首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
We and others previously showed that, in some lines of prion protein (PrP)-knockout mice, the downstream PrP-like protein (PrPLP/Dpl) was abnormally expressed in brains partly due to impaired cleavage/polyadenylation of the residual PrP promoter-driven pre-mRNA despite the presence of a poly(A) signal. In this study, we newly established an in vitro transient transfection system in which abnormal expression of PrPLP/Dpl can be visualized by expression of the green fluorescence protein, EGFP, in cultured cells. No EGFP was detected in cells transfected by a vector carrying a PrP genomic fragment including the region targeted in the knockout mice intact upstream of the PrPLP/Dpl gene. In contrast, deletion of the targeted region from the vector caused expression of EGFP. By employing this system with other vectors carrying various deletions or point mutations in the targeted region, we identified that disruption of the splicing elements in the PrP terminal intron caused the expression of EGFP. Recent lines of evidence indicate that terminal intron splicing and cleavage/polyadenylation of pre-mRNA are functionally linked to each other. Taken together, our newly established system shows that the abnormal expression of PrPLP/Dpl in PrP-knockout mice caused by the impaired cleavage/polyadenylation of the PrP promoter-driven pre-mRNA is due to the functional dissociation between the pre-mRNA machineries, in particular those of cleavage/polyadenylation and splicing. Our newly established in vitro system, in which the functional dissociation between the pre-mRNA machineries can be visualized by EGFP green fluorescence, may be useful for studies of the functional connection of pre-mRNA machineries.  相似文献   

3.
In Phaseolus vulgaris L. (French bean) glutamine synthetase (GS) is encoded by four closely-related genes termed gln-alpha, gln-beta, gln-gamma and gln-delta. We have constructed and characterised in vitro a number of hammerhead ribozymes designed to cleave individual RNAs encoded by these genes. The three ribozymes, termed J1, J2 and J3, were targeted to cleave RNA at the start of the gamma and beta, and the middle of the gamma, GS open reading frames respectively. All three ribozymes successfully discriminated between the four (alpha, beta, gamma and delta) highly homologous sequences, even though the targeted sites of cleavage shared up to 18 out of 22 identical bases with other gene family members. The ribozyme-mediated cleavage reactions were Mg2+ dependent and enhanced at higher temperatures, although the J1 ribozyme retained considerable activity at physiological temperatures. Both J1 and J2 demonstrated a time-dependent cleavage of their targeted GS RNAs, although these two ribozymes differed markedly in their ability to cleave multiple substrate molecules. The rate of cleavage by J1 was found to be reduced in the presence of related GS RNAs and by total leaf poly(A) RNAs. The implications of these results for ribozyme activity in vivo are discussed.  相似文献   

4.
The beta-amyloid peptide is derived from a larger membrane bound protein and accumulates as amyloid in Alzheimer's diseased brains. beta-amyloid precursor protein (beta APP) proteolytically processed during constitutive secretion cannot be a source of deposited amyloid because this processing results in cleavage within the amyloidogenic peptide. To see if other secretory pathways could be responsible for generating potentially amyloidogenic molecules we tested the possibility that beta APP is targeted to the regulated secretory pathway. Stable AtT20 cell lines expressing exogenous human beta APP were genetically engineered. These cells were labeled with [35S]-methionine, and chased in the presence or absence of secretagogue. The beta APP both inside the cells and released from the cells was analyzed by immunoprecipitation and gel analysis. Quantitation of autoradiograms showed that virtually all of the synthesized beta APP was secreted by the constitutive pathway, and that no detectable (less than 1%) beta APP was targeted to the regulated secretory pathway.  相似文献   

5.
A comparative analysis of ribozyme, antisense RNA, and antisense DNA inhibitors of the in vitro small nuclear ribonucleoprotein U7-dependent histone pre-mRNA processing reaction was performed. RNA molecules complementary to the U7 sequence inhibited in vitro processing of histone pre-mRNA at a sixfold excess over U7. Single-stranded DNA complementary to the entire U7 sequence inhibited the reaction at a 60-fold excess over U7, while a short, 18-nucleotide DNA molecule complementary to the 5' end of U7 inhibited the processing reaction at a 600-fold excess. A targeted ribozyme was capable of specifically cleaving the U7 small nuclear ribonucleoprotein in a nuclear extract and inhibited the U7-dependent processing reaction, but in our in vitro system it required a 1,000-fold excess over U7 for complete inhibition of processing.  相似文献   

6.
Amyloid-beta precursor protein (APP) was identified on expression cloning from a human placenta cDNA library as a gene product that modulates the activity of membrane-type matrix metalloproteinase-1 (MT1-MMP). Co-expression of MT1-MMP with APP in HEK293T cells induced cleavage and shedding of the APP ectodomain when co-expressed with APP adaptor protein Fe65. Among the MT-MMPs tested, MT3-MMP and MT5-MMP also caused efficient APP shedding. The recombinant APP protein was cleaved by MT3-MMP in vitro at the A463-M464, N579-M580, H622-S623, and H685-Q686 peptide bonds, which included a cleavage site within the amyloid beta peptide region known to produce a C-terminal fragment. The Swedish-type mutant of APP, which produces a high level of amyloid beta peptide, was more effectively cleaved by MT3-MMP than wild-type APP in both the presence and absence of Fe65; however, amyloid beta peptide production was not affected by MT3-MMP expression. Expression of MT3-MMP enhanced Fe65-dependent transactivation by APP fused to the Gal4 DNA-binding and transactivation domains. These results suggest that MT1-MMP, MT3-MMP and MT5-MMP should play an important role in the regulation of APP functions in tissues including the central nervous system.  相似文献   

7.
Search for proteases responsible for an altered processing of APP which generates intermediates containing beta/A4 peptide is preceding to understand the formation of beta amyloid deposits characteristic of Alzheimer's disease, since many studies reveal that APP is ordinarily processed so as not to generate beta amyloid. Here, we have examined the action of thrombin, a serine protease in the blood clotting, in APP processing. Thrombin cleaved the mouse recombinant APP695 in vitro, resulting in the accumulation of 28 kDa fragment. The immunoblot analysis showed that the fragment is derived from the carboxy-terminal side of the recombinant APP695. Further, amino acid sequencing exhibited that the fragment is generated by the cleavage at Arg 510-Ile 511 and therefore includes entire beta/A4 peptide. We consider that the 28 kDa fragment is a possible intermediate for beta/A4 peptide. Thus thrombin may be involved in the altered processing of APP.  相似文献   

8.
Brain amyloid composed of the approximately 40-amino-acid human beta-amyloid peptide A beta is integral to Alzheimer's disease pathology. To probe the importance of a conformational transition in Abeta during amyloid growth, we synthesized and examined the solution conformation and amyloid deposition activity of A beta congeners designed to have similar solution structures but to vary substantially in their barriers to conformational transition. Although all these peptides adopt similar solution conformations, a covalently restricted Abeta congener designed to have a very high barrier to conformational rearrangement was inactive, while a peptide designed to have a reduced barrier to conformational transition displayed an enhanced deposition rate relative to wild-type A beta. The hyperactive peptide, which is linked to a heritable A beta amyloidosis characterized by massive amyloid deposition at an early age, displayed a reduced activation barrier to deposition consistent with a larger difference in activation entropy than in activation enthalpy relative to wild-type A beta. These results suggest that in Alzheimer's disease, as in the prion diseases, a conformational transition in the depositing peptide is essential for the conversion of soluble monomer to insoluble amyloid, and alterations in the activation barrier to this transition affect amyloidogenicity and directly contribute to human disease.  相似文献   

9.
利用计算机模拟设计合成了针对 K5 62细胞致癌融合 bcr3/abl2 m RNA的锤头状核酶 .该核酶以融合点附近 UUC为识别切割三联体 ,在核酶的 3′端增加一段 T7噬菌体终止子序列 .用基因克隆结合体外转录的方法 ,肯定了核酶的体外切割活性 .进而将核酶基因克隆到 p CEP4真核细胞高效表达载体上 ,利用脂质体 Lipofectin AMINE介导的转染技术将核酶与核酶基因导入靶细胞 ,从抑制靶细胞 K5 62的增殖与集落形成及引起靶细胞凋亡等方面验证了核酶在细胞水平上对融合基因 bcr3/abl2 m RNA的特异切割作用 ,并观察到了 T7噬菌体终止子序列对核酶切割效率的增强影响 .  相似文献   

10.
Copper are generally bound to proteins, e.g. the prion and the amyloid beta proteins. We have previously shown that copper ions are required to nitrosylate thiol groups in the core protein of glypican-1, a heparan sulfate-substituted proteoglycan. When S-nitrosylated glypican-1 is then exposed to an appropriate reducing agent, such as ascorbate, nitric oxide is released and autocatalyzes deaminative cleavage of the glypican-1 heparan sulfate side chains at sites where the glucosamines are N-unsubstituted. These processes take place in a stepwise manner, whereas glypican-1 recycles via a caveolin-1-associated pathway where copper ions could be provided by the prion protein. Here we show, by using both biochemical and microscopic techniques, that (a) the glypican-1 core protein binds copper(II) ions, reduces them to copper(I) when the thiols are nitrosylated and reoxidizes copper(I) to copper(II) when ascorbate releases nitric oxide; (b) maximally S-nitrosylated glypican-1 can cleave its own heparan sulfate chains at all available sites in a nitroxyl ion-dependent reaction; (c) free zinc(II) ions, which are redox inert, also support autocleavage of glypican-1 heparan sulfate, probably via transnitrosation, whereas they inhibit copper(II)-supported degradation; and (d) copper(II)-loaded but not zinc(II)-loaded prion protein or amyloid beta peptide support heparan sulfate degradation. As glypican-1 in prion null cells is poorly S-nitrosylated and as ectopic expression of cellular prion protein restores S-nitrosylation of glypican-1 in these cells, we propose that one function of the cellular prion protein is to deliver copper(II) for the S-nitrosylation of recycling glypican-1.  相似文献   

11.
Gerstmann-Sträussler-Scheinker (GSS) disease is a familial neurological disorder pathologically characterized by amyloid deposition in the cerebrum and cerebellum. The GSS amyloid is immunoreactive to antisera raised against the hamster prion protein (PrP) 27-30. This is a proteinase K-resistant glycoprotein of 27-30 kd that is derived from an abnormal isoform of a neuronal glycoprotein of 33-35 kd designated PrPSc and is a molecular marker of amyloid fibrils isolated from animals with scrapie and humans with related disorders. We have purified and characterized proteins extracted from amyloid plaque cores isolated from two patients of the Indiana kindred of GSS disease. We found that the major component of GSS amyloid is an 11 kd degradation product of PrP, whose N-terminus corresponds to the glycine residue at position 58 of the amino acid sequence deduced from the human PrP cDNA. In addition, amyloid fractions contained larger PrP fragments with apparently intact N-termini and amyloid P component. These findings suggest that the disease process leads to proteolytic cleavage of PrP, generating an amyloidogenic peptide that polymerizes into insoluble fibrils. The N-terminal cleavage of PrP in GSS disease occurs at a tryptophan-glycine peptide bond identical to that cleaved by proteinase K in vitro to generate PrP 27-30 from hamster PrPSc at codon 90. Since no mutations of the structural PrP gene have been found in the Indiana family of GSS disease, it is conceivable that factors other than the primary structure of PrP play a crucial role in the process of amyloid formation and the development of clinical neurologic dysfunction.  相似文献   

12.
Prion diseases are neurodegenerative disorders associated with a conformational change in the normal cellular isoform of the prion protein, PrP(C), to an abnormal scrapie isoform, PrP(SC). Unlike the alpha-helical PrP(C), the protease-resistant core of PrP(SC) is predominantly beta-sheet and possesses a tendency to polymerize into amyloid fibrils. We performed experiments with two synthetic human prion peptides, PrP(106-126) and PrP(127-147), to determine how peptide structure affects neurotoxicity and protein-membrane interactions. Peptide solutions possessing beta-sheet and amyloid structures were neurotoxic to PC12 cells in vitro and bound with measurable affinities to cholesterol-rich phospholipid membranes at ambient conditions, but peptide solutions lacking stable beta-sheet structures and amyloid content were nontoxic and possessed less than one tenth of the binding affinities of the amyloid-containing peptides. Regardless of structure, the peptide binding affinities to cholesterol-depleted membranes were greatly reduced. These results suggest that the beta-sheet and amyloid structures of the prion peptides give rise to their toxicity and membrane binding affinities and that membrane binding affinity, especially in cholesterol-rich environments, may be related to toxicity. Our results may have significance in understanding the role of the fibrillogenic cerebral deposits associated with some of the prion diseases in neurodegeneration and may have implications for other amyloidoses.  相似文献   

13.
We have used differential display to address the question of ribozyme specificity in vivo. Stably transfected PC12 cells bearing either a hairpin ribozyme expression plasmid targeted to betaAPP mRNA or the vector alone were analyzed using nine different primer pairs. One of the few differentially expressed genes obtained from this screen corresponded to rat ribosomal protein L19. Steady-state levels of L19 mRNA were lower in ribozyme-transfected cells compared to either vector-transfected cells or native PC12 cells, and a sequence within the L19 message was cleaved by the betaAPP hairpin ribozyme in vitro. These data imply that sequence-specific unintended cleavage of non-target mRNAs may present a formidable problem to the use of hairpin ribozyme therapeutic agents.  相似文献   

14.
Alzheimer's disease is characterized by the deposits of the 4-kDa amyloid beta peptide (A beta). The A beta protein precursor (APP) is cleaved by beta-secretase to generate a C-terminal fragment, CTF beta, which in turn is cleaved by gamma-secretase to generate A beta. Alternative cleavage of the APP by alpha-secretase at A beta 16/17 generates the C-terminal fragment, CTFalpha. In addition to A beta, endoproteolytic cleavage of CTF alpha and CTF beta by gamma-secretase should yield a C-terminal fragment of 57-59 residues (CTF gamma). However, CTF gamma has not yet been reported in either brain or cell lysates, presumably due to its instability in vivo. We detected the in vitro generation of A beta as well as an approximately 6-kDa fragment from guinea pig brain membranes. We have provided biochemical and pharmacological evidence that this 6-kDa fragment is the elusive CTF gamma, and we describe an in vitro assay for gamma-secretase activity. The fragment migrates with a synthetic peptide corresponding to the 57-residue CTF gamma fragment. Three compounds previously identified as gamma-secretase inhibitors, pepstatin-A, MG132, and a substrate-based difluoroketone (t-butoxycarbonyl-Val-Ile-(S)-4-amino-3-oxo-2, 2-difluoropentanoyl-Val-Ile-OMe), reduced the yield of CTF gamma, providing additional evidence that the fragment arises from gamma-secretase cleavage. Consistent with reports that presenilins are the elusive gamma-secretases, subcellular fractionation studies showed that presenilin-1, CTF alpha, and CTF beta are enriched in the CTF gamma-generating fractions. The in vitro gamma-secretase assay described here will be useful for the detailed characterization of the enzyme and to screen for gamma-secretase inhibitors.  相似文献   

15.
Heegaard PM  Pedersen HG  Flink J  Boas U 《FEBS letters》2004,577(1-2):127-133
The prion protein (PrP) peptide 106-126 forms amyloid aggregates in vitro and this sequence is speculated to be involved in the formation of amyloid fibrils by the abnormally folded PrP protein (PrPSc) found in spongiform encephalopathies. It is shown here by incubation experiments in water using Thioflavin T (ThT) as a fluorescent probe for amyloid formation that changes in C-terminal charge, oxidation state and conformational stabilisation lead to large changes in amyloid forming behaviour (amyloidogenicity) of this peptide. Amyloid formation is favoured by a charged C-terminus and is strongly inhibited by oxidation. Furthermore, cationic dendrimers are shown to perturb peptide fibrillation in a process dependent on the nature of the charged groups on the dendrimer surface.  相似文献   

16.
The formation of amyloid plaques is a key pathological event in neurodegenerative disorders, such as prion and Alzheimer's diseases. Dendrimers are considered promising therapeutic agents in these disorders. In the present work, we have studied the effect of polypropyleneimine dendrimers on the formation of amyloid fibrils as a function of pH in order to gain further insight in the aggregation mechanism and its inhibition. Amyloid fibrils from prion peptide PrP 185-208 and Alzheimer's peptide Abeta 1-28 were produced in vitro, and their formation was monitored using the dye thioflavin T (ThT). The results showed that the level of protonation of His, Glu, and Asp residues is important for the final effect, especially at low dendrimer concentration when their inhibiting capacity depends on the pH. At the highest concentrations, dendrimers were very effective against fibril formations for both prion and Alzheimer's peptides.  相似文献   

17.
18.
Star-PAP is a poly (A) polymerase (PAP) that is putatively required for 3'-end cleavage and polyadenylation of a select set of pre-messenger RNAs (mRNAs), including heme oxygenase (HO-1) mRNA. To investigate the underlying mechanism, the cleavage and polyadenylation of pre-mRNA was reconstituted with nuclear lysates. siRNA knockdown of Star-PAP abolished cleavage of HO-1, and this phenotype could be rescued by recombinant Star-PAP but not PAPα. Star-PAP directly associated with cleavage and polyadenylation specificity factor (CPSF) 160 and 73 subunits and also the targeted pre-mRNA. In vitro and in vivo Star-PAP was required for the stable association of CPSF complex to pre-mRNA and then CPSF 73 specifically cleaved the mRNA at the 3'-cleavage site. This mechanism is distinct from canonical PAPα, which is recruited to the cleavage complex by interacting with CPSF 160. The data support a model where Star-PAP binds to the RNA, recruits the CPSF complex to the 3'-end of pre-mRNA and then defines cleavage by CPSF 73 and subsequent polyadenylation of its target mRNAs.  相似文献   

19.
Ribozymes correctly cleave a model substrate and endogenous RNA in vivo   总被引:22,自引:0,他引:22  
The alpha-sarcin domain of 28 S RNA in Xenopus oocytes is attacked by several catalytic toxins (e.g. alpha-sarcin and ricin) that abolish protein synthesis. We synthesized 6 ribozymes targeted to the alpha-sarcin domain and to an oligoribonucleotide (34-mer) that mimics this domain. Sarcin ribozyme 5 (SR5) efficiently cleaved after the CUC site in the synthetic 34-mer in vitro at 50 degrees C. SR5 also cut the same site when both substrate and ribozyme were coinjected or injected separately into oocytes at 18 degrees C. Correct cleavage in vivo was shown by isolating and sequencing the large cleavage fragment. The cleavage reaction appeared to function equally well in the oocyte nucleus and cytoplasm. SR5 also correctly cleaved endogenous 28 S RNA in oocytes, although cutting was much less efficient than with alpha-sarcin. We therefore demonstrated that a ribozyme specifically cuts both a model substrate and a cellular RNA in vivo. Earlier work showed that certain injected deoxyoligonucleotides complementary to the alpha-sarcin region abolish protein synthesis. Oocyte protein synthesis was also abolished by an SR5 containing a single G----U substitution that inactivates RNA catalysis, indicating that SR5's translational suppression was perhaps due to antisense function rather than ribozyme cleavage.  相似文献   

20.
The 3′ end formation of mammalian pre-mRNA contributes to gene expression regulation by setting the downstream boundary of the 3′ untranslated region, which in many genes carries regulatory sequences. A large number of protein cleavage factors participate in this pre-mRNA processing step, but chemical tools to manipulate this process are lacking. Guided by a hypothesis that a PPM1 family phosphatase negatively regulates the 3′ cleavage reaction, we have found a variety of new small molecule activators of the in vitro reconstituted pre-mRNA 3′ cleavage reaction. New activators include a cyclic peptide PPM1D inhibitor, a dipeptide with modifications common to histone tails, abscisic acid and an improved l-arginine β-naphthylamide analog. The minimal concentration required for in vitro cleavage has been improved from 200 μM to the 200 nM–100 μM range. These compounds provide unexpected leads in the search for small molecule tools able to affect pre-mRNA 3′ end formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号