首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BNOT was created and regulated in 1977 and started its operation in 1978 according to the Decree No. 86/1977. By the Decree 248/005 is transformed in the National Institute of Donation and Transplantation of Cells, Tissues and Organs (Instituto Nacional de Donación y Trasplante de Células, Tejidos y órganos—INDT). The organisation has been operating within the State University Medical School and the Public Health Secretary and it is the governmental organisation responsible for the regulation, policy and management of donation and transplantation in Uruguay. By the Decree 160/2006 is responsible for human cells and tissues regulation too. The participation of the INDT in the IAEA program facilitated the introduction of the radiation sterilisation technique for the first time in the country. The radiation sterilisation of tissues processed by INDT (ex BNOT), was initially carried out in the 60 Cobalt Industrial Plant in the National Atomic Energy Commission of Argentina and now is carried out in INDT, using a Gamma Cell 220 Excel, which was provided by the IAEA through the national project URU/7/005. The results of the implementation of tissues, quality control and quality management system, are showed.  相似文献   

2.
In Malaysia, tissue banking activities began in Universiti Sains Malaysia (USM) Tissue Bank in early 1990s. Since then a few other bone banks have been set up in other government hospitals and institutions. However, these banks are not governed by the national authority. In addition there is no requirement set by the national regulatory authority on coding and traceability for donated human tissues for transplantation. Hence, USM Tissue Bank has taken the initiatives to adopt a system that enables the traceability of tissues between the donor, the processed tissue and the recipient based on other international standards for tissue banks. The traceability trail has been effective and the bank is certified compliance to the international standard ISO 9001:2008.  相似文献   

3.
Established in 2008, the National Cardiovascular Homograft Bank (NCHB) has been instrumental in creating an available supply of cardiovascular tissues for implantation in Singapore. This article introduces its collaboration with Singapore General Hospital Skin Bank Unit. The procedure of homograft recovery, processing, cryopreservation and quality assurance are presented. Since its establishment, the NCHB has followed the guidelines set by the Ministry of Health Singapore and the American Association of Tissue Banks. A total of 57 homografts had been recovered and 40 homografts were determined to be suitable for clinical use. The most significant reasons for non-clinical use are positive microbiological culture or unsuitable graft condition. Crucial findings prompted reviews and implementation of new procedures to improve the safety of homograft recipients. These include (1) a change in antibiotic decontamination regime from penicillin and streptomycin to amikacin and vancomycin after a review and (2) mandating histopathogical examination since the discovery of cardiac sarcoidosis in a previously undiagnosed donor. Further, the NCHB also routinely performs dengue virus screening, for donors suspected of dengue infection. Cultural factors which affect the donation rate are also briefly explored. By 2010, 31 homografts had been implanted into recipients with congenital or acquired heart valve conditions. More than half of these recipients were children. Post-operative outcomes had been encouraging, with no report of adverse events attributed to implanted homografts.  相似文献   

4.
5.
The banking of tissues such bone and skin began in India in the 1980s and 1990s. Although eye banking started in 1945 there was little progress in this field for the next five decades. As part of the IAEA/RCA program to use ionising radiation for the sterilisation of biological tissues in Asia and the Pacific Region, the Tata Memorial Hospital (TMH) in 1986 decided to set up a tissue bank in Mumbai funded by the Government of India. The TMH Tissue Bank became operational in January 1988, and stands as a pioneering effort in the country to provide safe, clinically useful and cost-effective human allografts for transplantation. It uses the IAEA International Standards on Tissue Banking. All the grafts are sterilised terminally by exposure to a dose of 25 kGy of gamma radiation, which has been validated as recommended by the IAEA Code of Practice for the Radiation Sterilisation of Tissues Allografts: Requirements for Validation and Routine Control. The TMH Tissue Bank is registered with the Maharashtra State Health Authorities, and in May 2004, it became India’s first Tissue Bank to receive ISO 9001:2000 certification of its Quality Management System. From 1989 to September 2007, the TMH Tissue Bank has supplied 11,369 allografts to 310 surgeons operating in 69 hospitals in Mumbai and 56 hospitals in other parts of India. These numbers have been limited by difficulties with the retrieval of tissues from deceased donors due to inadequate resources and tissue donation policies of hospitals. As the Government of India representative in the IAEA program, the TMH Tissue Bank has promoted and co-coordinated these activities in the country and the development of tissue banks using radiation sterilisation of tissue grafts. Towards this end it has been engaged in training personnel, drawing up project proposals, and supporting the establishment of a Tissue Retrieval Centre in Mumbai. Currently it networks with the Zonal Transplant Co-ordination Centre of the Government of Maharashtra, and the newly instituted National Deceased Donor Transplantation Network, which will work with the Government of India to set up rules and regulations for organ and tissue donation and transplantation.  相似文献   

6.
Tissue banking started in Mexico in 1948-1949, when two bone banks were established, one at the Infantile Hospital of Mexico and other at the Central Military Hospital. Mexico has benefited for the implementation of the IAEA program since through it has been able to settle down and to consolidate the Tissue Bank at the Instituto Nacional de Investigaciones Nucleares ININ (National Institute for Nuclear Research). This is the only bank in Latin America that has a Quality Management System in force, certified under ISO 9001:2000 since August 1, 2003. The first tissue processed was amnion. The main products of the BTR are amnion and pig skin. Both are biological tissues which their main use is as a wound dressing in patients with burns, scars, diabetic ulcers, epidermolysis bullosa, damaged ocular surface, etc. The General Health Law, published in 1984 and reformed in June 19, 2007, describes the procedure for the disposal of organs, tissues and human cadavers in its fourteenth title and in the Regulation for Sanitary Control. During the period 2001-2005, the ININ Tissue Bank produced 292 sterilised tissues (amnion, 86,668 cm2, and frozen pig skin, 164,220 cm2, at an estimated cost of 1,012,668 Mexican pesos. Until 2006, one hundred eighty five (185) patients have been treated with the use of sterilised tissues produced by the ININ Tissue Bank. The radiation source used for sterilisation of tissues is an industrial Cobalt-60 irradiator model JS-6500 AECL, which belongs to ININ. This equipment is located in other building, close to the BTR, in the Centro Nuclear de México “Dr. Nabor Carrillo Flores” (Nuclear Center of Mexico). Until 2006, six hospitals use in a routine way the sterilised tissues produced by the ININ Tissue Bank, for the treatment of burns originated by diverse agents like flame, electricity, liquids in boil, chemical reagents, as well as for the reconstruction of the ocular surface. Two of these hospitals treat patients of very low economic incomes, mainly needy individuals, who cannot afford to pay this type of treatments in other hospitals due to their high cost. The results obtained up to now are highly promising.  相似文献   

7.
In 1986, the National Nuclear Energy Agency (Batan) in Jakarta started the research and development for the setting up of a tissue bank (Batan Research Tissue Bank/BRTB) by preserving fresh amnion or fetal membranes by lyophilisation and then sterilising by gamma irradiation. During the period of 1990 and 2000, three more tissue banks were set up, i.e., Biomaterial Centre in Surabaya, Jamil Tissue Bank in Padang, and Sitanala Tissue Bank in Tangerang. In 1994, BRTB produced bone allografts. The banks established under the IAEA program concentrated its work on the production of amnion, bone and soft tissues allografts, as well as bone xenografts. These tissues (allografts and xenografts) were sterilised using gamma irradiation (about 90%) and the rest were sterilized by ETO and those products have been used in the treatment of patients at more than 50 hospitals in Indonesia. In 2004, those tissue banks produced 8,500 grafts and 5,000 of them were amnion grafts for eye treatment and wound dressing. All of those grafts were used for patients as well as for research. In 2006, the production increased to 9,000 grafts. Although the capacity of those banks can produce more grafts, we are facing problems on getting raw materials from suitable donors. To fulfill the demand of bone grafts we also produced bone xenografts. The impact of the IAEA program in tissue banking activities in Indonesia can be summarised as follows: to support the national program on importing substitutes for medical devices. The price of imported tissues are between US$ 50 and US$ 6,000 per graft. Local tissue bank can produce tissues with the same quality with the price for about 10–30% of the imported tissues.  相似文献   

8.
Transplantation has a long history in Iran. Cornea was the first tissue transplantation in 1935. The Central Eye Bank of Iran was established in 1991 and the Iranian Tissue Bank (ITB) in 1994. Now, there are also some private cell and tissue banks in the country, that produce different tissue grafts such as homograft heart valves, musculoskeletal tissues, soft tissues, cartilages, pericardium, amniotic membrane and some cell based products. There is not a separate legislation for tissue transplantation but the legal framework for tissue donation is based on the “Deceased or Brain dead patient organ transplantation” act (passed on April 6, 2000). For tissue banking there is no regulatory oversight by the national health authority. To increase the level of safety and considering the importance of effective traceability, each tissue bank has its own policy and terminology for coding and documentation without any correlation to others. In some cases tissue banks have implemented ISO based standards (i.e., ISO 9001) as a basic quality management system.  相似文献   

9.
The National University Hospital (NUH) Tissue Bank was established in October 1988. The National University of Singapore (NUS) was officially appointed by IAEA to be the IAEA/NUS Regional Training Centre (RTC) for RCA Member States for training of tissue bank operators on September 18, 1996. In the first five years since its establishment the National University Hospital Tissue Bank concentrated its work on the sterile procurement and production of deep frozen femoral heads and were used in patients for bone reconstruction. The cost of producing these tissues were about SGD$ 250 per femoral head although cost fees were initially charged at SGD$ 50 per femoral head. The most important activity carried out by Singapore within the IAEA was training. Between November 1997 and April 2007, a total of nine courses were conducted by RTC with a total of 180 tissue bank operators registered, 133 from Asia and the Pacific region (13 countries, including 2 from Iran), 14 from Africa (Zambia, Libya, Egypt, Algeria, and South Africa), 6 from Latin America (Brazil, Chile, Cuba, Peru, and Uruguay), 9 from Europe (Greece, Slovakia, Poland, and Ukraine), and 2 from Australia. The last batch (ninth batch) involved 20 students registered in April 2007 and will be due to sit for the terminal examination in April 2008.  相似文献   

10.

A project to establish an archive of Alaskan marine mammal tissues was conceived in 1987 to be a part of the National Biomonitoring Specimen Bank (NBSB). Protocols and field collection of marine mammals, long-term storage, and analysis are summarized in this paper. Instrumental neutron activation analysis has been used for an initial evaluation of trace element content in samples of northern fur seal (Callorhinus ursinus) from the Pribilof Islands. The findings agree with previously observed trace element levels in northern fur seals. The archived specimens can be used in future studies when comparisons of past and present pollution levels are needed.

  相似文献   

11.
Setting up a Tissue Bank in India: The Tata Memorial Hospital Experience   总被引:2,自引:2,他引:0  
In India, the procurement of tissues for transplantation is governed by the Transplantation of Human Organs Act, 1994. However, although this law exists, it is primarily applied to organ transplantation and rules and regulations that are specific to tissue banking have yet to be developed.The Tata Memorial Hospital (TMH) Tissue Bank was started in 1988 as part of an International Atomic Energy Agency (IAEA) programme to promote the use of ionising radiation for the sterilisation of biological tissues. It represents the Government of India within this project and was the first such facility in the country. It is registered with the Health Services Maharashtra State and provides lyophilised amnion, dura mater, skin and bone that have been terminally sterilised with exposure to 25 kGy of gamma radiation from a Cobalt 60 source. These are obtained either from cadavers or live donors.To date the TMH Tissue Bank has provided 6328 allografts for use as biological dressings or in various reconstructive procedures.The TMH Tissue Bank has helped initiate a Tissue Bank at the Defence Laboratory (DL), Jodhpur. At present these are the only two Banks in the country using radiation for terminal sterilisation of banked tissues.The availability of safe, clinically useful and cost effective grafts have resulted in changes in surgical treatment with a concomitant increase in demand for grafts and an interest in developing more tissue banks. The availability of donor tissue however, continues to be a major limitation.  相似文献   

12.
The Peterborough Hospital Human Tissue Bank (PHHTB) and National Blood Service Tissue Services (London and South East Zone) (NBSTS) operate within the U.K. National Health Service (NHS) and have a system in place to retrieve cadaveric tissues for commercial sector research. The collaboration meets the aims of PHHTB and NBSTS and is legal, ethical and safe. This paper presents the results of the first 20 successful retrievals referred from NBSTS to PHHTB. Cadaveric retrieval of tissue for research extends the options for donors and their relatives. The research option is particularly welcomed in cases where clinical retrieval for tissue transplantation is contraindicated. We believe the system is applicable to other centres.  相似文献   

13.
Tissue Banking in India: Gamma-Irradiated Allografts   总被引:4,自引:4,他引:0  
In India, the procurement of tissues for transplantation is governed by the Transplantation of Human Organs Act, 1994. Although this law exists, it is primarily applied to organ transplantation and rules and regulations that are specific to tissue banking which have yet to be developed. The Tata Memorial Hospital (TMH) Tissue Bank was started in 1988 as part of an International Atomic Energy Agency (IAEA) programme to promote the use of ionising radiation for the sterilisation of biological tissues. It represents the Government of India within this project and was the first facility in the country to use radiation for the sterilisation of allografts. It is registered with the Health Services Maharashtra State and provides freeze-dried, gamma irradiated amnion, dura mater, skin and bone. The tissues are obtained either from cadavers or live donors. To date the TMH Tissue Bank has provided 6328 allografts which have found use as biological dressings and in various reconstructive procedures. The TMH Tissue Bank has helped initiate a Tissue Bank at the Defence Laboratory (DL), Jodhpur. At present these are the only two Banks in the country using radiation for the terminal sterilisation of preserved tissues. The availability of safe, clinically useful and cost effective grafts has stimulated innovative approaches to surgery. There is an increased demand for banked tissues and a heightened interest in the development of tissue banks. Inadequate infrastructure for donor referral programmes and the lack of support for tissue transplant co-ordinators however, continue to limit the availability of donor tissue.  相似文献   

14.
The validity and intercomparability of data in research related to medical, environmental, and geochemical health problems is of utmost concern and requires specific consideration in the development of an analytical approach. The Environmental Protection Agency/National Bureau of Standards Pilot Environmental Specimen Bank Program provides a vehicle for developing the precise and accurate determination of trace constituents in human livers. This approach, when implemented, gives specific consideration to a valid relationship between the analytical result and the true value in the sample. This is accomplished by minimizing contamination of the sample and/or loss of constituents, and by assuring representative analytical test portions. The analysis of the liver specimens is performed under strict quality control. The applied analytical techniques (atomic absorption spectrometry, isotope dilution mass spectrometry, neutron activation analysis, and voltammetry) have been verified for accuracy through the analysis of Standard Reference Materials. In addition, several elements are determined using two or three of these independent techniques. The first year of the program provided results on 31 elements including Se and Pb in 36 human livers.  相似文献   

15.
The US Navy Tissue Bank: 50 Years on the Cutting Edge   总被引:1,自引:0,他引:1  
The US Navy Tissue Bank was established in 1949 by Dr. George Hyatt, an orthopaedic surgeon at the Naval Medical Center in Bethesda, Maryland. The Navy program was the first of its kind in the world and established many of the standards that are followed today. During the 1950s, the identification of appropriate donor criteria for tissue donation, the development of procurement and processing methods, the establishment of a graph registry and documentation and the clinical evaluation of a variety of tissues were pioneered at this facility. Cryopreservation, freeze-drying, irradiation sterilization of tissue, as well as immunological principles of tissue transplantation, were developed during the 50 years of research and development by Navy scientists. Organ preservation, cadaveric bone marrow recovery and immunosuppressive protocols were also developed at the Navy Tissue Bank. The Navy was also instrumental in the establishment of the National Marrow Donor Program and the American Association of Tissue Banks in the US.Although the Navy Tissue Bank has ceased activity after 50 years of excellence, it should be recognized as the first standard setter for the world community of tissue banks.  相似文献   

16.
许崇凤  段子渊 《遗传》2017,39(1):75-86
人类样品是生物医学研究必需的物质基础。B淋巴母细胞系(LCL)是利用Epstein-Barr(EB)病毒转化人的B细胞获得,制备简便,可以无限繁殖,是非常便捷的保存人类样品的形式。中华民族永生细胞库保藏有中国各个民族群体的LCL。目前,已经有详实的LCL的性质研究以及关于LCL的全基因组数据,因而, LCL已经广泛应用于遗传学、免疫学、药学基因组学、再生医学、癌症发生与免疫治疗、筛选制备全人单克隆中和抗体及EB病毒致病机理等研究领域。本文对LCL的特性以及LCL在上述研究领域中的应用进行了综述,最后对中华民族永生细胞库的保藏内容做了简单介绍,以促进广大科研人员进一步了解该细胞库的科研价值,充分发挥该库保藏资源在基础科学、生物医学研究中的科技支撑作用。  相似文献   

17.
The Protein Data Bank is a computer-based archival file for macromolecular structures. The Bank stores in a uniform format atomic co-ordinates and partial bond connectivities, as derived from crystallographic studies. Text included in each data entry gives pertinent information for the structure at hand (e.g. species from which the molecule has been obtained, resolution of diffraction data, literature citations and specifications of secondary structure). In addition to atomic co-ordinates and connectivities, the Protein Data Bank stores structure factors and phases, although these latter data are not placed in any uniform format. Input of data to the Bank and general maintenance functions are carried out at Brookhaven National Laboratory. All data stored in the Bank are available on magnetic tape for public distribution, from Brookhaven (to laboratories in the Americas), Tokyo (Japan), and Cambridge (Europe and worldwide). A master file is maintained at Brookhaven and duplicate copies are stored in Cambridge and Tokyo. In the future, it is hoped to expand the scope of the Protein Data Bank to make available co-ordinates for standard structural types (e.g. α-helix, RNA double-stranded helix) and representative computer programs of utility in the study and interpretation of macromolecular structures.  相似文献   

18.
为将20份新收集(引进)、选育的烤烟种质资源入国家种质库进行编目和保存,对各种质进行田间鉴定评价,结果表明,云烟317、云烟201、云烟202、云烟203、PVH09和RGH51等品种抗或中抗黑胫病、根结线虫病、青枯病、TMV等主要病害中的2种以上,产量适中、品质较好,已经全国烟草品种审定委员会审(认)定,其余种质资源在田间生长正常,白花大金元、江川地方种、大有种和人民六队-15黑胫病较重。田间试验获得了各种质的生育期、形态特征、主要农艺性状、经济性状、原烟外观质量、化学成分和主要病害等数据资料,拍摄了各种质的植株、叶片、花序、花冠和蒴果的照片,按规定上交合格种子并入库保存,获得的资料全部上交给中国农业科学院烟草研究所,用于中国烟草种质资源信息系统和共享平台建设,为丰富国家种质库以及今后持续利用种质资源奠定良好基础。  相似文献   

19.
Zhejiang Province was a high endemicity for hepatitis B disease in the 1990''s. A number of measures implemented since then have begun to control and prevent hepatitis B. In 1992, hepatitis B vaccine came on the market. In 2002, hepatitis B vaccine was included in the national Expanded Programme on Immunization (EPI). Between 2007 and 2010, catch-up vaccination was implemented for children under 15. Since 2010, vaccination guidelines for high-risk groups have also been adopted. This study evaluated the impact of these control and prevention strategies on acute hepatitis B notification rates from 2005 through 2013. Data from the National Notifiable Disease Reporting System (NNDRS) revealed a steady downward trend in notification rates of acute hepatitis B. The most dramatic decline occurred among pre-adults, highlighting the benefits of EPI''s policy of universal vaccination for children. However, the highest notification rates occurred among young adults of lower socio-economic status. These findings indicate the strong need to vaccinate young adults at risk for HBV infection as well as to collect risk-factor information in the NNDRS for monitoring and following up persons with acute hepatitis B.  相似文献   

20.
A National Non-Human Primate (NHP) DNA bank has been established by the National Primate Research Centers and the National Center for Research Resources, NIH, providing a new resource for comparative genomic studies. The collection includes genomic DNA samples from macaques, chimpanzees, baboons, vervets, marmosets, sooty mangabeys and titi monkeys. The repository includes DNAs from 697 unrelated animals, suitable for comparing allele representation within and between species. Another 474 DNAs are derived from family-trios (dam, sire, off spring), and are useful for verifying the segregation of genetic variants. The National NHP DNA Bank includes specified holdings within each of the eight National Primate Research Centers, though detailed information on the entire collection is available through a common website.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号