). Bone marrow plasma cells showed expression of particular antigens in the following proportion of cases: CD49d 100%, CD29 94%, CD54 93%, CD44 83%, CD56 60%, CD18 26%, CD11b 29%, CD11a 19%, CD117 27%, CD71 30%, CD126 100% and CD19 0%, while the expression of those antigens on peripheral blood plasma cells was present in the following percentage of patients: CD49d 100%, CD29 96%, CD54 93%, CD44 95%, CD56 56%, CD18 50%, CD11b 53%, CD11a 29%, CD117 26%, CD71 28%, CD126 100% and CD19 0%. The expression of CD54 was significantly higher than that of adhesion molecules belonging to the integrin b2 family: CD11a, CD18 and CD11b, on both bone marrow and peripheral blood cells (p < 0.01). Expression of CD18, CD11a and CD11b was differential between two cell compartments: lower on bone marrow and higher on peripheral blood cells. We found that plasma cells in the bone marrow of patients with plasma cell leukaemia showed significantly greater granularity and size than those in the peripheral blood (p = 0.0001 and p = 0.04, respectively). However, no differences in cell size or granularity were revealed between bone marrow plasma cells from patients with PCL and multiple myeloma. In conclusion, impaired expression of adhesion molecules such as CD11a/CD18 (LFA-1) or CD56 may explain hematogenic dissemination characterizing PCL. The following pattern of adhesion molecule expression according to the proportion of plasma cells expressing a given antigen in peripheral blood and bone marrow and arranged in diminishing order may be established: CD49d > CD44 > CD54 > CD29 > CD56 > CD18 > CD11b > CD11a. Immuno-phenotyping of plasma cells in PCL, as in multiple myeloma, might be useful in detecting minimal residual disease in cases with aberrant antigen expression and for selecting therapeutic agents towards specific membrane targets.  相似文献   

8.
We have developed a technique for the cryopreservation of large volumes of human bone marrow, which reduces cell losses due to clumping and release of lysosomal enzymes from mature granulocytes. Mononuclear cells were separated from whole bone marrow by a large-scale Ficoll-Hypaque procedure. The agar colony assay for myeloid stem cells (CFU-C) was used to assess each step of the isolation and cryopreservation procedure. Conditions of varied cell and cryoprotectant concentrations and freezing and thawing rates were compared to obtain optimal recovery of mononuclear cells and CFU-C. This technique has been used to store bone marrow from 45 patients with hematologic and non-hematologic neoplasms. Up to 750 ml of marrow was obtained from each patient and separated by step-gradient centrifugation, and the cell fraction containing myeloid stem cells was cryopreserved. The mean recoveries following separation, cryopreservation, and thawing for 18 marrow storages from patients with hematological neoplasms were 8.8 ± 2.9% for mononuclear cells and 47.8 ± 20.8% for CFU-C. In comparison, values for 27 marrows from patients with non-hematological neoplasms were 14.5 ± 5.5% for cells and 57.7 ± 13.7% for CFU-C.  相似文献   

9.
《Cytotherapy》2021,23(9):793-798
Background aimsHuman myeloperoxidase has been shown to be overexpressed in many types of leukemia, such as chronic myeloid leukemia, acute myeloid leukemia and myelodysplastic syndrome. The authors identified two myeloperoxidase-derived HLA-A2-restricted peptides, MY4 and MY8, as novel leukemia-associated antigens.MethodsEx vivo-elicited MY4- and MY8-specific cytotoxic T lymphocytes were generated, and tested for leukemia cell lysis in vitro and in NOD/SCID AML xenograft model.ResultsThese MY4- and MY8-specific cytotoxic T lymphocytes killed leukemic blasts while sparing healthy donor bone marrow cells. In addition, co-injection of MY4- and MY8-specific cytotoxic T lymphocytes into nonobese diabetic/severe combined immunodeficiency mice with acute myeloid leukemia drastically reduced tumor burden in vivo. The authors also found that MY4- and MY8-specific T cells could be detected in the peripheral blood mononuclear cells of allogeneic stem cell transplant recipients.ConclusionsThese antigen-specific T cells were significantly increased in blood samples from patients compared with healthy donors, suggesting that both MY4 and MY8 are immunogenic and that MY4- and MY8-specific cytotoxic T lymphocytes may play a role in reducing leukemia in vivo. Thus, the discovery of MY4 and MY8 as novel leukemia-associated antigens paves the way for targeting these antigens in immunotherapy against myeloid leukemia.  相似文献   

10.
Lymphohemopoietic precursor cells in rat bone marrow are members of a subset of lymphocyte-like cells that bears the bone marrow lymphocyte antigen (BMLA) and that lacks antigens present on peripheral B and T cells. This was demonstrated by two experimental approaches. In the first, bone marrow cells with the potential to form hemopoietic colonies in spleen (CFU-S), to repopulate lumphoid tissues and blood, and to rescue lethally irradiated recipients were enriched approximately 10-fold by a fractionation procedure designed to isolate a "null" population of bone marro lymphocytes. In the second approach, the lymphohemopoietic precursor cell activity in bone marrow was completely abrogated by opsonization with rabbit antiserum (ALSBM) raised against this "null" population of bone marrow cells. Precursor cell activity was not affected by treatment with antiserum to T and B cells. Quantitative cross-absorption studies showed that the antigen detected by ALSBM on lymphohemopoietic precursor cells had the same cellular distribution as did the previously described bone marrow lymphocyte antigen. It is likely that this antigen is present both on pluripotent stem cells and on committed progenitors of the myelocytic, erythrocytic and lymphocytic series.  相似文献   

11.
Based on the presence or absence of erythrocyte receptors(E) a T cell marker, acute lymphocytic leukemia (ALL), can be divided into E+ALL and E-ALL. We studied cell surface antigens on blasts from 12 children with untreated ALL: eight with E-ALL and four with E+ALL. Heterologous antisera were raised against thymus cells, E+ and E-ALL blasts, appropriately absorbed and tested by immunofluorescence and a radiolabeled antibody assay with normal and leukemic lymphoid cells. By both methods, anti-thymus and anti-E+ALL sera reacted with human thymocytes. Specific binding of anti-E+ALL serum to T antigens was indicated by the fact that a single absorption with thymocytes abolished its binding to allogenic thymocytes, and the reactivity of anti-E+ALL serum with thymus, blood and bone marrow lymphocytes was similar to that of anti-thymus serum. After exhaustive absorption with blood leukocytes, anti-E+ALL and E-ALL sera were negative against normal lymphocytes and bone marrow cells from children with ALL in remission. Anti-thymus and anti-E+ALL sera reacted with blasts from patients with E+ALL, but not with E-ALL. In contrast, anti-E+ALL serum reacted with 40 to 96% of blasts from all children with E-ALL, whereas of the four patients with E+ALL, two were negative and two had the lowest percentage of immunofluorescent cells (10 to 22%). These results were confirmed with the radiolabeled antibody assay. Patients with active E-ALL had cells bearing E-ALL antigen(s) in the peripheral blood and bone marrow, but the number of immunofluorescent cells was lower in blood. Cells reactive with anti-E-ALL serum did not react with thymus cells, blood lymphocytes, remission bone marrow cells, Raji cells, PWM and PHA-induced blasts and CLL cells bearing mIg (uk). These data suggest that the antigen detected on E-ALL blasts by anti-E-ALL serum is neither a HLA-related nor a cell differentiation antigen. Thus, by using antiserum to E+ALL blasts, we have confirmed the presence of a T cell-specific antigen(s) on E+ALL cells. This antiserum did not recognize other leukemia-associated antigens common to E+ and E-ALL. We have also demonstrated an antigen(s) which is regularly expressed on E-ALL blasts and is either not detectable or is present in a lower proportion of E+ALL blasts.  相似文献   

12.
We studied the effects of alloantigen-stimulated lymphocytes in the regulation of hematopoiesis. Alloantigen-stimulated lymphocytes were harvested on days 2 to 3, days 6 to 7, or days 9 to 10 of MLC and were tested for their effects on granulocyte/macrophage progenitor cells (CFU-C). Dose-dependent suppression of CFU-C was observed when alloantigen-stimulated lymphocytes from days 6 to 7 and days 9 to 10 MLC were added to the cultures of autologous or allogeneic bone marrow cells for CFU-C assays. Suppressive activity was detected in the T cell fraction but not in the non-T cell fraction. For further characterization of these CFU-C/suppressor cells, alloantigen-stimulated lymphocytes were treated with radiation (2000 rad) or with monoclonal antibodies against T cell subsets and complement (C) before culture. Suppressive activity was completely abolished by treatment with OKT8 or OKIa1 antibodies and C whereas suppression was retained after radiation treatment. These observations suggest that CFU-C/suppressor cells can be induced by alloantigen stimulation in MLC and that they are radioresistant OKT8+ and Ia+ T cells.  相似文献   

13.
Spleen and bone marrow cells from normal and leukaemic RFM mice have been assayed for numbers of colony forming cells in soft agar (CFU-C). The fluctuations in CFU-C yield observed during the development of myeloid leukaemia are similar to the results from in vitro experiments set up to test a model, and are not incompatible with the idea that interaction between normal and leukaemic cells may modify the yield of CFU-C under the present conditions of culture. Colonies grown from leukaemic spleen and bone marrow cells appear to be derived from the residual population of normal haemopoietic cells within the leukaemic mouse.  相似文献   

14.
B Fang  M Zborowski  L R Moore 《Cytometry》1999,36(4):294-302
BACKGROUND: The presence of malignant breast cancer cells in bone marrow or peripheral blood is a prognostic factor. We tested the capacity of a novel magnetic cell analyzer to detect rare cancer cells in mixtures with human peripheral leukocytes. METHODS: Human peripheral leukocytes were spiked with cells of the MCF-7 line, and the cell mixture was labeled with anti-epithelial membrane antigen antibody and a magnetic colloid. The MCF-7 cells were selectively captured on a magnetic deposition substrate from the flowing leukocyte and MCF-7 cell mixture. RESULTS: The recovery of the MCF-7 cells from the original mixture ranged from 20% to 60%. The limit of detection of the MCF-7 cells was 10(-6) (n = 9). The morphology of the captured cancer cells was well preserved and comparable to that observed in cytospin smears. All deposited cells were located in a small area of 1.4 mm x 6 mm and could be quickly identified with an optical microscope following Wright's staining. CONCLUSIONS: This is a proof-of-principle study using a simplified model of rare cancer cells in a leukocyte mixture. The clinical relevance of the method will be tested in the future by extension to patient bone marrow samples and using antibody cocktails to increase specificity against the breast carcinoma cells.  相似文献   

15.
Two doses of 1 mg/g of hydroxyurea (HU), injected 7 hr apart into irradiated mice in which CFU-S were proliferating during marrow regeneration, killed about 90% of CFU-S. This same dose regime injected into normal female mice, with non-proliferating CFU-S killed 92 % of CFU-C, 99 % of ESC and only 30 % of CFU-S. One day after the treatment CFU-S had decreased to 50 % and remained at about this level for a further day then returned to normal values. In spleen the increase in CFU-S was delayed by a day and showed a marked overshoot. During the period that CFU-S were decreased in number they were actively proliferating. Marrow CFU-C recovered in an exponential manner with a doubling time of 16 hr. Spleen CFU-C recovered 1 day later than marrow and showed a pronounced overshoot. ESC recovered very rapidly with doubling time of 5 hr. The changes in 59Fe incorporation into RBC, and the peripheral blood picture, were a delayed reflection of the changes in ESC and CFU-C.  相似文献   

16.
A simple method is described by which the degree to which a bone marrow aspirate is diluted with peripheral blood, the admixture of peripheral blood leukocytes in the aspirate, and the true cellularity of bone marrow at the aspiration site can be estimated quantitatively. A highly significant correlation is shown to exist between the true bone marrow cellularity and the number of hemopoietic cells in the bone marrow aspirate. This correlation can be described by an exponential regression equation (r = 0.6997; p less than or equal to 0.001). The degree of bone marrow dilution with peripheral blood does not depend on the initial bone marrow cellularity and is devoid of diagnostic value. It fluctuates over a wide range (1.2- to 6.3-fold). The admixture of peripheral blood leukocytes has been found to be small (0.05%-9.7%) in most cases studied and much higher in those cases where the cellularity is low while the dilution is high.  相似文献   

17.
We phenotyped blood and bone marrow cells from a patient with acute Ph1+ acute leukemia longitudinally during the four months he received intensive chemotherapy. At presentation this case of biphenotypic acute leukemia had two immunologically different types of blast cells, one expressed CD10 (CALLA), CD13 (MY7) and CD33 (MY9) but lacked CD20 (B1), the other type expressed no CD10 or CD33. The phenotype, during AML induction therapy, changed to a more CD10+, CD20+ ALL one. ALL therapy based on these findings induced improvement in bone marrow function but the patient died of septicemia at day 134. The use of concomitant immunophenotyping (IP) and cell cycle analysis had shown proliferation advantage of the more lymphoid malignant cells. These results suggest that it is possible to induce lineage-associated changes in the phenotype of hybrid malignant cells and that these leukemias might be treated best according to longitudinal immunophenotyping of the blast cells.  相似文献   

18.
We separated 40 bone marrow samples by centrifugation on two density gradients, ficoll-metrizoate sodium (lymphoprep) and percoll. There is no difference between the two methods when expressing the colony forming cells (CFU-C) per 2.10(5) bone marrow cells plated. But the absolute number of recovered CFU-C is significantly greater with percoll than with ficoll metrizoate sodium.  相似文献   

19.
The effect of cooling rate on recovery of human and murine hemopoietic precursor cells was studied. In the presence of 10% Me2SO, a cooling rate of 7 °C/min from ?4 to ?30 °C was optimal for recovery of both human and murine precursor cells which give rise to colonies in diffusion chambers implanted in mice (CFU-DG). Cooling of human marrow at a rate between 3 and 7 °C/min resulted in the best CFU-C recovery, although no good correlation between the cooling rate and murine CFU-C recovery was demonstrated. These data suggest that recovery of the primitive hemopoietic precursor cells can be improved by changing the standard cryopreservation programs used presently. However, improved recovery of CFU-DG does not necessarily translate into faster reconstitution of hemopoiesis. No significant difference was observed in overall recovery of bone marrow cellularity in lethally irradiated mice following injection of untreated marrow and marrow cooled at a rate of 1 and 7 °C/min.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号