首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Much in vivo and in vitro evidence has shown that the α subunits of heterotrimeric GTP-binding proteins (G proteins) exist as oligomers in their base state and disaggregate when being activated. In this article, the influence of palmitoylation modification of Gαo on its oligomerization was explored extensively. Gαo protein was expressed and purified from Escherichia coli strain JM109 cotransformed with pQE60(Gαo) and pBB131(N-myristoyltransferase). Non-denaturing gel electrophoresis analysis revealed that Gαo existed to a small extent as monomers but mostly as oligomers including dimers, trimers, tetramers and pentamers which could disaggregate completely into monomers by GTPγS stimulation. Palmitoylated Gαo, on the other hand, only present as oligomers that were difficult to disaggregate into monomers. The effect of palmitoylation on oligomerization of Gαo was further investigated by several other biochemical and biophysical methods including gel filtration chromatography, analytical ultracentrifugation and atomic force microscopy analysis. The results consistently demonstrated that palmitoylation facilitated oligomerization of the Gαo protein. Autoradiography indicated that [14C]-palmitoylated Gαo would in no case disaggregate into monomers after treatment with GTPγS. [35S]-GTPγS binding activity assay showed that palmitoylated Gαo was saturated at only 7.8 nmol/mg compared to 21.8 nmol/mg for non-palmitoylated Gαo. Fluorescent quenching studies using BODIPY FL-GTPγS as a probe showed that the conformation of GTP-binding domain of Gαo tended to become more compact after palmitoylation. These results implied that palmitoylation may regulate the GDP/GTP exchange of Gαo by influencing the oligomerization state of Gαo and thereby modulate the on-off switch of the G protein in G protein-coupled signal transduction.  相似文献   

2.
Transfection of either the alpha(1b)-adrenoreceptor or Galpha(11) into a fibroblast cell line derived from a Galpha(q)/Galpha(11) double knockout mouse failed to produce elevation of intracellular [Ca(2+)] upon the addition of agonist. Co-expression of these two polypeptides, however, produced a significant stimulation. Co-transfection of the alpha(1b)-adrenoreceptor with the palmitoylation-resistant C9S,C10S Galpha(11) also failed to produce a signal, and much reduced and kinetically delayed signals were obtained using either C9S Galpha(11) or C10S Galpha(11). Expression of a fusion protein between the alpha(1b)-adrenoreceptor and Galpha(11) allowed [Ca(2+)](i) elevation, and this was also true for a fusion protein between the alpha(1b)-adrenoreceptor and C9S,C10S Galpha(11), since this strategy ensures proximity of the two polypeptides at the cell membrane. For both fusion proteins, co-expression of transducin alpha, as a beta.gamma-sequestering agent, fully attenuated the Ca(2+) signal. Both of these fusion proteins and one in which an acylation-resistant form of the receptor was linked to wild type Galpha(11) were also targets for agonist-regulated [(3)H]palmitoylation and bound [(35)S]guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) in an agonist concentration-dependent manner. The potency of agonist to stimulate [(35)S]GTPgammaS binding was unaffected by the palmitoylation potential of either receptor or G protein. These studies provide clear evidence for coordinated, agonist-mediated regulation of the post-translational acylation of both a receptor and partner G protein and demonstrate the capacity of such fusions to bind and then release beta.gamma complex upon agonist stimulation whether or not the G protein can be palmitoylated. They also demonstrate that Ca(2+) signaling in EF88 cells by such fusion proteins is mediated via release of the G protein beta.gamma complex.  相似文献   

3.
The association of gangliosides with specific proteins in the central nervous system was examined by co-immunoprecipitation with an anti-ganglioside antibody. The monoclonal antibody to the ganglioside GD3 immunoprecipitated phosphoproteins of 40, 53, 56, and 80 kDa from the rat cerebellum. Of these proteins, the 40-kDa protein was identified as the alpha-subunit of a heterotrimeric G protein, G(o) (Galpha(o)). Using sucrose density gradient analysis of cerebellar membranes, Galpha(o), but not Gbetagamma, was observed in detergent-resistant membrane (DRM) raft fractions in which GD3 was abundant after the addition of guanosine 5'-O-(thiotriphosphate) (GTPgammaS), which stabilizes G(o) in its active form. On the other hand, both Galpha(o) and Gbetagamma were excluded from the DRM raft fractions in the presence of guanyl-5'-yl thiophosphate, which stabilizes G(o) in its inactive form. Only Galpha(o) was observed in the DRM fractions from the cerebellum on postnatal day 7, but not from that in adult. After pertussis toxin treatment, Galpha(o) was not observed in the DRM fractions, even from the cerebellum on postnatal day 7. These results indicate the activation-dependent translocation of Galpha(o) into the DRM rafts. Furthermore, Galpha(o) was concentrated in the neuronal growth cones. Treatment with stromal cell-derived factor-1alpha, a physiological ligand for the G protein-coupled receptor, stimulated [(35)S]GTPgammaS binding to Galpha(o) and caused Galpha(o) translocation to the DRM fractions and RhoA translocation to the membrane fraction, leading to the growth cone collapse of cerebellar granule neurons. The collapse was partly prevented by pretreatment with the cholesterol-sequestering and raft-disrupting agent methyl-beta-cyclodextrin. These results demonstrate the involvement of signal-dependent Galpha(o) translocation to the DRM in the growth cone behavior of cerebellar granule neurons.  相似文献   

4.
The regulation of G protein activation by the rat corticotropin-releasing factor receptor type 1 (rCRFR1) in human embryonic kidney (HEK)293 (HEK-rCRFR1) cell membranes was studied. Corresponding to a high and low affinity ligand binding site, sauvagine and other peptidic CRFR1 ligands evoked high and low potency responses of G protein activation, differing by 64-fold in their EC(50) values as measured by stimulation of [(35)S]GTPgammaS binding. Contrary to the low potency response, the high potency response was of lower GTPgammaS affinity, pertussis toxin (PTX)-insensitive, and homologously desensitized. Distinct desensitization was also observed in the adenylate cyclase activity, when its high potency stimulation was abolished and the activity became low potently inhibited by sauvagine. From these results and immunoprecipitation of [(35)S]GTPgammaS-bound Galpha(s) and Galpha(i) subunits it is concluded that the high and low potency [(35)S]GTPgammaS binding stimulation reflected coupling to G(s) and G(i) proteins, respectively, only G(s) coupling being homologously desensitized. Immunoprecipitation of [(35)S]GTPgammaS-bound Galpha(q/11) revealed additional coupling to G(q/11), which also was homologously desensitized. Although Galpha(q/11) coupling was PTX-insensitive, half of the sauvagine-stimulated accumulation of inositol phosphates in the cells was PTX-sensitive, suggesting involvement of G(i) in addition to G(q/11)in the stimulation of inositol metabolism. It is concluded that CRFR1 signals through at least two different ways, one leading to G(s)- and G(q/11)-mediated signaling steps and desensitization and another leading to G(i) -mediated signals without being desensitized. Furthermore, the concentrations of the stimulating ligand and GTP and desensitization may be part of a regulatory mechanism determining the actual ratio of the coupling of CRFR1 to different G proteins.  相似文献   

5.
Two constructs encoding the human micro-opioid receptor (hMOR) fused at its C terminus to either one of two Galpha subunits, Galpha(o1) (hMOR-Galpha(o1)) and Galpha(i2) (hMOR-Galpha(i2)), were expressed in Escherichia coli at levels suitable for pharmacological studies (0.4-0.5 pmol/mg). Receptors fused to Galpha(o1) or to Galpha(i2) maintained high-affinity binding of the antagonist diprenorphine. Affinities of the micro-selective agonists morphine, [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]enkephalin (DAMGO), and endomorphins as well as their potencies and intrinsic activities in stimulating guanosine 5'-O-(3-[(35)S]thiotriphosphate) ([(35)S]GTPgammaS) binding were assessed in the presence of added purified Gbetagamma subunits. Both fusion proteins displayed high-affinity agonist binding and agonist-stimulated [(35)S]GTPgammaS binding. In the presence of Gbetagamma dimers, the affinities of DAMGO and endomorphin-1 and -2 were higher at hMOR-Galpha(i2) than at hMOR-Galpha(o1), whereas morphine displayed similar affinities at the two chimeras. Potencies of the four agonists in stimulating [(35)S]GTPgammaS binding at hMOR-Galpha(o1) were similar, whereas at hMOR-Galpha(i2), endomorphin-1 and morphine were more potent than DAMGO and endomorphin-2. The intrinsic activities of the four agonists at the two fusion constructs were similar. The results confirm hMOR coupling to Galpha(o1) and Galpha(i2) and support the hypothesis of the existence of multiple receptor conformational states, depending on the nature of the G protein to which it is coupled.  相似文献   

6.
Previous studies have revealed that activation of rat striatal D(1) dopamine receptors stimulates both adenylyl cyclase and phospholipase C via G(s) and G(q), respectively. The differential distribution of these systems in brain supports the existence of distinct receptor systems. The present communication extends the study by examining other brain regions: hippocampus, amygdala, and frontal cortex. In membrane preparations of these brain regions, selective stimulation of D(1) dopamine receptors increases the hydrolysis of phosphatidylinositol/phosphatidylinositol 4,5-biphosphate. In these brain regions, D(1) dopamine receptors couple differentially to multiple Galpha protein subunits. Antisera against Galpha(q) blocks dopamine-stimulated PIP(2) hydrolysis in hippocampal and in striatal membranes. The binding of [(35)S]GTPgammaS or [alpha-(32)P]GTP to Galpha(i) was enhanced in all brain regions. Dopamine also increased the binding of [(35)S]GTPgammaS or [alpha-(32)P]GTP to Galpha(q) in these brain regions: hippocampus = amygdala > frontal cortex. However, dopamine-stimulated binding of [(35)S]GTPgammaS to Galphas only in the frontal cortex and striatum. This differential coupling profile in the brain regions was not related to a differential regional distribution of the Galpha proteins. Dopamine induced increases in GTPgammaS binding to Galpha(s) and Galpha(q) was blocked by the D(1) antagonist SCH23390 but not by D(2) receptor antagonist l-sulpiride, suggesting that D(1) dopamine receptors couple to both Galpha(s) and Galpha(q) proteins. Co-immunoprecipitation of Galpha proteins with receptor-binding sites indicate that in the frontal cortex, D(1) dopamine-binding sites are associated with both Galpha(s) and Galpha(q) and, in hippocampus or amygdala, D(1) dopamine receptors couple solely to Galpha(q). The results indicate that in addition to the D(1)/G(s)/adenylyl cyclase system, brain D(1)-like dopamine receptor sites activate phospholipase C through Galpha(q) protein.  相似文献   

7.
RGS4 and RGS10 expressed in Sf9 cells are palmitoylated at a conserved Cys residue (Cys(95) in RGS4, Cys(66) in RGS10) in the regulator of G protein signaling (RGS) domain that is also autopalmitoylated when the purified proteins are incubated with palmitoyl-CoA. RGS4 also autopalmitoylates at a previously identified cellular palmitoylation site, either Cys(2) or Cys(12). The C2A/C12A mutation essentially eliminates both autopalmitoylation and cellular [(3)H]palmitate labeling of Cys(95). Membrane-bound RGS4 is palmitoylated both at Cys(95) and Cys(2/12), but cytosolic RGS4 is not palmitoylated. RGS4 and RGS10 are GTPase-activating proteins (GAPs) for the G(i) and G(q) families of G proteins. Palmitoylation of Cys(95) on RGS4 or Cys(66) on RGS10 inhibits GAP activity 80-100% toward either Galpha(i) or Galpha(z) in a single-turnover, solution-based assay. In contrast, when GAP activity was assayed as acceleration of steady-state GTPase in receptor-G protein proteoliposomes, palmitoylation of RGS10 potentiated GAP activity >/=20-fold. Palmitoylation near the N terminus of C95V RGS4 did not alter GAP activity toward soluble Galpha(z) and increased G(z) GAP activity about 2-fold in the vesicle-based assay. Dual palmitoylation of wild-type RGS4 remained inhibitory. RGS protein palmitoylation is thus multi-site, complex in its control, and either inhibitory or stimulatory depending on the RGS protein and its sites of palmitoylation.  相似文献   

8.
A ligand-independent activator of heterotrimeric brain G-protein was partially purified from detergent-solubilized extracts of the neuroblastoma-glioma cell hybrid NG108-15. The G-protein activator (NG108-15 G-protein activator (NG-GPA)) increased [(35)S]guanosine 5'-O-(thiotriphosphate) ([(35)S]GTPgammaS) to purified brain G-protein in a magnesium-dependent manner and promoted GDP dissociation from Galpha(o). The NG-GPA also increased GTPgammaS binding to purified, recombinant Galpha(i2), Galpha(i3), and Galpha(o), but minimally altered nucleotide binding to purified transducin. The NG-GPA increased GTPgammaS binding to membrane-bound G-proteins and inhibited basal, forskolin- and hormone-stimulated adenylyl cyclase activity in DDT(1)-MF-2 cell membranes. In contrast to G-protein coupled receptor-mediated activation of heterotrimeric G-proteins in DDT(1)-MF-2 cell membrane preparations, the action of the NG-GPA was not altered by treatment of the cells with pertussis toxin. ADP-ribosylation of purified brain G-protein also failed to alter the increase in GTPgammaS binding elicited by the NG-GPA. Thus, the NG-GPA acts in a manner distinct from that of a G-protein coupled receptor and other recently described receptor-independent activators of G-protein signaling. These data indicate the presence of unexpected regulatory domains on G(i)/G(o) proteins and suggest the existence of pertussis toxin-insensitive modes of signal input to G(i)/G(o) signaling systems.  相似文献   

9.
Receptors of the of seven transmembrane spanning, heterotrimeric G protein coupled family (GPCR) play crucial roles in regulating physiological functions and consequently are targets for the action of many classes of drugs. Activation of receptor by agonist leads to the dissociation of GDP from Galpha of the Galphabetagamma heterotrimer, followed by the binding of GTP to Galpha and subsequent modulation of downstream effectors. The G protein heterotrimer is reformed by GTPase activity of the Galpha subunit, forming Galpha-GDP and so allowing Galpha and Gbetagamma to recombine. The [35S]GTPgammaS assay measures the level of G protein activation following agonist occupation of a GPCR, by determining the binding of the non-hydrolyzable analog [35S]GTPgammaS to Galpha subunits. Thus, the assay measures a functional consequence of receptor occupancy at one of the earliest receptor-mediated events. The assay allows for traditional pharmacological parameters of potency, efficacy and antagonist affinity, with the advantage that agonist measures are not subjected to amplification or other modulation that may occur when analyzing parameters further downstream of the receptor. In general the assay is experimentally more feasible for receptors coupled to the abundant G(i/o) proteins. Nevertheless, [35S]GTPgammaS binding assays are used with GPCRs that couple to the G(s) and G(q) families of G proteins, especially in artificial expression systems, or using receptor-Galpha constructs or immunoprecipitation of [35S]GTPgammaS-labeled Galpha. The relative simplicity of the assay has made it very popular and its use is providing insights into contemporary pharmacological topics including the roles of accessory proteins in signaling, constitutive activity of receptors and agonist specific signaling.  相似文献   

10.
As a model system to screen endogenous ligands for G(i)-coupled receptors, we have prepared and characterized a fusion protein of nociceptin receptor and alpha subunit of G(i2). We detected nociceptin binding to the fusion protein by measuring stimulation of [(35)S]GTPgammaS binding with an EC(50) of 2.0 nM and a gain of approximately five times. The stimulation by nociceptin of [(35)S]GTPgammaS binding to the fusion protein was clearly observed in the presence of an appropriate concentration of GDP, because the affinity for GDP was decreased in the presence of agonist. Full and partial agonists differed in their effects on apparent the affinity of the fusion protein for GDP: the IC(50) values for GDP to displace 100 pM [(35)S]GTPgammaS were estimated to be 2 micro M, 0.4 micro M, and 0.05 micro M in the presence of full agonist (nociceptin), partial agonist (F/G-NC), and antagonist (NBZH), respectively. We also detected the activity to stimulate [(35)S]GTPgammaS binding to the fusion protein in the brain extract derived from 2-3 g wet weight tissue without false-positive results. The active component was identified as endogenous nociceptin itself. These results indicate that the fusion protein of GPCR and Galpha(i) is useful for screening of endogenous ligands.  相似文献   

11.
RGS proteins (Regulators of G protein Signaling) are a recently discovered family of proteins that accelerate the GTPase activity of heterotrimeric G protein alpha subunits of the i, q, and 12 classes. The proteins share a homologous core domain but have divergent amino-terminal sequences that are the site of palmitoylation for RGS-GAIP and RGS4. We investigated the function of palmitoylation for RGS16, which shares conserved amino-terminal cysteines with RGS4 and RGS5. Mutation of cysteine residues at residues 2 and 12 blocked the incorporation of [3H]palmitate into RGS16 in metabolic labeling studies of transfected cells or into purified RGS proteins in a cell-free palmitoylation assay. The purified RGS16 proteins with the cysteine mutations were still able to act as GTPase-activating protein for Gialpha. Inhibition or a decrease in palmitoylation did not significantly change the amount of protein that was membrane-associated. However, palmitoylation-defective RGS16 mutants demonstrated impaired ability to inhibit both Gi- and Gq-linked signaling pathways when expressed in HEK293T cells. These findings suggest that the amino-terminal region of RGS16 may affect the affinity of these proteins for Galpha subunits in vivo or that palmitoylation localizes the RGS protein in close proximity to Galpha subunits on cellular membranes.  相似文献   

12.
Domains rich in sphingolipids and cholesterol, or rafts, may organize signal transduction complexes at the plasma membrane. Raft lipids are believed to exist in a state similar to the liquid-ordered phase. It has been proposed that proteins with a high affinity for an ordered lipid environment will preferentially partition into rafts (Melkonian, K. A., Ostermeyer, A. G., Chen, J. Z., Roth, M. G., and Brown, D. A. (1999) J. Biol. Chem. 274, 3910-3917). We investigated the possibility that lipid-lipid interactions between lipid-modified proteins and raft lipids mediate targeting of proteins to these domains. G protein monomers or trimers were reconstituted in liposomes, engineered to mimic raft domains. Assay for partitioning of G proteins into rafts was based on Triton X-100 insolubility. Myristoylation and palmitoylation of Galpha(i) were necessary and sufficient for association with liposomes and partitioning into rafts. Strikingly, the amount of fatty-acylated Galpha(i) in rafts was significantly reduced when myristoylated Galpha(i) was thioacylated with cis-unsaturated fatty acids instead of saturated fatty acids such as palmitate. Prenylated betagamma subunits were excluded from rafts, whether reconstituted alone or with fatty-acylated alpha subunits. These results suggest that the structural difference between lipids that modify proteins is one basis for the selectivity of protein targeting to rafts.  相似文献   

13.
The stimulatory GTP-binding protein of adenylyl cyclase (AC) regulates hormone-stimulated production of cAMP. Here, we demonstrate that Cu(2+) and Zn(2+) inhibit the steady-state GTPase activity of the alpha subunit of GTP-binding protein (Galpha(s)) but do not alter its intrinsic GTPase activity. Cu(2+) and Zn(2+) decrease steady-state GTPase activity by inhibiting the binding of GTP to Galpha(s). Moreover, Cu(2+) and Zn(2+) increase GDP dissociation from Galpha(s) and render the G protein in a nucleotide-free state. However, these cations do not alter the dissociation of the guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) that is already bound to the Galpha(s). Because of their ability to inhibit GTPgammaS binding, preincubation of Cu(2+) or Zn(2+) with Galpha(s) does not permit GTPgammaS to activate Galpha(s) and stimulate AC activity. However, preincubation of Galpha(s) with GTPgammaS followed by addition of Cu(2+) or Zn(2+) did not alter the ability of Galpha(s) to stimulate AC activity. Interestingly, AlF(4)(-) partially restored the ability of Galpha(s), which had been preincubated with Cu(2+) or Zn(2+), to stimulate AC; AlF(4)(-) does not permit the re-association of unbound GDP with Galpha(s). Thus, the interaction of AlF(4)(-) with the nucleotide-free Galpha(s) is sufficient to activate AC. Using antibodies to the N and C termini of Galpha(s), we show that the Cu(2+) interaction site on the G protein is in the C terminus. We conclude that Cu(2+) and Zn(2+) generate a nucleotide-free state of Galpha(s) and that, in the absence of any nucleotide, the gamma-phosphate mimic of GTP, AlF(4)(-), alters Galpha(s) structure sufficiently to permit stimulation of AC activity. Moreover, our finding that isoproterenol-stimulated AC activity was more sensitive to inhibition by Cu(2+) and Zn(2+) as compared with forskolin-stimulated activity is consistent with Galpha(s) being a primary target of these cations in regulating the signaling from receptor to AC.  相似文献   

14.
Ugur O  Onaran HO  Jones TL 《Biochemistry》2003,42(9):2607-2615
Most heterotrimeric G-protein alpha subunits are posttranslationally modified by palmitoylation, a reversible process that is dynamically regulated. We analyzed the effects of Galpha(s) palmitoylation for its intracellular distribution and ability to couple to the beta-adrenergic receptor (betaAR) and stimulate adenylyl cyclase. Subcellular fractionation and immunofluorescence microscopy of stably transfected cyc(-) cells, which lack endogenous Galpha(s), showed that wild-type Galpha(s) was predominantly localized at the plasma membrane, but the mutant C3A-Galpha(s), which does not incorporate [(3)H]palmitate, was mostly associated with intracellular membranes. In agreement with this mislocalization, C3A-Galpha(s) showed neither isoproterenol- or GTPgammaS-stimulated adenylyl cyclase activation nor GTPgammaS-sensitive high-affinity agonist binding, all of which were present in the wild-type Galpha(s) expressing cells. Fusion of C3A-Galpha(s) with the betaAR [betaAR-(C3A)Galpha(s)] partially rescued its ability to induce high-affinity agonist binding and to stimulate adenylyl cyclase activity after isoproterenol or GTPgammaS treatment. In comparison to results with the WT-Galpha(s) and betaAR (betaAR-Galpha(s)) fusion protein, the betaAR-(C3A)Galpha(s) fusion protein was about half as efficient at coupling to the receptor and effector. Chemical depalmitoylation by hydroxylamine of membranes expressing betaAR-Galpha(s) reduced the high-affinity agonist binding and adenylyl cyclase activation to a similar degree as that observed in betaAR-(C3A)Galpha(s) expressing membranes. Altogether, these findings indicate that palmitoylation ensured proper localization of Galpha(s) and facilitated bimolecular interactions of Galpha(s) with the betaAR and adenylyl cyclase.  相似文献   

15.
Nearly all alpha subunits of heterotrimeric GTP-binding regulatory proteins (G proteins) are palmitoylated at cysteine residues near the N terminus. A regulated cycle of palmitoylation could provide a mechanism for modulating G protein signaling by affecting protein interactions and localization of the subunit. In the present studies we utilized both [(3)H]palmitate incorporation and pulse-chase techniques to address the dynamics of alpha(i) palmitoylation in Chinese hamster ovary cells. Both techniques demonstrated a dose- and time-dependent change in [(3)H]palmitate labeling of alpha(i) upon activation of stably expressed 5-hydroxytryptamine-1A receptors by the agonist (+/-)-2-dipropylamino-8-hydroxy-1,2,3, 4-tetrahydronaphthalene hydrobromide (DPAT), with an EC(50) of approximately 10 nm. For the incorporation assay, DPAT elicited an approximate doubling in labeling at the earliest time point measured. For the pulse-chase assay, DPAT promoted a significant loss of radiolabel almost equally as fast. These data demonstrate that the exchange of palmitate on alpha(i) is increased upon stimulation of 5-hydroxytryptamine-1A receptors through the combined processes of depalmitoylation and palmitoylation. These results provide the basis for extending the concept of regulated exchange of palmitate beyond G(s) and provide a framework for exploring the specific functional attributes of the palmitoylated and depalmitoylated forms of subunit.  相似文献   

16.
Co-expression of the alpha(1b)-adrenoreceptor and Galpha(11) in cells derived from a Galpha(q)/Galpha(11) knock-out mouse allows agonist-mediated elevation of intracellular Ca(2+) levels that is transduced by beta/gamma released from the G protein alpha subunit. Mutation of Tyr(356) of Galpha(11) to Phe, within a receptor contact domain, had little effect on function but this was reduced greatly by alteration to Ser and virtually eliminated by conversion to Asp. This pattern was replicated following incorporation of each form of Galpha(11) into fusion proteins with the alpha(1b)-adrenoreceptor. Following a [(35)S]guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS) binding assay, immunoprecipitation of the wild type alpha(1b)-adrenoreceptor-Galpha(11) fusion protein indicated that the agonist phenylephrine stimulated guanine nucleotide exchange on Galpha(11) more than 30-fold. Information transfer by agonist was controlled in residue 356 Galpha(11) mutants with rank order Tyr > Phe > Trp > Ile > Ala = Gln = Arg > Ser > Asp, although these alterations did not alter the binding affinity of either phenylephrine or an antagonist ligand. Mutation of a beta/gamma contact interface in the alpha(1b)-adrenoreceptor-Tyr(356) Galpha(11) fusion protein did not alter ligand binding affinity but did reduce greatly beta/gamma binding and phenylephrine stimulation of [(35)S]GTPgammaS binding. It also prevented agonist elevation of intracellular Ca(2+) levels, as did a mutation in Galpha(11) that prevents G protein subunit dissociation. These results indicate that a bulky aromatic group is required four amino acids from the C terminus of Galpha(11) to maximize information transfer from an agonist-occupied receptor and disprove the hypothesis that tyrosine phosphorylation of this residue is required for G protein activation (Umemori, H., Inoue, T., Kume, S., Sekiyama, N., Nagao, M., Itoh, H., Nakanishi, S., Mikoshiba, K., and Yamamoto, T. (1997) Science 276, 1878-1881). This is distinct from Galpha(i1), where hydrophobicity of the amino acid is the key determinant at this location. They also further demonstrate a key role for the beta/gamma complex in enhancing receptor to G protein alpha subunit information transfer.  相似文献   

17.
The GTP hydrolytic (GTPase) reaction terminates signaling by both large (heterotrimeric) and small (Ras-related) GTP-binding proteins (G proteins). Two residues that are necessary for GTPase activity are an arginine (often called the "arginine finger") found either in the Switch I domains of the alpha subunits of large G proteins or contributed by the GTPase-activating proteins of small G proteins, and a glutamine that is highly conserved in the Switch II domains of Galpha subunits and small G proteins. However, questions still exist regarding the mechanism of the GTPase reaction and the exact role played by the Switch II glutamine. Here, we have characterized the GTP binding and GTPase activities of mutants in which the essential arginine or glutamine residue has been changed within the background of a Galpha chimera (designated alpha(T)*), comprised mainly of the alpha subunit of retinal transducin (alpha(T)) and the Switch III region from the alpha subunit of G(i1). As expected, both the alpha(T)*(R174C) and alpha(T)*(Q200L) mutants exhibited severely compromised GTPase activity. Neither mutant was capable of responding to aluminum fluoride when monitoring changes in the fluorescence of Trp-207 in Switch II, although both stimulated effector activity in the absence of rhodopsin and Gbetagamma. Surprisingly, each mutant also showed some capability for being activated by rhodopsin and Gbetagamma to undergo GDP-[(35)S]GTPgammaS exchange. The ability of the mutants to couple to rhodopsin was not consistent with the assumption that they contained only bound GTP, prompting us to examine their nucleotide-bound states following their expression and purification from Escherichia coli. Indeed, both mutants contained bound GDP as well as GTP, with 35-45% of each mutant being isolated as GDP-P(i) complexes. Overall, these findings suggest that the R174C and Q200L mutations reveal Galpha subunit states that occur subsequent to GTP hydrolysis but are still capable of fully stimulating effector activity.  相似文献   

18.
The effect of palmitoylation on the GTP-binding activity and conformation of Goalpha protein in hydrophobic and hydrophilic environments was studied. The binding assay was performed with an isotope labeled analog of GTP, GTP-gamma-35S, and its fluorescent analog, BODIPY FL-GTPgammaS was used to detect conformational change in the GTP-binding domain of Goalpha. Investigation of the GTP-gamma-35S binding activity of Goalpha shows that in a hydrophobic environment, mimicked by the presence of detergent, the apparent dissociation constant for palmitoylated Goalpha (K(D)=25.5x10(-9)+/-1.7x10(-9)M) increased threefold compared with that of non-palmitoylated Goalpha (K(D)=9.9x10(-9)+/-0.8x10(-9)M), while in an aqueous environment without detergent there is no significant difference between palmitoylated (K(D)=50.1 x 10(-9)+/-5.2x10(-9)M) and non-palmitoylated (K(D)=65.5x10(-9)+/-7.6x10(-9)M) Go(. This indicates that in a membrane environment palmitoylation may weaken the GTPgammaS binding ability of Go(. Fluorescent quenching studies using BODIPY FL-GTPgammaS as a probe showed that the conformation of the GTP-binding domain of Go( tends to become more compact after palmitoylation. These results imply that palmitoylation may regulate the GTP/GDP exchange of Goalpha by influencing the GTP-binding activity of Goalpha and facilitating the on-off switch function of the G protein in G protein-coupled signal transduction.  相似文献   

19.
Human gallbladders with cholesterol stones (ChS) exhibit an impaired muscle contraction and relaxation and a lower CCK receptor-binding capacity compared with those with pigment stones (PS). This study was designed to determine whether there is an abnormal receptor-G protein coupling in human gallbladders with ChS using (35)S-labeled guanosine 5'-O-(3-thiotriphosphate) ([(35)S]GTPgammaS) binding, (125)I-labeled CCK-8 autoradiography, immunoblotting, and G protein quantitation. CCK and vasoactive intestinal peptide caused significant increases in [(35)S]GTPgammaS binding to Galpha(i-3) and G(s)alpha, respectively. The binding was lower in ChS than in PS (P < 0.01). The reduced [(35)S]GTPgammaS binding in ChS was normalized after the muscles were treated with cholesterol-free liposomes (P < 0.01). Autoradiography and immunoblots showed a decreased optical density (OD) for CCK receptors, an even lower OD value for receptor-G protein coupling, and a higher OD for uncoupled receptors or Galpha(i-3) protein in ChS compared with PS (P < 0.001). G protein quantitation also showed that there were no significant differences in the Galpha(i-3) and G(s)alpha content in ChS and PS. We conclude that, in addition to an impaired CCK receptor-binding capacity, there is a defect in receptor-G protein coupling in muscle cells from gallbladder with ChS. These changes may be normalized after removal of excess cholesterol from the plasma membrane.  相似文献   

20.
Kohno M  Fukushima N  Yoshida A  Ueda H 《FEBS letters》2000,473(1):101-105
We examined the diversity of single receptor function by measuring receptor-G protein coupling in the baculovirus-Sf21 expression system. In comparative studies using Sf21 cell membranes expressing kappa-opioid receptor (KOR) plus Galpha(i1)beta(1)gamma(2) or KOR plus Galpha(oA)beta(1)gamma(2), there was no significant difference between both preparations in the K(i) values of various kappa-opioid ligands for the displacement of [(3)H]U69593 binding. However, a marked difference in the rank order of agonists to stimulate [(35)S]GTPgammaS binding was observed between both preparations. These findings suggest that agonist efficacy is dependent on the population of different G proteins expressed in various tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号