首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The preincubation of isolated sarcoplasmic reticulum vesicles in Tris-Cl (pH 7.3) increases their (Ca2+ + Mg2+)-dependent adenosine triphosphatase activity and decreases their ATP-dependent Ca uptake capacity. These effects of Tris are dependent on the preincubation time and the Tris concentration; they are maximal below 10 μm Ca and decrease upon the increase of Ca concentration in the preincubation media, and they increase upon the increase of the preincubation pH. Differences in ATPase activity between preincubated and control vesicles are abolished by A23187 but not by carbonyl cyanide p-trifluoromethoxy phenyl hydrazone. The results suggest that: (i) Preincubation of the vesicles in Tris causes an increase of their permeability for Ca, or a membrane damage. (ii) Tris must diffuse within the vesicles to promote these effects. (iii) Ca prevents these effects by decreasing the membrane permeability for Tris. The basic findings were reproduced replacing Tris by imidazole.  相似文献   

6.
7.
8.

Background

Numerous formaldehyde-fixed and paraffin-embedded clinical tissues have been created in the past decades and stored in pathological depositories at hospitals as well as in clinical laboratories worldwide. In addition to the archived tissues, formaldehyde-fixation is also mandatory for preparing proteomics samples from diseased patients or animal models in order to inactivate contagious agents. Protein extraction from formaldehyde-fixed tissues is hampered by the Schiff base formation between the amino groups of proteins and formaldehyde. Although achievement of the highest extraction efficiency of proteins from the formaldehyde-fixed tissues is essential for obtaining maximum proteomics information, no attention has been paid to the concentration dependence of tris(hydroxymethyl)aminomethane on the extraction efficacy. We suspected that the concentration of tris(hydroxymethyl)aminomethane affects the protein extraction efficiency because of its property as a primary amine that reverses the Schiff base formation between the primary amines of proteins and formaldehyde. Thus we pursued optimization of the component and protocol of protein extraction buffer to achieve better extraction efficiency of proteins from formaldehyde-fixed and paraffin-embedded tissues.

Results

In order to simulate protein extraction from diseased tissues we made formaldehyde-fixed and paraffin-embedded samples from mouse liver slices and investigated the protein extraction efficiency and speed by changing the concentration of the protein extraction buffer component tris(hydroxymethyl)aminomethane under various extraction conditions. We find, as expected, that tris(hydroxymethyl)aminomethane significantly affects the performance of protein extraction from the formaldehyde-fixed and paraffin-embedded samples both in the extraction yield and in the extraction speed.

Conclusions

We recommend the concentration of tris(hydroxymethyl)aminomethane in protein extraction buffer to be higher than 300 mM when extraction is conducted for 90 min at 90°C to achieve the most efficient protein extraction in a shorter time. The information will be essential for performing the most efficient protein extraction from formaldehyde-fixed and paraffin-embedded tissue samples for proteomics analysis.  相似文献   

9.
10.
11.
Quan L  Wei D  Jiang X  Liu Y  Li Z  Li N  Li K  Liu F  Lai L 《Analytical biochemistry》2008,378(2):144-150
An unusual phenomenon, the specific interaction between tris(hydroxymethyl)aminomethane (Tris) and lysozyme (LZM), was demonstrated for the first time by rapid screen analysis of interactions using a quartz crystal microbalance (QCM) biosensor. This phenomenon was also observed in a surface plasmon resonance (SPR) system. Further study using high-performance affinity chromatography (HPAC) confirmed this specific interaction between LZM and immobilized Tris with an apparent dissociation constant (KD) of 6.7 × 10−5 M. Molecular docking was carried out to identify possible modes of binding between LZM and Tris linked to a binding arm. The estimated binding free energy was −6.34 kcal mol−1, corresponding to a KD of 2.3 × 10−5 M, which correlated well with the experimental value. Based on the docking model, the three hydroxyl groups of Tris form intermolecular H bonds with Asp52, Glu35, and Ala107 in LZM. This study reinforces the importance of buffer selection in quantitative biochemical investigations. For a lysozyme ligand binding study, it is better to avoid using Tris when the ligands under study are weak binders.  相似文献   

12.
13.
Treatment of Spirillum itersonii with tris(hydroxymethyl)aminomethane (Tris)-ethylenediaminetetraacetate (EDTA) results in the quantitative release of alkaline phosphatase and ribonuclease into the surrounding medium. At the same time, about 90% of the total cellular soluble cytochrome c is liberated. This process occurs within 1 min of treatment at both 24 and 4 C. Release of these proteins by Tris-EDTA treatment is highly selective, since only 9% of the total cell protein is liberated, concomitantly with less than 5% ribonucleic acid, deoxyribonucleic acid, and malate dehydrogenase. Different sigmoidal curves are obtained for release of proteins as a function of EDTA concentration. The order of liberation with increasing EDTA is as follows: alkaline phosphatase, protein, soluble cytochrome c, and ribonuclease. Treatment of cells with Tris-EDTA under conditions which cause extensive loss of alkaline phosphatase, soluble cytochrome c, and ribonuclease results in cell death, with cessation of protein and ribonucleic acid synthesis. Cells treated with EDTA in phosphate buffer (in the absence of Tris) liberate a large portion of their soluble cytochrome c, but negligible amounts of alkaline phosphatase and ribonuclease. Addition of Tris to cells pretreated with phosphate-buffered EDTA releases high levels of alkaline phosphatase, but not ribonuclease. These results suggest that a common surface alteration is not solely responsible for release of periplasmic proteins. More likely, each protein of the periplasm is bound in an independent and specific manner.  相似文献   

14.
15.
16.
The alcohol-AMP synthesizine enzyme of rat liver plasma membrane also synthesizes the 5'-AMP ester of tris(hydroxymethyl)aminomethane as judged by the use of [alpha-32P] ATP and [U-14C] ATP. This synthetic process may decrease significantly the concentration of ATP during incubation.  相似文献   

17.
Initial rate kinetics of polysaccharide formation indicate that Zn2+, Ni2+, and Co2+ inhibit dextransucrase [sucrose: 1,6-alpha-D-glucan 6-alpha-D-glucosyltransferase, EC 2.4.1.5] by binding to two types of metal ion sites. One type consists of a single site and has a low apparent affinity for Ca2+. At the remaining site(s), Ca2+ has a much higher apparent affinity than Zn2+, Ni2+, or Co2+, and prevents inhibition by these metal ions. These findings are consistent with a two-site model previously proposed from studies with Ca2+ and EDTA. Initial rate kinetics also show that Tris is competitive with sucrose, but that, unlike Zn2+, Tris does not bind with significant affinity to a second site. This argues that there is a site which is both the sucrose binding site and a general cation site.  相似文献   

18.
The dark reaction of tris(hydroxymethyl)aminomethane (Tris) with the O2-evolving center of photosystem II (PSII) in the S1 state causes irreversible inhibition of O2 evolution. Similar inhibition is observed for several other amines: NH3, CH3NH2, (CH3)2NH, ethanolamine, and 2-amino-2-ethyl-1,3-propanediol. In PSII membranes, both depleted of the 17- and 23-kDa polypeptides and undepleted, the rate of reaction of Tris depends inversely upon the Cl- concentration. However, the rate of reaction of Tris is about 2-fold greater with PSII membranes depleted of the 17- and 23-kDa polypeptides than with undepleted PSII membranes. We have used low-temperature electron paramagnetic resonance (EPR) spectroscopy to study the effect of Tris on the oxidation state of the Mn complex in the O2-evolving center, to monitor the electron-donation reactions in Tris-treated samples, and to observe any loss of the Mn complex (forming Mn2+ ions) after Tris treatment. We find that Tris treatment causes loss of electron-donation ability from the Mn complex at the same rate as inhibition of O2 evolution and that Mn2+ ions are released. We conclude that Tris reduces the Mn complex to labile Mn2+ ions, without generating any kinetically stable, partially reduced intermediates, and that the reaction occurs at the Cl(-)-sensitive site previously characterized in studies of the reversible inhibition of O2 evolution by amines.  相似文献   

19.
The pH dependence of the reaction of tris(hydroxymethyl)aminomethane (Tris) with the activated carbonyl compound 4-trans-benzylidene-2-phenyloxazolin-5-one (I) is given by the equation k′2 = kbKa(Ka + [H+]) + ka[OH?]Ka(Ka + [H+]), where Ka is the dissociation constant of TrisH+. Spectrophotometric experiments show that the Tris ester of α-benzamido-trans-cinnamic acid is formed quantitatively over a range of pH values, regardless of the relative contribution of kb and ka terms to k2. Hence, both terms refer to alcoholysis. While the mechanism of the reaction is not determined unequivocally in the present work, the magnitude of the kb term, together with its dependence on the basic form of Tris, suggests that ester formation is occurring by nucleophilic attack of a Tris hydroxyl group on the carbonyl carbon of the oxazolinone, with intramolecular catalysis by the Tris amino group. The rate enhancement due to this group is at least 102 and possibly of the order 106. This system is compared with other model systems for the acylation step of catalysis by serine esterases and proteinases.  相似文献   

20.
A process was devised for the synthesis of tris(hydroxymethyl)acetic acid by means of bio-oxidation of pentaerythritol. A flavobacterium able to grow on pentaerythritol was isolated from the soil. Mutants were obtained that, were deficient, in their pentaerythritol oxidation system. These mutants could not grow on pentaerythritol, but when grown on an assimilable carbon source; they oxidized pentaerythritol to tris(hydroxymethyl)acetic acid. This conversion readily took place in a medium consisting of 20 g pentaerythritol, 10 g yeast extract, and 2 g acetic acid (neutralized) per liter. Since the mutants were unable to metabolize tris(hydroxymethyl)acetic acid, theoretical conversion yields were attainable. When pentaerythritol was added stepwise and the acid formed was neutralized continuously, 95–100% yields were obtained in concentrations of the order of 60 g/l.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号