首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
UV damage to CHO cell DNA, measured by formation of thymine-containing dimers, increases from mitosis to early S phase. Computer simulation of UV absorption by the DNA of an idealized CHO cell at different stages in the cell cycle resembles the cycle dependence of UV damage. Incision at UV damage sites, measured by the accumulation of breaks in preexisting DNA during 30 minutes' post-irradiation incubation with the DNA synthesis inhibitors 1-β-D arabinofuranosylcytosine and hydroxyurea, increases from mitosis to interphase. Analysis of the dose dependence of DNA break accumulation indicates that both the affinity of the endonuclease for dimer sites and the maximum enzyme activity at saturating levels of dimers are significantly lower in mitosis than in interphase. The killing of CHO cells by UV is enhanced if repair is temporarily inhibited by ara C. The DNA gyrase inhibitor novobiocin prevents UV-induced incision.  相似文献   

2.
The action of the dimer-specific endonuclease V of bacteriophage T4 was studied on UV-irradiated, covalently-closed circular DNa. Form I ColE1 DNA preparations containing average dimer frequencies ranging from 2.5 to 35 pyrimidine dimers per molecule were treated with T4 endonuclease V and analysed by agarose gel electrophoresis. At all dimer frequencies examined, the production of form III DNA was linear with time and the double-strand scissions were made randomly on the ColE1 DNA genome. Since the observed fraction of form III DNA increased with increasing dimer frequency but the initial rate of loss of form I decreased with increasing dimer frequency, it was postulated that multiple single-strand scissions could be produced in a subset of the DNA population while some DNA molecules contained no scissions. When DNA containing an average of 25 dimers per circle was incubated with limiting enzyme concentrations, scissions appeared at most if not all dimmer sites in some molecules before additional strand scissions were produced in other DNA molecules. The results support a processive model for the interaction of T4 endonuclease V with UV-irradiated DNA.  相似文献   

3.
D G Stump  R S Lloyd 《Biochemistry》1988,27(6):1839-1843
T4 endonuclease V incises DNA at the sites of pyrimidine dimers through a two-step mechanism. These breakage reactions are preceded by the scanning of nontarget DNA and binding to pyrimidine dimers. In analogy to the synthetic tripeptides Lys-Trp-Lys and Lys-Tyr-Lys, which have been shown to be capable of producing single-strand scissions in DNA containing apurinic sites, endonuclease V has the amino acid sequence Trp-Tyr-Lys-Tyr-Tyr (128-132). Site-directed mutagenesis of the endonuclease V gene, denV, was performed at the Tyr-129 and at the Tyr-129 and Tyr-131 positions in order to convert the Tyr residues to nonaromatic amino acids to test their role in dimer-specific binding. The UV survival of repair-deficient (uvrA recA) Escherichia coli cells harboring the denV N-129 construction was dramatically reduced relative to wild-type denV+ cells. The survival of denV N-129,131 cells was indistinguishable from that of the parental strain lacking the denV gene. The mutant endonuclease V proteins were then characterized with regard to (1) dimer-specific nicking activity, (2) apurinic nicking activity, and (3) binding affinity to UV-irradiated DNA. Dimer-specific nicking activity and dimer-specific binding for both denV N-129 and N-129,131 were abolished, while apurinic-specific nicking was substantially retained in denV N-129,131 but was abolished in denV N-129. These results indicate that Tyr-129 and Tyr-131 positions of endonuclease V are at least important in pyrimidine dimer-specific binding and possibly nicking activity.  相似文献   

4.
The ability of DNA repair enzymes to carry out excision repair of pyrimidine dimers in SV40 minichromosomes irradiated with 16 to 64 J/m2 of UV light was examined. Half of the dimers were substrate for the DNA glycosylase activity of phage T4 UV endonuclease immediately after irradiation, but this limit decreased to 27% after 2 h at 0 degrees C. Moreover, the apyrimidinic (AP) endonuclease activity of the enzyme did not incise all of the AP sites created by glycosylase activity, although all AP sites were substrate for HeLa AP endonuclease II. The initial rate of the glycosylase was 40% that upon DNA. After incision by the T4 enzyme, excision was mediated by HeLa DNase V (acting with an exonuclease present in the chromatin preparation). Under physiological salt conditions, excision did not proceed appreciably beyond the damaged nucleotides in DNA or chromatin. With chromatin, about 70% of the accessible dimers were removed, but at a rate slower than for DNA. Finally, HeLa DNA polymerase beta was able to fill the short gaps created after dimer excision, and these patches were sealed by T4 DNA ligase. Overall, roughly 30% of the sites incised by the endonuclease were ultimately sealed by the ligase. The resistance of some sites was due to interference with the ligase by the chromatin structure, as only 30-40% of the nicks created in chromatin by pancreatic DNase could be sealed by T4 or HeLa DNA ligases. The overall excision repair process did not detectably disrupt the chromatin structure, since the repair label was recovered in Form I DNA present in 75 S condensed minichromosomes. Although other factors might stimulate the rate of this repair process, it appears that the enzymes utilized could carry out excision repair of chromatin to a limit near that observed at the initial rate in mammalian cells in vivo.  相似文献   

5.
Human diploid cells (WI38) were pre-labeled with 32Pi, exposed to ultraviolet irradiation and then pulse labeled with [3H]thymidine. The extracted DNA from these cells was subsequently treated with the T4-endonuclease V, an enzyme which specifically nicks DNA strands at positions adjacent to pyrimidine dimers. Sedimentation in alkaline sucrose gradients revealed that the DNA synthesized after irradiation, as well as that made before, contained endonuclease-sensitive sites. Our results suggest that pyrimidine dimers are transferred from parental to daughter DNA strands during post-irradiation incubation. Sedimentation in neutral sucrose gradients showed that the molecular weight of native DNA was not affected by the endonuclease treatment, suggesting that the gaps appearing in daughter strands after irradiation are not opposite dimers or that the enzyme cannot recognize dimers in the gap regions.  相似文献   

6.
Endonuclease V from E. coli infected with phage T4 was used to evaluate the frequency and the removal of pyrimidine dimers from DNA in cultured mammalian cells. Cellular membranes were made permeable to the enzyme by two cycles of rapid freezing and thawing. The number of endonuclease-sensitive sites in DNA was assayed by sedimentation in alkaline sucrose gradients upon which the cells were lysed directly. Comparison of the frequency of endonuclease-sensitive sites with the frequency of pyrimidine dimers determined by chromatographic analysis of hydrolysed DNA indicated that about 50% of the dimers in the permeabilized cells were substrates for T4 endonuclease V. This was confirmed by observation that when DNA treated with the enzyme in situ was purified, it contained the expected additional number of endonuclease-sensitive sites if again treated with the enzyme. The percentage of pyrimidine dimers recognized by T4 endonuclease V was enhanced to nearly 100% by exposing the permeabilized cells to 2 M NaCl before the enzyme was introduced. This method allowed the measurement of frequencies of endonuclease-sensitive sites after doses of UV irradiation at low as 0.5 J/m2. Loss of endonuclease sites from cellular DNA was observed during post-irradiation incubation of V79 Chinese hamster cells and several human cell strains. A comparison of the results obtained in human cells with or without the high-salt exposure before endonuclease treatment suggested that the dimers recognized under low-salt conditions may be removed slightly faster than those recognized only after high-salt exposure.  相似文献   

7.
T4 endonuclease V is a pyrimidine dimer-specific DNA repair enzyme which has been previously shown not to require metal ions for either of its two catalytic activities or its DNA binding function by virtue of its ability to function in the presence of metal-chelating agents. However, we have investigated whether the single cysteine within the enzyme was able to bind metal salts and influence the various activities of this repair enzyme. A series of metals (Hg2+, Ag+, Cu+) were shown to inactivate both endonuclease Vs pyrimidine dimer-specific DNA glycosylase activity and the subsequent apurinic nicking activity. The binding of metal to endonuclease V did not interfere with nontarget DNA scanning or pyrimidine dimer-specific binding. The Cys-78 codon within the endonuclease V gene was changed by oligonucleotide site-directed mutagenesis to Thr-78 and Ser-78 in order to determine whether the native cysteine was directly involved in the enzyme's DNA catalytic activities and whether the cysteine was primarily responsible for the metal binding. The mutant enzymes were able to confer enhanced ultraviolet light (UV) resistance to DNA repair-deficient Escherichia coli at levels equal to that conferred by the wild type enzyme. The C78T mutant enzyme was purified to homogeneity and shown to be catalytically active on pyrimidine dimer-containing DNA. The catalytic activities of the C78T mutant enzyme were demonstrated to be unaffected by the addition of Hg2+ or Ag+ at concentrations 1000-fold greater than that required to inhibit the wild type enzyme. These data suggest that the cysteine is not required for enzyme activity but that the binding of certain metals to that amino acid block DNA incision by either preventing a conformational change in the enzyme after it has bound to a pyrimidine dimer or sterically interfering with the active site residue's accessibility to the pyrimidine dimer.  相似文献   

8.
The action of T4 endonuclease V on DNA containing various photoproducts was investigated. (1) The enzyme introduced strand breaks in DNA from ultraviolet-irradiated vegetative cells of Bacillus subtilis but not in DNA from irradiated spores of the same organism. DNA irradiated with long wavelength (360 nm peak) ultraviolet light in the presence of 4,5',8-trimethylpsoralen was not attacked by the enzyme. These results indicate that 5-thyminyl 5,6-dihydrothymine (spore photoproduct) and psoralen mediated cross-links in DNA are not recognized by T4 endonuclease V. (2) DNA of phage PBS1, containing uracil in place of thymine, and DNA of phage SPO1, containing hydroxymethyluracil in place of thymine, were fragmented by the enzyme when the DNA's had been irradiated with ultraviolet light. T4 endonuclease V seems to act on DNA with pyrimidine dimers whether the dimers contain thymine residues or not.  相似文献   

9.
The T4 ultraviolet endonuclease was previously shown to produce strand incisions (nicks) in ultraviolet-irradiated DNA on the 5' side of thymine dimers. The present studies demonstrate that the purified endonuclease creates 3'-OH and 5'-P termini at the sites of nicking. Photoreactivation of ultraviolet-sensitive sites, thereby demonstrating directly endonucleause has a molecular weight of approximately 18,000 and attacks ultraviolet-irradiated single-stranded Escherichia coli and M-13 DNA.  相似文献   

10.
Cleavage of specific DNA sequences by the restriction enzymes EcoRI, HindIII and TaqI was prevented when the DNA was irradiated with ultraviolet light. Most of the effects were attributed to cyclobutane pyrimidine dimers in the recognition sequences; the effectiveness of irradiation was directly proportional to the number of potential dimer sites in the DNA. Combining EcoRI with dimer-specific endonuclease digestion revealed that pyrimidine dimers blocked cleavage within one base-pair on the strand opposite to the dimer but did not block cleavage three to four base-pairs away on the same strand. These are the probable limits for the range of influence of pyrimidine dimers along the DNA, at least for this enzyme. The effect of irradiation on cleavage by TaqI seemed far greater than expected for the cyclobutane dimer yield, possibly because of effects from photoproducts flanking the tetranucleotide recognition sequence and the effect of non-cyclobutane (6-4)pyrimidine photoproducts involving adjacent T and C bases.  相似文献   

11.
Endonuclease V of bacteriophage T4 has been described as an enzyme, coded for by the denV gene, that incises UV-irradiated DNA. It has recently been proposed that incision of irradiated DNA by this enzyme and the analogous "correndonucleases" I and II of Micrococcus luteus requires the sequential action of a pyrimidine dimer-specific DNA glycosylase and an apyrimidinic/apurinic endonuclease. In support of this two-step mechanism, we found that our preparations of T4 endonuclease V contained a DNA glycosylase activity that produced alkali-labile sites in irradiated DNA and an apyrimidinic/apurinic endonuclease activity that converted these sites to nicks. Both activities could be detected in the presence of 10 mM EDTA. In experiments designed to determine which of the activities is coded by the denV gene, we found that the glycosylase was more heat labile in extracts of Escherichia coli infected with either of two thermosensitive denV mutants than in extracts of cells infected with wild-type T4. In contrast, apyrimidinic/apurinic endonuclease activity was no more heat labile in extracts of the former than in extracts of the latter. Our results indicate that the denV gene codes for a DNA glycosylase specific for pyrimidine dimers.  相似文献   

12.
Chinese hamster ovary cells and two UV-hypersensitive derivatives were used to determine the importance of DNA excision repair for split-dose recovery. In the wild-type cells 75% of the maximum theoretical recovery was observed when the fractions were delivered at 2-h intervals. Very little recovery was evident in the two hypersensitive cell lines. Using radioimmunoassays specific for (6-4)photoproducts and cyclobutane dimers, the ability of UV-irradiated repair-deficient cells representing 5 complementation groups to repair these 2 photoproducts was determined. Removal of antibody-binding sites specific for (6-4)photoproducts was 80% complete in 6 h and was defective in the UV-sensitive cells. In contrast, only 20-60% of antibody-binding sites specific for cyclobutane dimers were removed 18 h post-irradiation, and the extent of removal was the same in normal and defective cell lines. We conclude that repair of (6-4)photoproducts accounts for split-dose recovery. In addition, we conclude that a consequence of DNA repair in CHO cells is modification rather than removal of cyclobutane dimers.  相似文献   

13.
T4 endonuclease V is a pyrimidine dimer-specific endonuclease which generates incisions in DNA at the sites of pyrimidine dimers by a processive reaction mechanism. A model is presented in which the degree of processivity is directly related to the efficacy of the one-dimensional diffusion of endonuclease V on DNA by which the enzyme locates pyrimidine dimers. The modulation of the processive nicking activity of T4 endonuclease V on superhelical covalently closed circular DNA (form I) which contains pyrimidine dimers has been investigated as a function of the ionic strength of the reaction. Agarose gel electrophoresis was used to separate the three topological forms of the DNA which were generated in time course reactions of endonuclease V with dimer-containing form I DNA in the absence of NaCl, and in 25, 50, and 100 mM NaCl. The degree of processivity was evaluated in terms of the mass fraction of form III (linear) DNA which was produced as a function of the fraction of form I DNA remaining. Processivity is maximal in the absence of NaCl and decreases as the NaCl concentration is increased. At 100 mM NaCl, processivity is abolished and endonuclease V generates incisions in DNA at the site of dimers by a distributive reaction mechanism. The change from the distributive to a processive reaction mechanism occurs at NaCl concentrations slightly below 50 mM. The high degree of processivity which is observed in the absence of NaCl is reversible to the distributive mechanism, as demonstrated by experiments in which the NaCl concentration was increased during the time course reaction. In addition, unirradiated DNA inhibited the incision of irradiated DNA only at NaCl concentrations at which processivity was observed.  相似文献   

14.
Perturbations of Simian Virus 40 (SV40) DNA replication by ultraviolet (UV) light during the lytic cycle in permissive monkey CV-1 cells resemble those seen in host cell DNA replication. Formation of Form I DNA molecules (i.e. completion of SV40 DNA synthesis) was more sensitive to UV irradiation than synthesis of replicative intermediates or Form II molecules, consistent with inhibition of DNA chain elongation. The observed amounts of [3H]thymidine incorporated in UV-irradiated molecules could be predicted on the assumption that pyrimidine dimers are responsible for blocking nascent DNA strand growth. The relative proportion of labeled Form I molecules in UV-irradiated cultures rapidly increased to near-control values with incubation after 20 or 40 J/m2 of light (0.9--1.0 or 1.8--2.0 dimers per SV40 genome, respectively). This rapid increase and the failure of Form II molecules to accumulate suggest that SV40 growing forks can rapidly bypass many dimers. Form II molecules formed after UV irradiation were not converted to linear (Form III) molecules by the dimer-specific T4 endonuclease V, suggesting either that there are no gaps opposite dimers in these molecules or that T4 endonuclease V cannot use Form II molecules as substrates.  相似文献   

15.
Numerous DNA-interactive proteins have been shown to locate specific sequences within large domains of non-target DNA in vitro and in vivo by a one-dimensional diffusion mechanism; however, the biological significance of this process has not been evaluated. We have examined the biological consequences of sliding for the pyrimidine dimer-specific DNA repair enzyme T4 endonuclease V, an enzyme which scans non-target DNA both in vitro and in vivo. An endonuclease V mutant was constructed whose only altered biochemical characteristic, measured in vitro, was a loss in its ability to slide on non-target DNA. In contrast to the native enzyme, when the mutated endonuclease V was expressed in DNA repair-deficient Escherichia coli, no enhanced ultraviolet survival was conferred. These results suggest that the mechanisms which DNA-interactive proteins employ to enhance the probability of locating their target sequences are of significant biological importance.  相似文献   

16.
The pattern of preferential DNA repair of UV-induced pyrimidine dimers was studied in repair-deficient Chinese hamster ovary (CHO) cells transfected with the human excision repair gene, ERCC-1. Repair efficiency was measured in the active dihydrofolate reductase (DHFR) gene and in its flanking, non-transcribed sequences in three cell lines: Wild type CHO cells, a UV-sensitive excision deficient CHO mutant, and the transfected line of the mutant carrying the expressed ERCC-1 gene. The CHO cells transformed with the human ERCC-1 gene repaired the active DHFR gene much more efficiently than the non-transcribed sequences, a pattern similar to that seen in wild type CHO cells. This pattern differs from that previously reported in CHO cells transfected with the denV gene of bacteriophage T4, in which both active and non-transcribed DNA sequences were efficiently repaired (Bohr and Hanawalt, Carcinogenesis 8: 1333-1336, 1987). The ERCC-1 gene product may specifically substitute for the repair enzyme present in normal hamster cells while the denV product, T4 endonuclease V, does not be appear to be constrained in its access to inactive chromatin.  相似文献   

17.
Site-directed mutagenesis of the T4 endonuclease V gene: role of lysine-130   总被引:3,自引:0,他引:3  
A Recinos  R S Lloyd 《Biochemistry》1988,27(6):1832-1838
The DNA sequence of the bacteriophage T4 denV gene which encodes the DNA repair enzyme endonuclease V was previously constructed behind the hybrid lambda promoter OLPR in a plasmid vector. The OLPR-denV sequence was subcloned in M13mp18 and used as template to construct site-specific mutations in the denV structural gene in order to investigate structure/function relationships between the primary structure of the protein and its various DNA binding and catalytic activities. The Lys-130 residue of the wild-type endonuclease V has been postulated to be associated with its apurinic endonuclease (AP-endonuclease) activity. The codon for Lys-130 was changed to His-130 or Gly-130, and each denV sequence was subcloned into a pEMBL expression vector. These plasmids were transformed into repair-deficient Escherichia coli (uvrA recA), and the following parameters were examined for cells or cell extracts: expression and accumulation of endonuclease V protein (K-130, H-130, or G-130); survival after UV irradiation; dimer-specific DNA binding; and kinetics of phosphodiester bond scission at pyrimidine dimer sites, dimer-specific N-glycosylase activity, and AP-endonuclease activity. The enzyme's intracellular accumulation was significantly decreased for G-130 and slightly decreased for H-130 despite normal levels of denV-specific mRNA for each mutant. On a molar basis, the endonuclease V gene products generally gave parallel levels of each of the catalytic and binding functions with K-130 greater than H-130 greater than G-130 much greater than control denV-.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The purification and properties of an ultraviolet (UV) repair endonuclease are described. The enzyme is induced by infection of cells of Escherichia coli with phage T4 and is missing from extracts of cells infected with the UV-sensitive and excision-defective mutant T4V(1). The enzyme attacks UV-irradiated deoxyribonucleic acid (DNA) containing either hydroxymethylcytosine or cytosine, but does not affect native DNA. The specific substrate in UV-irradiated DNA appears to be pyrimidine dimer sites. The purified enzyme alone does not excise pyrimidine dimers from UV-irradiated DNA. However, dimer excision does occur in the presence of the purified endonuclease plus crude extract of cells infected with the mutant T4V(1).  相似文献   

19.
Introduction of the denV gene of phage T4, encoding the pyrimidine dimer-specific endonuclease V, into xeroderma pigmentosum cells XP12RO(M1) was reported to result in partial restoration of colony-forming ability and excision repair synthesis. We have further characterized 3 denV-transformed XP clones in terms of rates of excision of pyrimidine dimers and size of the resulting resynthesized regions following exposure to 100 J/m2 from an FS-40 sunlamp. In the denV-transformed XP cells we observed 50% dimer removal within 3-6 h after UV exposure as compared to no measurable removal in the XP12RO(M1) line and 50% dimer excision after 18 h in the GM637A human, control cells. Dimer removal was assayed with Micrococcus luteus UV-endonuclease in conjunction with sedimentation of treated DNA in alkaline sucrose gradients. The size of the resulting repaired regions was determined by the bromouracil photolysis technique. Based on the photolytic sensitivity of DNA repaired in the presence of bromodeoxyuridine, we calculated that the excision of a dimer in the GM637A cells appears to be accompanied by the resynthesis of a region approximately 95 nucleotides in length. Conversely, the resynthesized regions in the denV-transformed clones were considerably smaller and were estimated to be between 13 and 18 nucleotides in length. These results may indicate that either the endonuclease that initiated dimer repair dictated the size of the resynthesized region or that the long-patch repair observed in the normal cells resulted from the repair of non-dimer DNA lesions.  相似文献   

20.
An endonuclease purified approximately 3,200-fold from Micrococcus luteus is active on native ultraviolet-irradiated deoxyribonucleic acid (DNA), but is inactive on unirradiated native or denatured DNA and has no activity toward irradiated denatured DNA. The major type of lesion for the nucleolytic activity is the cyclobutane pyrimidine dimer. The enzyme makes a number of single-strand breaks approximately equal to the number of dimers, but dimers are not excised. This endonuclease-a small molecular weight protein-therefore has all the attributes hypothesized for the first enzyme in the sequential steps in repair of DNA in vivo. Another paper shows that the endonuclease is able to reactivate ultraviolet-irradiated transforming DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号