首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stability of immobilized preparations of xanthine oxidase and urate oxidase was studied, and optimized, because of the potential joint use of both enzymes in clinical analysis. Xanthine oxidase was immobilized on cellulose, Sepharose, hornblende, Enzacryl-TIO, and porous glass. Thehalf-lives of these preparations at 30 degree C ranged from 40 min to 5.0 hr. In this respect immobilized enzyme resembled soluble enzyme in dilute solution (0.11 mg/ml), when the half-live was about 3.5 hr. More concentrated enzyme solution (1 mg/ml) had a half-life of 64 hr, and was, therefore, considerably more stable than the untreated immobilized xanthine oxidase preparations. Inclusion of albumen in storage and assay buffer increased the half-life of bound xanthine oxidase. So also did treatment with glutaraldehyde: in the case of xanthine oxidase bound to Enzarcyl-TIO such treatment increased the half-life at 30 degree C from 3 hr to about 100 hr. Immobilized xanthine dehydrogenase was more stable than immobilized xanthine oxidase: the dehydrogenase lost no activity during continuous assay for 5 hr at 30 degree C. The stability of immobilized urate oxidase depended on the quantity of enzyme used and on the time of stirring during immobilization: thus a preparation was made (by stirring urate oxidase (48 mg/g support) with Enzacryl-TIO for 24 hr) which lost no activity during 350 hr at 30 degree C.  相似文献   

2.
Galactose oxidase interacts with immobilized D-galactosyl residues and related immobilized and free sugars under the conditions of affinity electrophoresis in polyacrylamide gel and agglutinates sialidase-treated human erythrocytes. The agglutination is also inhibited by D-galactose and its derivatives and is temperature dependent. The sugar binding and hemagglutinating activity are preserved after removal of Cu2+ essential for enzymic activity. These properties are very similar to those of some typical lectins; however, a number of D-galactose specific lectins do not possess any detectable galactose oxidase activity.  相似文献   

3.
An analysis of the pore diffusion model involving a two-substrate enzymatic reaction is presented. The resulting equations have been applied to the case of galactose oxidase catalyzed oxidation of galactose when the enzyme is immobilized on porous glass particles. The physical constants of the system were obtained by theoretical predictions and the enzyme concentration in the porous medium was derived from the experimental results. The calculations were performed with the assumption that the kinetic parameters of the enzyme remain unchanged upon immobilization. The theoretically calculated effectiveness factors were compared with the experimental effectiveness factors determined from the batch kinetic experiments and were found to be in agreement. The results are presented as effectiveness factor plots graphed as functions of bulk galactose and oxygen concentrations. The model was extended in order to study the effect of external mass transfer coefficients and pore enzyme concentrations on the effectiveness factors.  相似文献   

4.
In order to obtain an economical, efficient and selective system for glycoprotein modification we prepared reactors with immobilized neuraminidase or (and) galactose oxidase. High storage and operational stability of the enzyme reactors was obtained by their immobilization through the carbohydrate parts of the enzyme molecules to hydrazide-modified supports. Magnetic and non-magnetic forms of bead cellulose and poly(HEMA-co-EDMA) microspheres were used for immobilization. These reactors can be used almost universally for the activation of ligands and for labelling of substances having a carbohydrate moiety.  相似文献   

5.
Glucose, maltose, sucrose, lactose, xylose, sorbose, galactose, fructose and gluconolactone were analyzed by means of immobilized pyranose oxidase as well as by the combination of immobilized glucose oxidase with immobilized glycoamylase, invertase, mutarotase, maltase (α-glucosidase) and glucose isomerase by flow injection analysis (FIA). For the simultaneous analysis of glucose and other sugars three different flow-injection configurations were applied and compared. The average error of prediction of the analyses were better than 3% in model media and better than 6% in yeast extract containing media.  相似文献   

6.
A specific continuous-flow analytical system for determination of lactose concentration in a liquid mixture of constituent sugars was developed and tested based on a series of enzymatic reactions. Lactose and glucose oxidase immobilized on a phenol–formaldehyde resin were employed. More detailed study was carried out based on a reaction by-product quantitatively detected by an available iodide electrode. A multichannel proportioning pump fed two independently operated analytical streams eliminating thus the background glucose interference. With a goal of lactose concentration control in a fermentation process, the system response time delay was shortened to approximately 15 min. Apart from optimization of the analytical system operating parameters, the study indicates also the major application problem areas: lactase inhibition by galactose, galactose oxidation by glucose oxidase, and a partial loss of glucose oxidase activity in a prolonged continuous-flow operation. A manual Colorimetric Procedure was employed to verify the results of the potentiometric method.  相似文献   

7.
Summary Specific oxidation of D-galactose present in the carbohydrate moiety of glucose oxidase from Aspergillus niger by galactose oxidase in the presence of catalase (48% efficiency) did not change the activity of the enzyme. Oxidized enzyme was coupled to hydrazide derivatives of O--D-galactosyl Separon H 1000 or of Sepharose 4B. Both solid supports were modified with adipic acid dihydrazide after their activation with galactose oxidase. Each immobilized preparation of glucose oxidase showed higher activity than was achieved by other immobilizing procedures.  相似文献   

8.
The kinetic constants (Km, Vmax, and inhibition constants for the different products) of soluble and different immobilized preparations of beta-galactosidase from Kluyveromyces lactis were determined. For the soluble enzyme, the Km was 3.6 mM, while the competitive inhibition constant by galactose was 45 mM and the noncompetitive one by glucose was 758 mM. The immobilized preparations conserved similar values of Km and competitive inhibition, but in some instances much higher values for the noncompetitive inhibition constants were obtained. Thus, when glyoxyl or glutaraldehyde supports were used to immobilize the enzyme, the noncompetitive inhibition was greatly reduced (Ki approximately 15,000 and >40,000 mM, respectively), whereas when using sugar chains to immobilize the enzyme the behavior had an effect very similar to the soluble enzyme. These results presented a great practical relevance. While using the soluble enzyme or the enzyme immobilized via the sugar chain as biocatalysts in the hydrolysis of lactose in milk only around 90% of the substrate was hydrolyzed, by using of these the enzyme immobilized via the glyoxyl or the glutaraldehyde groups, more than 99% of the lactose in milk was hydrolyzed.  相似文献   

9.
Galactose oxidase from Dactyllium dendroides was purified and immobilised on a carbon electrode in a redox polymer network of a polyvinylpyridine, partially N-complexed with osmiumbis(bipyridine)chloride (POsEA). The current density of the electrodes depended on the concentration of phosphate elution buffer. By additional crosslinking with a 1% glutaraldehyde solution in 50 mM phosphate buffer, pH 7.0, an electrode with an initial current density of 0.8 mA/cm2 was obtained. Operational half life times were in the order of 1.2 h. The affinity of the immobilized enzyme for galactose,lactose, raffinose, glycerol and dihydroxyaceton was higher than described in literature for the enzyme in solution. Optimal temperature for the enzyme electrode was 30°C. The pH optimum for the immobilized enzyme was higher than for the enzyme in solution.  相似文献   

10.
In order to obtain an active and stable oxidation reactor for daily use in biochemical laboratory we decided to immobilize galactose oxidase orientedly through a carbohydrate chain to the magnetic carriers. We used hydrazide derivatives of non-magnetic and magnetic bead cellulose and of magnetic and non-magnetic poly(HEMA-co-EDMA) microspheres. Activation of the enzyme molecules was done by sodium periodate in the presence of supplements (fucose, CuSO4, catalase). Orientedly immobilized galactose oxidase presents high storage stability and lower susceptibility to inappropriate microenvironmental conditions. Reactor reactivated by three pulses of D-galactose retained practically 100% of its native activity after 6 months. The positive properties of both magnetic carriers were entirely confirmed.  相似文献   

11.
Biocytin hydrazide (BCHZ), a new, water-soluble, long-chained, biotin-containing hydrazide, was synthesized and used for the selective nonradioactive detection of glycoconjugates. Procedures were developed for labeling glycoconjugates on blots. The method involves either chemical (periodate-induced) or enzymatic (via galactose oxidase) oxidation of glycoconjugates, the resultant aldehyde groups are then labeled with biocytin hydrazide, followed by interaction with an avidin-based enzyme probe. Since the biotin-containing reagent is a relatively small, charged molecule, the primary labeling step may be carried out on intact cells and on membrane preparations as well as on blotted samples. On blots, the labeling pattern was similar for both periodate- and galactose oxidase-induced biotinylation procedures. In contrast, periodate-induced labeling of either erythrocyte membranes or cells (prior to blotting) produced an altered labeling pattern. Combined enzyme-induced biotinylation of membranes or cells resulted in a pattern similar to that observed for the direct staining of blots. Using galactose oxidase on human erythrocyte membranes, the procedure was sensitive enough to selectively label the Band 3 lactosaminoglycoprotein.  相似文献   

12.
Summary Milk or a solution of gelatin and milk or commercial xanthine oxidase were lyophilized and the powdered freeze-dried materials crosslinked with glutaraldehyde. The resulting immobilized xanthine oxidase preparations have a good stability, are highly active and well suited for organic synthesis.  相似文献   

13.
The suitability of isolated central nerve myelin preparations for probe labelling studies was assessed and the accessibility of galactosyl ceramides in myelin to galactose oxidase and sodium periodate was determined. Isolated myelin preparations present a uniform external membrane surface to added probes because lamellae in the myelin sheath separate at their external apposition surfaces exclusively during isolation. The cytoplasmic apposition remains intact in isolated myelin. Cationised ferritin can gain access along external apposition regions of inner lamellae in multilamellar fragments of isolated myelin, indicating that proteins and lipids on the external membrane surface will be accessible to probes. Over 50% of the total galactosyl ceramides of myelin are accessible to galactose oxidase attack; hydroxy fatty acid- and nonhydroxy fatty acid-containing cerebrosides are equally attacked. Sodium periodate attacks over 90% of the galactosyl ceramides in isolated myelin at 20°C and electron micrographs of the periodate-treated myelin reveal changes at the external apposition only. Galactosyl ceramides in vesicles of myelin lipid vesicles are not so readily attacked by periodate. The disposition of galactosyl ceramides in the myelin lamellae is discussed.  相似文献   

14.
Aldehyde oxidase (E.C. 1.2.3.1) was isolated from rabbit liver and two potential bioaffinity ligands, i.e., 3-aminocarbonyl-1-benzyl-6-methylpyridinium bromide and 3-aminocarbonyl-1-benzyl-4,6-dimethylpyridinium chloride, were tested for their applicability in a purification procedure for this enzyme. Various supports and different coupling methods were investigated for the immobilization of aldehyde oxidase. Adsorption to n-hexyl- and n-octylamine-substituted Sepharose 4B and DEAE Sepharose 6B gave the best retention of aldehyde oxidase activity. The storage stability of free enzyme and enzyme immobilized to n-octylamine-substituted Sepharose 4B was studied in several buffers at pH 7.8 and 9.0. This showed that the stability of immobilized enzyme was much less than that of free enzyme. The apparent operational stability of the immobilized enzyme preparation, however, improved substantially compared to soluble enzyme, although the corresponding product yield is still very poor. Coimmobilization of catalase and/or superoxide dismutase provided no significant increase of the apparent operational stability and product yield. A positive effect on both parameters was found for aldehyde oxidase-n-alkylamine Sepharose 4B preparations by increasing the amount of enzyme adsorbed per unit weight of support, whereas the productivity of these preparations remained about constant.  相似文献   

15.
Chick brain synaptosomes or synaptic subfractions were treated with neuraminidase (EC 3.2.1.18) and/or galactose oxidase (EC 1.1.3.9) preparations in which proteolytic activity was inhibited with phenylmethanesulfonyl fluoride followed, after washing, by reductive incorporation of sodium boro[3H]hydride to identify galactose residues exposed on the synaptosomal external surface. Control experiments to demonstrate restriction of labeling to the external surface involved comparing the radioactivity in synaptoplasmic, soluble polypeptides isolated after labeling with labeled, isolated synaptoplasm and examining incorporation into fractions incubated without enzymes. Intactness of the synaptic plasma membrane after labeling was shown by trypsin digestion studies. Polypeptides were separated on sodium dodecyl sulfate polyacrylamide gels and were detected by a liquid scintillation counting procedure. Eleven major radioactive peaks were found after galactose oxidase treatment and reduction of isolated synaptic membranes. When intact synaptosomes were labeled, the same components were detected. When isolated synaptic membranes or intact synaptosomes were treated with neuraminidase before galactose oxidase treatment, three additional components were labeled. These results suggest that (a) chick synaptic membranes have a complex mixture of glycoproteins, (b) all major chick synaptic membrane glycoproteins labeled by galactose oxidase have most or all carbohydrate groups exposed at the exterior surface of the synaptosome, (c) all major, externally-disposed polypeptides of these synaptic membranes are glycoproteins.  相似文献   

16.
Stabilization of immobilized D-amino-acid oxidase was achieved as follows. Yeast Trigonopsis variabilis producing D-amino-acid oxidase was used to deaminate cephalosporin C to glutaryl-7-aminocephalosporanic acid. Permeabilized cells were co-immobilized with manganese dioxide by entrapment in (poly)acrylamide gel so that hydrogen peroxide, liberated in the reaction, could be partially deactivated and both the enzyme and the substrate could be stabilized. Activity of entrapped cells was determined by HPLC and enzyme flow microcalorimetry. The process was evaluated in terms of activity, immobilization yield, storage stability and oxo-product formation by immobilized preparations. The storage stability of immobilized biocatalysts with MnO2 was nearly doubled and production of 2-oxoadipyl-7-aminocephalosporanic acid was 2-3-fold higher than by entrapped cells without MnO2. Glutaryl-7-aminocephalosporanic acid can be easily obtained from the resulting oxo-product by a non-enzymic reaction via externally added hydrogen peroxide.  相似文献   

17.
The kinetics and action mechanism of the galactose oxidase from Fusarium graminearum were studied. pH-optimum of the enzyme activity and stability was 7.0, the activity and stability of the galactose oxidase being decreased at any other values of pH. The enzyme is destabilized at acidic pH that is connected with protonization of its ionogenic group with pK 4.7. The temperature optimum of the galactose oxidase is 35 degrees C. When studying the enzyme thermoinactivation, it was found that at temperatures below 30 degrees C the energy of activation of denaturation was about 40 kcal/mole and at temperatures ranging from 30 to 70 degrees C - 13 kcal/mole. On the basis of the data obtained it was concluded that a low-temperature form of the galactose oxidase, possessing a higher energy of activation of denaturation, is more active than a high-temperature form. The value of Km for the enzyme in respect to galactose was 0.19 M, and the value of Vmax = 360 mumole/min per g of the preparation.  相似文献   

18.
Galactose oxidase (E.C. 1.1.3.9) was covalently immobilized to chemically modified porous silica particles by reaction of the native enzyme with pendant benzoyl azide groups on the carrier. The enzyme loading on the carrier was 100-150 units per milliliter. The immobilized enzyme was incorporated into a hardware assembly suitable for the determination of galactose or lactose concentrations in complex biological fluids. The prototype instrument as described is suitable for continuous, on-line monitoring or discrete sample analysis. Reaction conditions can be readily provided which maintain global first order kinetics within the reactor and strict linearity of the procedure over a wide range of sample concentrations. Auto-inactivation of the immobilized enzyme can be prevented by K3Fe(CN)6 and long-term reactor stability can be achieved by the periodic application of the reagent to the enzyme reactor in situ.  相似文献   

19.
Rifamycin oxidase of Curvularia lunata was immobilized on polyacrylamide gel. The optimum pH and temperature for immobilized enzyme reaction were 6.5 and 50 °C, respectively. Enzyme stability increased on immobilization and the half lives of immobilized enzyme preparations at 30 and 40 °C were 30 and 11.5 d, respectively. With 2.5 mm beads diffusional resistances were observed. Reusability studies showed that 1 mm size beads gave a higher rate of transformation in comparison with 2 or 2.5 mm beads.  相似文献   

20.
Saccharomyces cerevisiae cells, Kluyveromyces marxianus cells, inulase, glucose oxidase, chloroplasts, and mitochondria were immobilized in calcium alginate gels. Ethanol production from glucose solutions by an immobilized preparation of S. cerevisiae was deomonstrated over a total of twenty-three days, and the half-life of such a preparation was shown to be about ten days. Immobilized K. marxianus, inulase, and glucose oxidase preparations were used to demonstrate the porosity and retraining properties of calcium alginate gels. Calcium alginate-immobilized chloroplasts were shown to perform the Hill reaction. Some experiments with immobilized mitochondria are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号