首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Centromere structure and function in budding and fission yeasts   总被引:16,自引:0,他引:16  
  相似文献   

2.
Telomeres are the nucleoprotein caps of chromosomes. Their length must be tightly regulated in order to maintain the stability of the genome. This is achieved by the intricate network of interactions between different proteins and protein–RNA complexes. Different organisms use various mechanisms for telomere length homeostasis. However, details of these mechanisms are not yet completely understood. In this review we have summarized our latest achievements in the understanding of telomere length regulation in budding yeasts.  相似文献   

3.
4.
5.
Sexual agglutination in Saccharomyces cerevisiae.   总被引:21,自引:7,他引:14       下载免费PDF全文
Treatment of either mating type of Saccharomyces cerevisiae with the appropriate sex pheromone increased cell-cell binding in a modified cocentrifugation assay. Constitutive agglutination of haploids was qualitatively similar to pheromone-induced agglutination. Regardless of exposure to pheromone, agglutinable combinations of cells exhibited maximal binding across similar ranges of ionic strength, pH, and temperature. Binding of all combinations was inhibited by 8 M urea, 1 M pyridine, or 0.05% sodium dodecyl sulfate. From alpha-cells we solubilized and partially purified an inhibitor of a-cell agglutinability. This inhibitor reversibly masked all a-cell adhesion sites and inactivated pheromone-treated and control cells with similar kinetics. The inhibitor behaved as a homogeneous species in heat inactivation experiments. Based on these results, we proposed a model for pheromone effects on agglutination in S. cerevisiae.  相似文献   

6.
Hemopexin: structure,function, and regulation   总被引:1,自引:0,他引:1  
Hemopexin (HPX) is the plasma protein with the highest binding affinity to heme among known proteins. It is mainly expressed in liver, and belongs to acute phase reactants, the synthesis of which is induced after inflammation. Heme is potentially highly toxic because of its ability to intercalate into lipid membrane and to produce hydroxyl radicals. The binding strength between heme and HPX, and the presence of a specific heme-HPX receptor able to catabolize the complex and to induce intracellular antioxidant activities, suggest that hemopexin is the major vehicle for the transportation of heme in the plasma, thus preventing heme-mediated oxidative stress and heme-bound iron loss. In this review, we discuss the experimental data that support this view and show that the most important physiological role of HPX is to act as an antioxidant after blood heme overload, rather than to participate in iron metabolism. Particular attention is also put on the structure of the protein and on its regulation during the acute phase reaction.  相似文献   

7.
Abstract The sexual mating reaction between gametes of the green alga Chlamydomonas eugametos starts by cell-cell contacts involving sex-specific cell-adhesion molecules (agglutinins) at the flagellar membrane. An in vitro adhesion assay is described using glutaraldehyde-fixed gametes. In vitro adhesion was fully comparable to in vivo adhesion, making it a reliable assay to study the initial recognition step of sexual adhesion in vivo. It was shown that both agglutinins are capable of inhibiting sexual adhesion at similar concentrations (1−2×10−10 M), indicating that mt+ and mt agglutinins interact with each other during binding. This was confirmed by demonstrating that charcoal particles adsorbed with purified agglutinins of the opposite mating type aggregate with each other.  相似文献   

8.
Yeasts and filamentous fungi are endowed with two different trehalose-hydrolysing activities, termed acid and neutral trehalases according to their optimal pH for enzymatic activity. A wealth of information already exists on fungal neutral trehalases, while data on localization, regulation and function of fungal acid trehalases have remained elusive. The gene encoding the latter enzyme has now been isolated from two yeast species and two filamentous fungi, and sequences encoding putative acid trehalase can be retrieved from available public sequences. Despite weak similarities between amino acids sequences, this type of trehalase potentially harbours either a transmembrane segment or a signal peptide at the N-terminal sequence, as deduced from domain prediction algorithms. This feature, together with the demonstration that acid trehalase from yeasts and filamentous fungi is localized at the cell surface, is consistent with its main role in the utilisation of exogenous trehalose as a carbon source. The growth on this disaccharide is in fact pretty effective in most fungi except in Saccharomyces cerevisiae. This yeast species actually exhibits a "Kluyver effect" on trehalose. Moreover, an oscillatory behaviour reminiscent of what is observed in aerobic glucose-limited continuous cultures at low dilution rate is also observed in batch growth on trehalose. Finally, the S. cerevisiae acid trehalase may also participate in the catabolism of endogenous trehalose by a mechanism that likely requires the export of the disaccharide, its extracellular hydrolysis, and the subsequent uptake of the glucose released. Based on these recent findings, we suggest to rename "acid" and "neutral" trehalases as "extracellular" and "cytosolic" trehalases, which is more adequate to describe their localization and function in the fungal cell.  相似文献   

9.
Centromeres of budding and fission yeasts   总被引:39,自引:0,他引:39  
Centromeres of the budding yeast Saccharomyces cerevisiae are structurally relatively simple, are specified by only about 125 base pairs of DNA, and contain no repeated DNA sequences. The centromere regions in the fission yeast Schizosaccharomyces pombe span many kilobase pairs of DNA and contain repeated DNA sequences that appear to be necessary for full centromere function. A portion of the repeated sequences is organized into a large inverted repeated structure in the centromere region of each S. pombe chromosome. Fission yeast provides an excellent model system for studying the role of repeated DNA sequences in centromere function.  相似文献   

10.
11.
Glucose transporters: structure, function, and regulation   总被引:2,自引:0,他引:2  
Glucose is transported into the cell by facilitated diffusion via a family of structurally related proteins, whose expression is tissue-specific. One of these transporters, GLUT4, is expressed specifically in insulin-sensitive tissues. A possible change in the synthesis and/or in the amount of GLUT4 has therefore been studied in situations associated with an increase or a decrease in the effect of insulin on glucose transport. Chronic hyperinsulinemia in rats produces a hyper-response of white adipose tissue to insulin and resistance in skeletal muscle. The hyper-response of white adipose tissue is associated with an increase in GLUT4 mRNA and protein. In contrast, in skeletal muscle, a decrease in GLUT4 mRNA and a decrease (tibialis) or no change (diaphragm) in GLUT4 protein are measured, suggesting a divergent regulation by insulin of glucose transport and transporters in the 2 tissues. In rodents, brown adipose tissue is very sensitive to insulin. The response of this tissue to insulin is decreased in obese insulin-resistant fa/fa rats. Treatment with a beta-adrenergic agonist increases insulin-stimulated glucose transport, GLUT4 protein and mRNA. The data suggest that transporter synthesis can be modulated in vivo by insulin (muscle, white adipose tissue) or by catecholamines (brown adipose tissue).  相似文献   

12.
13.
Biology of amyloid: structure, function, and regulation   总被引:1,自引:0,他引:1  
Amyloids are highly ordered cross-β sheet protein aggregates associated with many diseases including Alzheimer's disease, but also with biological functions such as hormone storage. The cross-β sheet entity comprising an indefinitely repeating intermolecular β sheet motif is unique among protein folds. It grows by recruitment of the corresponding amyloid protein, while its repetitiveness can translate what would be a nonspecific activity as monomer into a potent one through cooperativity. Furthermore, the one-dimensional crystal-like repeat in the amyloid provides a structural framework for polymorphisms. This review summarizes the recent high-resolution structural studies of amyloid fibrils in light of their biological activities. We discuss how the unique properties of amyloids gives rise to many activities and further speculate about currently undocumented biological roles for the amyloid entity. In particular, we propose that amyloids could have existed in a prebiotic world, and may have been the first functional protein fold in living cells.  相似文献   

14.
Functional diversity of silencers in budding yeasts   总被引:1,自引:0,他引:1       下载免费PDF全文
  相似文献   

15.
Nitrate transporters in plants: structure, function and regulation   总被引:43,自引:0,他引:43  
Physiological studies have established that plants acquire their NO(-3) from the soil through the combined activities of a set of high- and low-affinity NO(-3) transport systems, with the influx of NO(-3) being driven by the H(+) gradient across the plasma membrane. Some of these NO(-3) transport systems are constitutively expressed, while others are NO(-3)-inducible and subject to negative feedback regulation by the products of NO(-3) assimilation. Here we review recent progress in the characterisation of the two families of NO(-3) transporters that have so far been identified in plants, their structure and their regulation, and consider the evidence for their roles in NO(-3) acquisition. We also discuss what is currently known about the genetic basis of NO(-3) induction and feedback repression of the NO(-3) transport and assimilatory pathway in higher plants.  相似文献   

16.
Glycosylation is the major modification of proteins, and alters their structures, functions and localizations. Glycosylation of secretory and surface proteins takes place in the endoplasmic reticulum and Golgi apparatus in eukaryotic cells and is classified into four modification pathways, namely N- and O-linked glycosylations, glycosylphosphatidylinositol (GPI)-anchor and C-mannosylation. These modifications are accomplished by sequential addition of single monosaccharides (O-linked glycosylation and C-mannosylation) or en bloc transfer of lipid-linked oligosaccharides (N-linked glycosylation and GPI) onto the proteins. The glycosyltransferases involved in these glycosylations are categorized into two classes based on the type of sugar donor, namely nucleotide-sugars and dolichol-phosphate-sugars, in which the sugar moiety is mannose or glucose. The sugar transfer from dolichol-phosphate-sugars occurs exclusively on the luminal side of the endoplasmic reticulum and is utilized in all four glycosylation pathways. In this review, we focus on the biosynthesis of dolichol-phosphate-mannose, and particularly on the mammalian enzyme complex involved in the reaction.  相似文献   

17.
Flocculation, adhesion and biofilm formation in yeasts   总被引:15,自引:0,他引:15  
Yeast cells possess a remarkable capacity to adhere to abiotic surfaces, cells and tissues. These adhesion properties are of medical and industrial relevance. Pathogenic yeasts such as Candida albicans and Candida glabrata adhere to medical devices and form drug-resistant biofilms. In contrast, cell-cell adhesion (flocculation) is a desirable property of industrial Saccharomyces cerevisiae strains that allows the easy separation of cells from the fermentation product. Adhesion is conferred by a class of special cell wall proteins, called adhesins. Cells carry several different adhesins, each allowing adhesion to specific substrates. Several signalling cascades including the Ras/cAMP/PKA and MAP kinase (MAPK)-dependent filamentous growth pathways tightly control synthesis of the different adhesins. Together, these pathways trigger adhesion in response to stress, nutrient limitation or small molecules produced by the host, such as auxin in plants or NAD in mammals. In addition, adhesins are subject to subtelomeric epigenetic switching, resulting in stochastic expression patterns. Internal tandem repeats within adhesin genes trigger recombination events and the formation of novel adhesins, thereby offering fungi an endless reservoir of adhesion properties. These aspects of fungal adhesion exemplify the impressive phenotypic plasticity of yeasts, allowing them to adapt quickly to stressful environments and exploit new opportunities.  相似文献   

18.
Conservation of mitotic controls in fission and budding yeasts   总被引:45,自引:0,他引:45  
P Russell  S Moreno  S I Reed 《Cell》1989,57(2):295-303
In fission yeast, the initiation of mitosis is regulated by a control network that integrates the opposing activities of mitotic inducers and inhibitors. To evaluate whether this control system is likely to be conserved among eukaryotes, we have investigated whether a similar mitotic control operates in the distantly related budding yeast S. cerevisiae. We have found that the protein kinase encoded by the mitotic inhibitor gene wee1+ of fission yeast, which acts to delay mitosis, is able also to delay the initiation of mitosis when expressed in S. cerevisiae. The wee1+ activity is counteracted in S. cerevisiae by the gene product of MIH1, a newly identified gene capable of encoding a protein of MW 54,000, which is a structural and functional homolog of the cdc25+ mitotic inducer of fission yeast. Expression of wee1+ in a mih1- strain prevents the initiation of mitosis. These data indicate that important features of the cdc25+-wee1+ mitotic control network identified in S. pombe are conserved in S. cerevisiae, and therefore are also likely to be generally conserved among eukaryotic organisms.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号