首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wu W  Pujol C  Lockhart SR  Soll DR 《Genetics》2005,169(3):1311-1327
Candida albicans, which is diploid, possesses a single mating-type (MTL) locus on chromosome 5, which is normally heterozygous (a/alpha). To mate, C. albicans must undergo MTL homozygosis to a/a or alpha/alpha. Three possible mechanisms may be used in this process, mitotic recombination, gene conversion, or loss of one chromosome 5 homolog, followed by duplication of the retained homolog. To distinguish among these mechanisms, 16 spontaneous a/a and alpha/alpha derivatives were cloned from four natural a/alpha strains, P37037, P37039, P75063, and P34048, grown on nutrient agar. Eighteen polymorphic (heterozygous) markers were identified on chromosome 5, 6 to the left and 12 to the right of the MTL locus. These markers were then analyzed in MTL-homozygous derivatives of the four natural a/alpha strains to distinguish among the three mechanisms of homozygosis. An analysis of polymorphisms on chromosomes 1, 2, and R excluded meiosis as a mechanism of MTL homozygosis. The results demonstrate that while mitotic recombination was the mechanism for homozygosis in one offspring, loss of one chromosome 5 homolog followed by duplication of the retained homolog was the mechanism in the remaining 15 offspring, indicating that the latter mechanism is the most common in the spontaneous generation of MTL homozygotes in natural strains of C. albicans in culture.  相似文献   

2.
Lockhart SR  Wu W  Radke JB  Zhao R  Soll DR 《Genetics》2005,169(4):1883-1890
The majority of Candida albicans strains in nature are a/alpha and must undergo homozygosis to a/a or alpha/alpha to mate. Here we have used a mouse model for systemic infection to test the hypothesis that a/alpha strains predominate in nature because they have a competitive advantage over a/a and alpha/alpha offspring in colonizing hosts. Single-strain injection experiments revealed that a/alpha strains were far more virulent than either their a/a or alpha/alpha offspring. When equal numbers of parent a/alpha and offspring a/a or alpha/alpha cells were co-injected, a/alpha always exhibited a competitive advantage at the time of extreme host morbidity or death. When equal numbers of an engineered a/a/alpha2 strain and its isogenic a/a parent strain were co-injected, the a/a/alpha2 strain exhibited a competitive advantage at the time of host morbidity or death, suggesting that the genotype of the mating-type (MTL) locus, not associated genes on chromosome 5, provides a competitive advantage. We therefore propose that heterozygosity at the MTL locus not only represses white-opaque switching and genes involved in the mating process, but also affects virulence, providing a competitive advantage to the a/alpha genotype that conserves the mating system of C. albicans in nature.  相似文献   

3.
Because Candida dubliniensis is closely related to Candida albicans, we tested whether it underwent white-opaque switching and mating and whether white-opaque switching depended on MTL homozygosity and mating depended on switching, as they do in C. albicans. We also tested whether C. dubliniensis could mate with C. albicans. Sequencing revealed that the MTLalpha locus of C. dubliniensis was highly similar to that of C. albicans. Hybridization with the MTLa1, MTLa2, MTLalpha1, and MTLalpha2 open reading frames of C. albicans further revealed that, as in C. albicans, natural strains of C. dubliniensis exist as a/alpha, a/a, and alpha/alpha, but the proportion of MTL homozygotes is 33%, 10 times the frequency of natural C. albicans strains. C. dubliniensis underwent white-opaque switching, and, as in C. albicans, the switching was dependent on MTL homozygosis. C. dubliniensis a/a and alpha/alpha cells also mated, and, as in C. albicans, mating was dependent on a switch from white to opaque. However, white-opaque switching occurred at unusually high frequencies, opaque cell growth was frequently aberrant, and white-opaque switching in many strains was camouflaged by an additional switching system. Mating of C. dubliniensis was far less frequent in suspension cultures, due to the absence of mating-dependent clumping. Mating did occur, however, at higher frequencies on agar or on the skin of newborn mice. The increases in MTL homozygosity, the increase in switching frequencies, the decrease in the quality of switching, and the decrease in mating efficiency all reflected a general deterioration in the regulation of developmental processes, very probably due to the very high frequency of recombination and genomic reorganization characteristic of C. dubliniensis. Finally, interspecies mating readily occurred between opaque C. dubliniensis and C. albicans strains of opposite mating type in suspension, on agar, and on mouse skin. Remarkably, the efficiency of interspecies mating was higher than intraspecies C. dubliniensis mating, and interspecies karyogamy occurred readily with apparently the same sequence of nuclear migration, fusion, and division steps observed during intraspecies C. albicans and C. dubliniensis mating and Saccharomyces cerevisiae mating.  相似文献   

4.
Humans and animals often become coinfected with pathogen strains that differ in virulence. The ensuing interaction between these strains can, in theory, be a major determinant of the direction of selection on virulence genes in pathogen populations. Many mathematical analyses of this assume that virulent pathogen lineages have a competitive advantage within coinfected hosts and thus predict that pathogens will evolve to become more virulent where genetically diverse infections are common. Although the implications of these studies are relevant to both fundamental biology and medical science, direct empirical tests for relationships between virulence and competitive ability are lacking. Here we use newly developed strain-specific real-time quantitative polymerase chain reaction protocols to determine the pairwise competitiveness of genetically divergent Plasmodium chabaudi clones that represent a wide range of innate virulences in their rodent host. We found that even against their background of widely varying genotypic and antigenic properties, virulent clones had a competitive advantage in the acute phase of mixed infections. The more virulent a clone was relative to its competitor, the less it suffered from competition. This result confirms our earlier work with parasite lines derived from a single clonal lineage by serial passage and supports the virulence-competitive ability assumption of many theoretical models. To the extent that our rodent model captures the essence of the natural history of malaria parasites, public health interventions which reduce the incidence of mixed malaria infections should have beneficial consequences by reducing the selection for high virulence.  相似文献   

5.
A small proportion of clinical strains of Candida albicans undergo white-opaque switching. Until recently it was not clear why, since most strains carry the genes differentially expressed in the unique opaque phase. The answer to this enigma lies in the mating process. The majority of C. albicans strains are heterozygous for the mating type locus MTL (a/alpha) and cannot undergo white-opaque switching. However, when these cells undergo homozygosis at the mating type locus (i.e., become a/a or alpha/alpha), they can switch, and they must switch in order to mate. Even though the newly identified stages of mating mimic those of Saccharomyces cerevisiae, the process differs in its dependency on switching, and the effects switching has on gene regulation. This unique feature of C. albicans mating appears to be intimately intertwined with its pathogenesis. The unique, newly discovered dependencies of switching on homozygosis at the MTL locus and of mating on switching are, therefore, reviewed within the context of pathogenesis.  相似文献   

6.
7.
Candida albicans is the single, most frequently isolated human fungal pathogen. As with most fungal pathogens, the factors which contribute to pathogenesis in C. albicans are not known, despite more than a decade of molecular genetic analysis. Candida albicans was thought to be asexual until the discovery of the MTL loci homologous to the mating type (MAT) loci in Saccharomyces cerevisiae led to the demonstration that mating is possible. Using Candida albicans mutants in genes likely to be involved in mating, we analysed the process to determine its similarity to mating in Saccharomyces cerevisiae. We examined disruptions of three of the genes in the MAPK pathway which is involved in filamentous growth in both S. cerevisiae and C. albicans and is known to control pheromone response in the former fungus. Disruptions in HST7 and CPH1 blocked mating in both MTLa and MTL(alpha) strains, whereas disruptions in STE20 had no effect. A disruption in KEX2, a gene involved in processing the S. cerevisiae pheromone Mf(alpha), prevented mating in MTL(alpha) but not MTLa cells, whereas a disruption in HST6, the orthologue of the STE6 gene which encodes an ABC transporter responsible for secretion of the Mfa pheromone, prevented mating in MTLa but not in MTL(alpha) cells. Disruption of two cell wall genes, ALS1 and INT1, had no effect on mating, even though ALS1 was identified by similarity to the S. cerevisiae sexual agglutinin, SAG1. The results reveal that these two diverged yeasts show a surprising similarity in their mating processes.  相似文献   

8.
One hundred and twenty Candida albicans clinical isolates from the late 1980s and early 1990s were examined for homozygosity at the MTL locus. Of these, 108 were heterozygous (MTLa/MTLalpha), whereas seven were MTLa and five were MTLalpha. Five of the homozygous isolates were able to switch to the opaque cell morphology, while opaque cells were not detectable among the remaining seven. Nevertheless, all but one of the isolates homozygous at the MTL locus were shown to mate and to yield cells containing markers from both parents; the non-mater was found to have a frameshift in the MTLalpha1 gene. In contrast to Saccharomyces cerevisiae, C. albicans homozygotes with no active MTL allele failed to mate rather than mating as a cells. There was no correlation between homozygosity and fluconazole resistance, mating and fluconazole resistance or switching and fluconazole resistance, in part because most of the strains were isolated before the widespread use of this antifungal agent, and only three were in fact drug resistant. Ten of the 12 homozygotes had rearranged karyotypes involving one or more homologue of chromosomes 4, 5, 6 and 7. We suggest that karyotypic rearrangement, drug resistance and homozygosity come about as the result of induction of hyper-recombination during the infection process; hence, they tend to occur together, but each is the independent result of the same event. Furthermore, as clinical strains can mate and form tetraploids, mating and marker exchange are likely to be a significant part of the life cycle of C. albicans in vivo.  相似文献   

9.
The major repeat sequence (MRS) is found at least once on all but one chromosome in Candida albicans, but as yet it has no known relation to the phenotype. The MRS affects karyotypic variation by serving as a hot spot for chromosome translocation and by expanding and contracting internal repeats, thereby changing chromosome length. Thus, MRSs on different chromosomes and those on chromosome homologues can differ in size. We proposed that the MRS's unique repeat structure and, more specifically, the size of the MRS could also affect karyotypic variation by altering the frequency of mitotic nondisjunction. Subsequent analysis shows that both natural and artificially induced differences in the size of the chromosome 5 MRS can affect chromosome segregation. Strains with chromosome 5 homologues that differ in the size of the naturally occurring MRSs show a preferential loss of the homologue with the larger MRS on sorbose, indicating that a larger MRS leads to a higher risk of mitotic nondisjunction for that homologue. While deletion of an MRS has no deleterious effect on the deletion chromosome under normal growth conditions and leads to no obvious phenotype, strains that have the MRS deleted from one chromosome 5 homologue preferentially lose the homologue with the MRS remaining. This effect on chromosome segregation is the first demonstration of a phenotype associated with the MRS.  相似文献   

10.
11.
Intrahost competition between parasite genotypes has been predicted to be an important force shaping parasite ecology and evolution and has been extensively cited as a mechanism for the evolution of increased parasite virulence. However, empirical evidence demonstrating the existence and nature of intraspecific competition is lacking for many parasites. Here, we compared within-host competitiveness between genetic strains of Schistosoma mansoni with high (HIGH-V) or low (LOW-V) virulence to their intermediate snail host, Biomphalaria glabrata. Groups of snails were exposed to either one or the other of two parasite strains, or a mixed infection of both strains, and the resulting progeny were identified using a molecular marker. In two separate experiments investigating simultaneous and sequential infections, we demonstrated that the lifetime reproductive success of parasite strain HIGH-V was reduced in the presence of a faster replicating parasite genotype, LOW-V, regardless of whether it was in a majority or minority in the initial inoculum of the simultaneous exposure or of its relative position in the sequential exposure experiment. Thus, we demonstrate competition between parasite genotypes and asymmetry in competitive success between parasite strains. Moreover, since the less virulent strain investigated here had a competitive advantage, we suggest that a high frequency of multiple infections could favor the evolution of less, rather than more, virulent parasites in this system.  相似文献   

12.
Comparative study of virulence of B. anthracis strains harbouring pXO1 and pXO2 plasmids in mice and guinea pigs showed that among six B. anthracis strains, three were 100-1000 times less virulent for guinea pigs. Genetic construction of B. anthracis strains using transduction and conjugation transfer of resident plasmids permitted us to rule out the effects of modified pXO1 and pXO2 replicons and to prove the existence of nonidentified chromosome locuses responsible for the development of an infectious process in anthrax, along with plasmid determinants of virulence.  相似文献   

13.
14.
To identify Candida albicans genes whose proteins are necessary for host cell interactions and virulence, a collection of C. albicans insertion mutants was screened for strains with reduced capacity to damage endothelial cells in vitro. This screen identified CKA2. CKA2 and its homologue CKA1 encode the catalytic subunits of the protein kinase CK2. cka2delta/cka2delta strains of C. albicans were constructed and found to have significantly reduced capacity to damage both endothelial cells and an oral epithelial cell line in vitro. Although these strains invaded endothelial cells similarly to the wild-type strain, they were defective in oral epithelial cell invasion. They were also hypersusceptible to hydrogen peroxide, but not to high salt or to cell wall damaging agents. A cka1delta/cka1delta mutant caused normal damage to both endothelial cells and oral epithelial cells, and it was not hypersusceptible to hydrogen peroxide. However, overexpression of CKA1 in a cka2delta/cka2delta strain restored wild-type phenotype. Although the cka2delta/cka2delta mutant had normal virulence in the mouse model of haematogenously disseminated candidiasis, it had significantly attenuated virulence in the mouse model of oropharyngeal candidiasis. Therefore, Cka2p governs the interactions of C. albicans with endothelial and oral epithelial cells in vitro and virulence during oropharyngeal candidiasis.  相似文献   

15.
Mannoproteins are fungal cell wall components which play a main role in host-parasite relationship. Camp65p is a putative beta-glucanase mannoprotein of 65 kDa which has been characterized as a main target of human immune response against Candida albicans. However, nothing is known about its specific contribution to the biology and virulence of this fungus. We constructed CAMP65 knock-out mutants including null camp65/camp65 and CAMP65/camp65 heterozygous strains. The null strains had the same growth rate and morphology under yeast form as the wild-type strain but they were severely affected in hyphal morphogenesis both in vitro and in vivo. Hyphae formation was restored in revertant strains. The null mutants lost adherence to the plastic, and this was in keeping with the strong inhibition of fungal cell adherence to plastic exerted by anti-Camp65p antibodies. The null mutants were also significantly less virulent than the parental strains, and this loss of virulence was observed both in systemic and in mucosal C. albicans infection models. Nonetheless, the virulence in both infectious models was regained by the CAMP65 revertants. Thus, CAMP65 of C. albicans encodes a putative beta-glucanase, mannoprotein adhesin, which has a dual role (hyphal cell wall construction and virulence), accounting for the particular relevance of host immune response against this mannoprotein.  相似文献   

16.
17.
The relationship between the configuration of the mating type locus (MTL) and white-opaque switching in Candida albicans has been examined. Seven genetically unrelated clinical isolates selected for their capacity to undergo the white-opaque transition all proved to be homozygous at the MTL locus, either MTLa or MTLalpha. In an analysis of the allelism of 220 clinical isolates representing the five major clades of C. albicans, 3.2% were homozygous and 96.8% were heterozygous at the MTL locus. Of the seven identified MTL homozygotes, five underwent the white-opaque transition. Of 20 randomly selected MTL heterozygotes, 18 did not undergo the white-opaque transition. The two that did were found to become MTL homozygous at very high frequency before undergoing white-opaque switching. Our results demonstrate that only MTL homozygotes undergo the white-opaque transition, that MTL heterozygotes that become homozygous at high frequency exist, and that the generation of MTL homozygotes and the white-opaque transition occur in isolates in different genetic clades of C. albicans. Our results demonstrate that mating-competent strains of C. albicans exist naturally in patient populations and suggest that mating may play a role in the genesis of diversity in this pernicious fungal pathogen.  相似文献   

18.
The Candida albicans CSH3 gene encodes a functional and structural homologue of Shr3p, a yeast protein that is specifically required for proper uptake and sensing of extracellular amino acids in Saccharomyces cerevisiae. A Candida csh3delta/csh3delta null mutant has a reduced capacity to take up amino acids, and is unable to switch morphologies on solid and in liquid media in response to inducing amino acids. CSH3/csh3delta heterozygous strains display normal amino acid induced morphological switching. However, although heterozygous cells apparently sense and properly react to amino acid induced signals they cannot take up amino acids at wild-type rates. Strikingly, both CSH3/csh3delta heterozygous and csh3delta/csh3delta homozygous strains are unable to efficiently mount virulent infections in a mouse model. The haploinsufficiency phenotypes indicate that both CSH3 alleles contribute to maintain high-capacity amino acid uptake in wild-type strains. These results strongly suggest that C. albicans cells use amino acids, presumably as nitrogen sources, during growth in mammalian hosts.  相似文献   

19.
Bennett RJ  Johnson AD 《The EMBO journal》2003,22(10):2505-2515
The human pathogenic fungus Candida albicans has traditionally been classified as a diploid, asexual organism. However, mating-competent forms of the organism were recently described that produced tetraploid mating products. In principle, the C.albicans life cycle could be completed via a sexual process, via a parasexual mechanism, or by both mechanisms. Here we describe conditions in which growth of a tetraploid strain of C.albicans on Saccharomyces cerevisiae 'pre-sporulation' medium induced efficient, random chromosome loss in the tetraploid. The products of chromosome loss were often strains that were diploid, or very close to diploid, in DNA content. If they inherited the appropriate MTL (mating-type like) loci, these diploid products were themselves mating competent. Thus, an efficient parasexual cycle can be performed in C.albicans, one that leads to the reassortment of genetic material in this organism. We show that this parasexual cycle-consisting of mating followed by chromosome loss-can be used in the laboratory for simple genetic manipulations in C.albicans.  相似文献   

20.
Most Candida albicans strains are heterozygous at the MTL (mating-type-like) locus, but mating occurs in hemi- or homozygous strains. The white-opaque switch process is repressed by the heterodimer of the MTLa1 and MTLalpha2 gene products, while mating genes are induced by a2 and alpha1. Mating occurs in opaque cells and produces tetraploid progeny. A small percentage (3-7%) of clinical isolates are homozygous at the MTL locus and most are mating-competent. MTL gene expression is controlled in part by a gene which activates MTLalpha genes and represses MTLa genes in response to hemoglobin. A failure to find meiosis and the lack of evidence of mating in vivo, together with some of the properties of opaque cells, leads to the suggestion that mating may have persisted because the tightly associated switch facilitates the commensal lifestyle of this fungus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号