共查询到20条相似文献,搜索用时 0 毫秒
1.
The cyanophage community in Rhode Island's coastal waters is genetically diverse and dynamic. Cyanophage abundance ranged from over 10(4) phage ml(-1) in the summer months to less then 10(2) phage ml(-1) during the winter months. Thirty-six distinct cyanomyovirus g20 genotypes were identified over a 3-year sampling period; however, only one to nine g20 genotypes were detected at any one sampling date. Phylogenetic analyses of g20 sequences revealed that the Rhode Island cyanomyoviral isolates fall into three main clades and are closely related to other known viral isolates of Synechococcus spp. Extinction dilution enrichment followed by host range tests and PCR restriction fragment length polymorphism analysis was used to detect changes in the relative abundance of cyanophage types in June, July, and August 2002. Temporal changes in both the overall composition of the cyanophage community and the relative abundance of specific cyanophage g20 genotypes were observed. In some seawater samples, the g20 gene from over 50% of isolated cyanophages could not be amplified by using the PCR primer pairs specific for cyanomyoviruses, which suggested that cyanophages in other viral families (e.g., Podoviridae or Siphoviridae) may be important components of the Rhode Island cyanophage community. 相似文献
2.
Marine viruses are an important component of the microbial food web, influencing microbial diversity and contributing to bacterial mortality rates. Resistance to cooccurring cyanophages has been reported for natural communities of Synechococcus spp.; however, little is known about the nature of this resistance. This study examined the patterns of infectivity among cyanophage isolates and unicellular marine cyanobacteria (Synechococcus spp.). We selected for phage-resistant Synechococcus mutants, examined the mechanisms of phage resistance, and determined the extent of cross-resistance to other phages. Four strains of Synechococcus spp. (WH7803, WH8018, WH8012, and WH8101) and 32 previously isolated cyanomyophages were used to select for phage resistance. Phage-resistant Synechococcus mutants were recovered from 50 of the 101 susceptible phage-host pairs, and 23 of these strains were further characterized. Adsorption kinetic assays indicate that resistance is likely due to changes in host receptor sites that limit viral attachment. Our results also suggest that receptor mutations conferring this resistance are diverse. Nevertheless, selection for resistance to one phage frequently resulted in cross-resistance to other phages. On average, phage-resistant Synechococcus strains became resistant to eight other cyanophages; however, there was no significant correlation between the genetic similarity of the phages (based on g20 sequences) and cross-resistance. Likewise, host Synechococcus DNA-dependent RNA polymerase (rpoC1) genotypes could not be used to predict sensitivities to phages. The potential for the rapid evolution of multiple phage resistance may influence the population dynamics and diversity of both Synechococcus and cyanophages in marine waters. 相似文献
3.
Zhong Y Chen F Wilhelm SW Poorvin L Hodson RE 《Applied and environmental microbiology》2002,68(4):1576-1584
In order to characterize the genetic diversity and phylogenetic affiliations of marine cyanophage isolates and natural cyanophage assemblages, oligonucleotide primers CPS1 and CPS8 were designed to specifically amplify ca. 592-bp fragments of the gene for viral capsid assembly protein g20. Phylogenetic analysis of isolated cyanophages revealed that the marine cyanophages were highly diverse yet more closely related to each other than to enteric coliphage T4. Genetically related marine cyanophage isolates were widely distributed without significant geographic segregation (i.e., no correlation between genetic variation and geographic distance). Cloning and sequencing analysis of six natural virus concentrates from estuarine and oligotrophic offshore environments revealed nine phylogenetic groups in a total of 114 different g20 homologs, with up to six clusters and 29 genotypes encountered in a single sample. The composition and structure of natural cyanophage communities in the estuary and open-ocean samples were different from each other, with unique phylogenetic clusters found for each environment. Changes in clonal diversity were also observed from the surface waters to the deep chlorophyll maximum layer in the open ocean. Only three clusters contained known cyanophage isolates, while the identities of the other six clusters remain unknown. Whether or not these unidentified groups are composed of bacteriophages that infect different Synechococcus groups or other closely related cyanobacteria remains to be determined. The high genetic diversity of marine cyanophage assemblages revealed by the g20 sequences suggests that marine viruses can potentially play important roles in regulating microbial genetic diversity. 相似文献
4.
Genomic and structural analysis of Syn9, a cyanophage infecting marine Prochlorococcus and Synechococcus 总被引:2,自引:0,他引:2
Weigele PR Pope WH Pedulla ML Houtz JM Smith AL Conway JF King J Hatfull GF Lawrence JG Hendrix RW 《Environmental microbiology》2007,9(7):1675-1695
Cyanobacteriophage Syn9 is a large, contractile-tailed bacteriophage infecting the widespread, numerically dominant marine cyanobacteria of the genera Prochlorococcus and Synechococcus . Its 177 300 bp genome sequence encodes 226 putative proteins and six tRNAs. Experimental and computational analyses identified genes likely involved in virion formation, nucleotide synthesis, and DNA replication and repair. Syn9 shows significant mosaicism when compared with related cyanophages S-PM2, P-SSM2 and P-SSM4, although shared genes show strong purifying selection and evidence for large population sizes relative to other phages. Related to coliphage T4 – which shares 19% of Syn9's genes – Syn9 shows evidence for different patterns of DNA replication and uses homologous proteins to assemble capsids with a different overall structure that shares topology with phage SPO1 and herpes virus. Noteworthy bacteria-related sequences in the Syn9 genome potentially encode subunits of the photosynthetic reaction centre, electron transport proteins, three pentose pathway enzymes and two tryptophan halogenases. These genes suggest that Syn9 is well adapted to the physiology of its photosynthetic hosts and may affect the evolution of these sequences within marine cyanobacteria. 相似文献
5.
Effects of UVB radiation on marine phytoplankton communities 总被引:1,自引:0,他引:1
The impact of enhanced and reduced UVB radiation (UVBR) on pelagic
ecosystems was studied during two mesocosm experiments in May and June/July
1994. The ambient UVBR exposure was either reduced with mylar foil or
artificially enhanced with UVB fluorescent tubes. Developments in the
phytoplankton communities were followed during 11 and 8 day periods using
several structural and functional parameters. In the May experiment,
enhanced UVBR significantly stimulated carbon dioxide fixation, activity of
alkaline phosphatase and content of fatty acids. In the June-July
experiment, the effects induced by changed UVBR were smaller with some
indications of decreased algal biomass with enhanced UVBR. Several of the
measured parameters indicated that the two experiments represented
different stages in the plankton community development. In the May
experiment, the community was in a development stage, moving from
nutrient-replete to nutrient-depleted conditions, while the community in
June/July was depleted of nutrients from the start. The stimulating effects
of UVBR in May are suggested to be the secondary effects of a
photochemically induced breakdown of dissolved organic matter, resulting in
an increase in available nutrients.
相似文献
6.
Investigating the interactions between marine cyanobacteria and their viruses (phages) is important towards understanding the dynamic of ocean's primary productivity. Genome sequencing of marine cyanophages has greatly advanced our understanding about their ecology and evolution. Among 24 reported genomes of cyanophages that infect marine picocyanobacteria, 17 are from cyanomyoviruses and six from cyanopodoviruses, and only one from cyanosiphovirus (Prochlorococcus phage P-SS2). Here we present four complete genome sequences of siphoviruses (S-CBS1, S-CBS2, S-CBS3 and S-CBS4) that infect four different marine Synechococcus strains. Three distinct subtypes were recognized among the five known marine siphoviruses (including P-SS2) in terms of morphology, genome architecture, gene content and sequence similarity. Our study revealed that cyanosiphoviruses are genetically diverse with polyphyletic origin. No core genes were found across these five cyanosiphovirus genomes, and this is in contrast to the fact that many core genes have been found in cyanomyovirus or cyanopodovirus genomes. Interestingly, genes encoding three structural proteins and a lysozyme of S-CBS1 and S-CBS3 showed homology to a prophage-like genetic element in two freshwater Synechococcus elongatus genomes. Re-annotation of the prophage-like genomic region suggests that S.?elongatus may contain an intact prophage. Cyanosiphovirus genes involved in DNA metabolism and replication share high sequence homology with those in cyanobacteria, and further phylogenetic analysis based on these genes suggests that ancient and selective genetic exchanges occurred, possibly due to past prophage integration. Metagenomic analysis based on the Global Ocean Sampling database showed that cyanosiphoviruses are present in relatively low abundance in the ocean surface water compared to cyanomyoviruses and cyanopodoviruses. 相似文献
7.
Karsten Mikael Dromph Susana Agusti Alberto Basset Javier Franco Peter Henriksen John Icely Sirpa Lehtinen Snejana Moncheva Marta Revilla Leonilde Roselli Kai Sørensen 《Hydrobiologia》2013,704(1):253-264
Characterisation of phytoplankton communities is important for classification of the ecological status of marine waters. In order to design a monitoring programme, it is important to know what degree of variation in the measurements occur at each level (water body, station and sample), so that resources can be spent in a way that maximise the precision of the measured parameters. Seven European water bodies were sampled to assess the variation in pigment concentrations and population densities attributed to water body, station and sample levels. It was found that the main proportion of the variation between pigment measurements was explained by the variation between stations (12–91% of variation) followed by the variation between water bodies (0–89% of variation). For measurements of population density, the main proportion of the variation between densities of cells recorded was explained by the variation between the taxonomists counting the samples (61%), whilst the main proportion of the variation between numbers of taxa recorded was explained by the variation between water bodies (83%). When the cell density of the nine dominant classes were analysed separately, the main proportion of variation was explained at the water body level for all but two class. 相似文献
8.
The relative importance of local and regional processes in shaping natural communities within a metacommunity context has been a focus of intense debate in recent years. Floodplain lakes provide a good system for testing this theoretical approach, as they undergo seasonal variations in physical, chemical and biological factors, as well as in their degree of connectivity. Here, we investigated how local phytoplankton communities in lakes of a tropical river-floodplain system (Araguaia River floodplain – Central Brazil) were affected by environmental and spatial (dispersal) predictors in two rainy and two dry seasons (two consecutive years). Partial redundancy analysis indicated that during the periods analyzed the effects of neither predictor were significant. Although we cannot exclude the possibility that these tropical phytoplankton communities could be regulated by stochastic events, we suggested that further studies will have greater explanatory power if they include other variables related to biotic interactions (e.g., abundance of grazers) and fine-scale environmental variation. 相似文献
9.
【目的】揭示东北稻田噬藻体psbA基因多样性,分析其系统进化地位,为噬藻体生态学研究提供数据支持。【方法】采用滤膜分离并浓缩噬体、PCR-克隆测序技术对我国东北稻田水体中噬藻体psbA基因进行调查。【结果】在东北稻田水体中共得到17条来自于噬藻体的psbA基因,经系统进化分析表明,我国东北稻田具有新的噬藻体的类群,与日本稻田生态系统中psbA基因类群相比,两地间噬藻体类群存在显著的差异,稻田水体中噬藻体psbA基因类群有别于海洋、湖泊类群。【结论】采用PCR-克隆测序技术以psbA基因为分子标记首次对我国东北稻田水体噬藻体类群进行调查,发现有新的噬藻体类群。 相似文献
10.
Viruses are ubiquitous components of the marine ecosystem. In the current study we investigated seasonal variations in the viral community in Norwegian coastal waters by pulsed-field gel electrophoresis (PFGE). The results demonstrated that the viral community was diverse, displaying dynamic seasonal variation, and that viral populations of 29 different sizes in the range from 26 to 500 kb were present. Virus populations from 260 to 500 kb and dominating autotrophic pico- and nanoeukaryotes showed similar dynamic variations. Using flow cytometry and real-time PCR, we focused in particular on one host-virus system: Synechococcus spp. and cyanophages. The two groups covaried throughout the year and were found in the highest amounts in fall with concentrations of 7.3 x 10(4) Synechococcus cells ml(-1) and 7.2 x 10(3) cyanophage ml(-1). By using primers targeting the g20 gene in PCRs on DNA extracted from PFGE bands, we demonstrated that cyanophages were found in a genomic size range of 26 to 380 kb. The genetic richness of the cyanophage community, determined by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified g20 gene fragments, revealed seasonal shifts in the populations, with one community dominating in spring and summer and a different one dominating in fall. Phylogenetic analysis of the sequences originating from PFGE and DGGE bands grouped the sequences into three groups, all with homology to cyanomyoviruses present in cultures. Our results show that the cyanophage community in Norwegian coastal waters is dynamic and genetically diverse and has a surprisingly wide genomic size range. 相似文献
11.
Prokaryotes and viruses play critical roles in marine ecosystems, where they are
both highly abundant and active. Although early work on both prokaryotes and viruses revealed little of their diversity, molecular biological approaches now allow us to break apart these black boxes. The most revealing methods have been cloning and sequencing of 16S rRNA genes, community fingerprinting (such as terminal restriction fragment length polymorphism; TRFLP), and fluorescent in situ hybridization. Viral diversity can now be analyzed by pulsed field gel electrophoresis (PFGE) of viral genomes. The present paper summarizes recent advances in bacterial and virus diversity studies, and presents examples of measurements from polar, tropical, and temperate marine waters. Terminal restriction fragment length polymorphism shows that many of the same operationally defined prokaryotic taxa are present in polar and tropical waters, but there are also some unique to each environment. By one measure, a sample from over a Philippine coral reef had about 100 operationally defined taxa, whereas one from the open tropical Atlantic had about 50 and from the icy Weddell Sea, about 60. Pulsed field gel electrophoresis of two depth profiles, to 500 m, from Southern California, measured 2 months apart, shows striking similarities in viral genome length diversity over time, and some distinct differences with depth. The euphotic zone samples had extremely similar apparent diversity, but samples from 150 m and 500 m were different. An obvious next step is to compare the bacterial and viral diversity patterns, because theory tells us they should be related. 相似文献
12.
Andrew D. Millard Katrin Zwirglmaier Mike J. Downey Nicholas H. Mann Dave J. Scanlan 《Environmental microbiology》2009,11(9):2370-2387
The vast majority of cyanophages isolated to date are cyanomyoviruses, a group related to bacteriophage T4. Comparative genome analysis of five cyanomyoviruses, including a newly sequenced cyanophage S-RSM4, revealed a 'core genome' of 64 genes, the majority of which are also found in other T4-like phages. Subsequent comparative genomic hybridization analysis using a pilot microarray showed that a number of 'host' genes are widespread in cyanomyovirus isolates. Furthermore, a hyperplastic region was identified between genes g15–g18 , within a highly conserved structural gene module, which contained a variable number of inserted genes that lacked conservation in gene order. Several of these inserted genes were host-like and included ptoX , gnd , zwf and petE encoding plastoquinol terminal oxidase, 6-phosphogluconate dehydrogenase, glucose 6-phosphate dehydrogenase and plastocyanin respectively. Phylogenetic analyses suggest that these genes were acquired independently of each other, even though they have become localized within the same genomic region. This hyperplastic region contains no detectable sequence features that might be mechanistically involved with the acquisition of host-like genes, but does appear to be a site specifically associated with the acquisition process and may represent a novel facet of the evolution of marine cyanomyoviruses. 相似文献
13.
Genetic diversity and resistance to marine pollution 总被引:3,自引:0,他引:3
E. Nevo R. Noy B. Lavie A. Beiles S. Muchtar 《Biological journal of the Linnean Society. Linnean Society of London》1986,29(2):139-144
We tested in the laboratory three pairs of species belonging to three genera and families of marine gastropods, Monodonta turbinata, M. turbiformis (Trochidae), Littorina punctata, L. neritoides (Littorinidae), Cerithium scabridum, C. rupestre (Cerithiidae), for resistance to diverse inorganic (heavy metals and NaC1) and organic (detergents and crude oil) pollutants. Each pair consisted of one narrow-niche species with low genetic diversity and one broad-niche species with higher genetic diversity. Evidence is presented that in all three cases the species with a higher level of genetic diversity was more resistant to all pollutants than its counterpart. These results suggest that fitness is positively correlated with heterozygosity and support the niche-width-variation hypothesis in regard to pollutants. The results also have practical implications for the identification of optimum marine species as genetic monitors of pollution. 相似文献
14.
The relationship between productivity (or biomass) and species diversity in ecological communities remains a hotly debated topic. While much is already known about vascular plants, little is known in other types of organisms. We used a broad and standardized database of phytoplankton samples from the Czech Republic, containing 413 samples of various types of stagnant waters to evaluate this relationship. Biomass was characterized by the total biovolume/ml, the total number of individuals/ml and cells/ml all giving similar results. All these indicators spanned over five orders of magnitude while the number of species ranged between 1 and 57. Diversity was characterized by indices of Hill’s unified notation series progressively accounting for species proportion effects. The number of species showed an asymmetric unimodal relationship with biomass. The relationship weakened when considering diversity indices including species proportions. At very low productivity values (characterized by low biomass), diversity was probably restricted by the ability of algae and cyanobacteria to survive a lack of nutrients, in high productivities, by the competition for light. Medium productivities, where maximum diversity was found, exhibited large variability of diversity values (including very low ones), suggesting that low diversity of phytoplankton samples can be caused by multitude of factors. 相似文献
15.
David M Needham Cheryl-Emiliane T Chow Jacob A Cram Rohan Sachdeva Alma Parada Jed A Fuhrman 《The ISME journal》2013,7(7):1274-1285
Observation of short-term temporal variation in bacterial and viral communities is important for understanding patterns of aquatic microbial diversity. We collected surface seawater once daily for 38 consecutive days with seven more samples interspersed over 40 more days at one location ∼2 km from Santa Catalina Island, California. Bacterial communities were analyzed by automated ribosomal intergenic spacer analysis (ARISA) and viral communities were analyzed by terminal restriction fragment length polymorphism (TRFLP) of the conserved T4-like myoviral gene encoding the major capsid protein (g23). Common bacterial and viral taxa were consistently dominant, and relatively few displayed dramatic increases/decreases or ‘boom/bust'' patterns that might be expected from dynamic predator-prey interactions. Association network analysis showed most significant covariations (associations) occurred among bacterial taxa or among viral taxa and there were several modular (highly-interconnected) associations (P⩽0.005). Associations observed between bacteria and viruses (P⩽0.005) occurred with a median time lag of 2 days. Regression of all pairwise Bray-Curtis similarities between samples indicated a rate of bacterial community change that slows from 2.1%–0.18% per day over a week to 2 months; the rate stays around 0.4% per day for viruses. Our interpretation is that, over the scale of days, individual bacterial and viral OTUs can be dynamic and patterned; resulting in statistical associations regarded as potential ecological interactions. However, over the scale of weeks, average bacterial community variation is slower, suggesting that there is strong community-level ecological resilience, that is, a tendency to converge towards a ‘mean'' microbial community set by longer-term controlling factors. 相似文献
16.
【目的】噬藻体(cyanophages)是特异性侵染蓝藻(cyanobacteria)的病毒,广泛分布于各类水体中,在调节蓝藻种群动态和密度、推动生物地球水生生态系统循环中起着重要作用。本研究的目的在于分离、鉴定噬藻体。【方法】本研究以海洋聚球藻(Synechococcus sp.) PCC 7002为指示宿主,从淡水水样中分离培养一株新型噬藻体Yong-L2-223,对其进行了宿主范围实验、全基因组测序、基因功能注释和系统进化分析。【结果】针对31株供试蓝藻的宿主范围实验,结果除指示藻PCC 7002 [属于聚球藻目(Synechococcales)]外,Yong-L2-223能够感染2株淡水蓝藻,分别是来源于滇池的绿色微囊藻(Microcystis viridis) FACHB-1342 [属于色球藻目(Chroococcales)]和水华束丝藻(Aphanizomenon flos-aquae)FACHB-1209[属于念珠藻目(Nostocales)]。既可在高盐条件下感染海洋蓝藻,又可在低盐条件下感染淡水蓝藻,Yong-L2-223具有广盐性。透射电镜观察表明,Yong-L2... 相似文献
17.
The rates of dark14CO2 fixation by natural phytoplankton communities growing in eutrophic and oligotrophic waters were studied with short-term in situ experiments. Three aspects were investigated: (1) the time course incorporation of14CO2 in darkness, (2) the depth variability in dark14CO2 fixation, and (3) the variability in14CO2 fixation within a year. The highest dark14CO2 incorporation rates were observed during the first interval of incubation (20 min) after which they approached a constant rate with time. The observed differences in dark14CO2 fixation rates between populations from different depths were associated with differences in species composition as well as with physiological differences caused by exposure to different illumination conditions prior to their exposure to darkness. Autocorrelation coefficients were computed for the analysis of variability of dark14CO2 fixation rates within a year. It was suggested that dark14CO2 incorporation might be a periodic phenomenon depending mainly on the productive capacity of the phytoplankton community. 相似文献
18.
Genetic diversity in marine algal virus communities as revealed by sequence analysis of DNA polymerase genes. 总被引:12,自引:7,他引:12 下载免费PDF全文
Algal-virus-specific PCR primers were used to amplify DNA polymerase gene (pol) fragments (683 to 689 bp) from the virus-sized fraction (0.02 to 0.2 microns) concentrated from inshore and offshore water samples collected from the Gulf of Mexico. Algal-virus-like DNA pol genes were detected in five samples collected from the surface and deep chlorophyll maximum. PCR products from an offshore station were cloned, and the genetic diversity of 33 fragments was examined by restriction fragment length polymorphism and sequence analysis. The five different genotypes or operational taxonomic units (OTUs) that were identified on the basis of restriction fragment length polymorphism banding patterns were present in different relative abundances (9 to 34%). One clone from each OTU was sequenced, and phylogenetic analysis showed that all of the OTUs fell within the family Phycodnaviridae. Four of the OTUs fell within a group of viruses (MpV) which infect the photosynthetic picoplankter Micromonas pusilla. The genetic diversity among these genotypes was as large as that previously found for MpV isolates from different oceans. The remaining genotype formed its own clade between viruses which infect M. pusilla and Chrysochromulina brevifilum. These results imply that marine virus communities contain a diverse assemblage of MpV-like viruses, as well as other unknown members of the Phycodnaviridae. 相似文献
19.
In this review we discuss the application of theoretical frameworks to the interpretation of viral gene sequence data, with particular reference to the hepatitis C virus (HCV). The increasing availability of such data means that it is now possible (and necessary) to proceed from simple qualitative models of viral evolution, to more quantitative frameworks based on statistical inference, notably population genetics and molecular phylogenetics. We argue that these approaches are invaluable tools to the virologist and are essential for understanding the dynamics of viral infection and the outcome of therapeutic strategies. We use several recent HCV data-sets to illustrate the methods. 相似文献