首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oami K  Takahashi M 《Zoological science》2004,21(11):1091-1097
The membrane potential responses of Paramecium caudatum to Na+ ions were examined to understand the mechanisms underlying the sensation of external inorganic ions in the ciliate by comparing the responses of the wild type and the behavioral mutant. Wild-type cells exhibited initial continuous backward swimming followed by repeated transient backward swimming in the Na+-containing test solution. A wild-type cell impaled by a microelectrode produced initial action potentials and a sustained depolarization to an application of the test solution. The prolonged depolarization, the depolarizing afterpotential, took place subsequently after stimulation. The ciliary reversal of the cell was closely associated with the depolarizing responses. When the application of the test solution was prolonged, the wild-type cell produced sustained depolarization overlapped by repeated transient depolarization. A behavioral mutant defective in the Ca2+ channel, CNR (caudatum non reversal), produced a sustained depolarization but no action potential or depolarizing afterpotential. The mutant cell responded to prolonged stimulation with sustained depolarization overlapped by transient depolarization, although it did not show backward swimming. The results suggest that Paramecium shows at least two kinds of membrane potential responses to Na+ ions: a depolarizing afterpotential mediating initial backward swimming and repeated transient depolarization responsible for the repeated transient backward swimming.  相似文献   

2.
The pyloric constrictor muscles of the stomach in Squilla can generate spikes by synaptic activation via the motor nerve from the stomatogastric ganglion. Spikes are followed by slow depolarizing afterpotentials (DAPs) which lead to sustained depolarization during a burst of spikes. 1. The frequency of rhythmic bursts induced by continuous depolarization is membrane voltage-dependent. A brief depolarizing or hyperpolarizing pulse can trigger or terminate bursts, respectively, in a threshold-dependent manner. 2. The conductance increases during the DAP response. The amplitude of DAP decreases by imposed depolarization, whereas it increases by hyperpolarization. DAPs from successive spikes sum to produce a sustained depolarizing potential capable of firing a burst. 3. The spike and DAP are reduced in amplitude by decreasing [Ca]o, enhanced by Sr2+ or Ba2+ substituted for Ca2+, and blocked by Co2+ or Mn2+. DAPs are selectively blocked by Ni2+, and the spike is followed by a hyperpolarizing afterpotential. 4. The spike and DAP are prolonged by intracellular injection of the Ca2+ chelator EGTA. A hyperpolarizing afterpotential is abolished by EGTA and enhanced by increasing [Ca]o. The DAP is diminished in Na(+)-free saline and reduced by tetrodotoxin. 5. It is concluded that the muscle fiber is endowed with endogenous oscillatory properties and that the oscillatory membrane events result from changes of a voltage- and time-dependent conductance to Ca2+ and Na+ and a Ca2+ activated conductance to K+.  相似文献   

3.
Membrane potential responses of Paramecium caudatum to an application of K+-rich solution were examined to understand the mechanisms underlying K+-induced backward swimming. A wild-type cell impaled by a microelectrode produced action potentials followed by a sustained depolarization in response to an application of a K+-rich test solution. After termination of the application, a prolongation of the depolarization (depolarizing after-potential) took place. Behavioral mutants incapable of exhibiting K+-induced backward swimming did not show depolarizing afterpotentials. Upon short application of K+-rich solution, the timing and duration of the ciliary reversal of the wild-type cell coincided well with the K+-induced depolarization. The duration of the depolarizing afterpotential decreased as the duration of the application increased. The depolarizing afterpotential recovered slowly after it had been suppressed by a preceding application of the K+-rich solution. By injection of an outward current into the wild-type cell, the action potentials were evoked normally during the period when the K+-induced depolarizing afterpotential was suppressed. We concluded that the prolongation of the depolarizing membrane potential response following the application of the K+-rich solution represents the Ca2+ conductance responsible for the K+-induced backward swimming in P. caudatum and that the characteristics of the K+-induced Ca2+ conductance are distinct from those of the Ca2+ conductance responsible for the action potentials.  相似文献   

4.
A comparative analysis of the contractile responses induced by acetylcholine and replacement of the external Na+ ions with choline ions in the isolated twitch and tonic fibers of frog skeletal muscles was performed. The effects of extracellular Ca2+ concentration and several pharmacological agents modulating the activity of various systems maintaining Ca2+ level in the myoplasm (dantrolene, cresol, d-tubocurarine, and tetrodotoxin) were studied. It has been found that a voltage-dependent Ca2+ release from the sarcoplasmic reticulum depot is the main mechanism inducing the acetylcholine contracture in the fibers of both types. However, the twitch and tonic fibers differ in the properties of the α-isoform and(or) the ratio of α- to β-isoforms of ryanodine-sensitive channels. In the fibers of both types, the replacement of over 25% of Na+ ions with choline induces long-term contracture responses, which are also mediated by activation of acetylcholine receptors. It is assumed that an additional mechanism—accumulation of choline ions in the myoplasm and their direct action on the ryanodine-sensitive channels—is involved in the development of such contractile responses.  相似文献   

5.
The mechanisms of three types of hyperpolarizing electrogenesis in hamster submandibular ganglion cells were analyzed with intracellular microelectrodes. These included (1) spike-induced hyperpolarizing afterpotential (S-HAP), (2) spontaneous transient hyperpolarizing potential (HP), and (3) the hyperpolarizing (H) phase of postsynaptic potential (PSP). Most of these hyperpolarizing potentials were due to conductance increases and reversed polarity at membrane potential (Em) between -70 and -85 mV, which was close to the K-equilibrium potential. The average resting potential of ganglion cells was -53 mV. Action potential overshoot increased slightly in high [Ca2+]0 and decreased in low [Ca2+]0. In most neurons action potentials were completely suppressed by 10(-7)-M tetrodotoxin (TTX). The S-HAP has an initial component due to delayed rectification and a late component. The late component is enhanced by increasing [Ca2+]0, or by applying Ca-ionophore (A23187), TEA, caffeine, or dibutyryl cyclic (DBc-) AMP; it is suppressed by decreasing [Ca2+]0, or by applying Mn2+. Perfusion with Cl--free saline reduced membrane potential slightly but did not modify the S-HAP. Depolarizing pulses also induced hyperpolarizing afterpotential (D-HAP), similar to the S-HAP. Spontaneous transient HPs occurred in some neurons at irregular intervals. HPs were insensitive to TTX but were suppressed by Mn2+. Caffeine induced low frequency rhythmic HPs in many neurons, often alternating with periods of repetitive spiking. The PSP was a monophasic depolarizing (D-) potential in some neurons, but in others the D-phase was followed by a small H-phase. Perfusion with A23187, caffeine or DBc-AMP increased the H-phase of the PSP. Perfusion with K+-free saline or treatment with 10(-5)M ouabain did not abolish the H-phase of PSPs. These membrane potential-dependent phenomena appear to be induced mainly by Ca-mediated K-conductance increases. This mechanism contributes to the regulation of low-frequency repetitive firing in submandibular ganglion cells.  相似文献   

6.
In this study, the effects of the marine toxin maitotoxin on cytosolic Ca2+ levels and membrane potential in rat brain synaptosomes were evaluated. Maitotoxin (10 ng/ml) caused a remarkable increase of intrasynaptosomal Ca2+ levels monitored by the fluorescent probe fura-2. This increase was prevented by the removal of external Ca2+ ions. Tetrodotoxin, as well as the removal of extracellular Na+ ions, failed to affect maitotoxin-induced increase of intrasynaptosomal Ca2+ levels. Also the complete removal of all monovalent and divalent cations, except Ca2+ ions, from the incubation medium (0.32 M sucrose substitution), was unable to prevent the effect of maitotoxin on intrasynaptosomal Ca2+ levels. Maitotoxin (0.3-10 ng/ml), produced a dose-dependent depolarization of synaptosomal membranes, which required the presence of extracellular Ca2+ ions. The substitution of extracellular Na+ with choline or the removal of all cations from the incubation medium and their replacement with an isotonic concentration of sucrose (0.32 M), did not prevent the depolarizing effect exerted by maitotoxin. Also under these two ionic conditions, the effect of maitotoxin on membrane potential was critically dependent on the presence of 1 mM extracellular Ca2+. The depolarizing effect exerted by maitotoxin on synaptosomal membrane potential was also observed when extracellular Ca2+ ions were substituted with an equimolar concentration of Ba2+ or Sr2+ ions. In summary, these results appear to suggest that, in presence of 1 mM extracellular Ca2+ ions, maitotoxin depolarizes synaptosomal plasmamembrane by promoting the influx of extracellular Ca2+ ions. This enhanced influx of Ca2+ causes an increase of intrasynaptosomal Ca2+ levels.  相似文献   

7.
Action potentials in human macrophages are calcium spikes   总被引:1,自引:0,他引:1  
Transmembrane resting and action potentials measured with single and double microelectrode impalements of human monocyte-derived macrophages reveal that repetitive action potentials induced by depolarizing current pulses are sodium insensitive and calcium dependent. Neither amplitude, frequency of spiking, threshold nor rate of rise of the action potentials is altered by different levels of extracellular sodium, substitution of choline for sodium, or exposure to tetrodotoxin. Spiking activity is enhanced in high calcium, diminished in frequency and amplitude by lowered extracellular calcium and is blocked by cobalt and verapamil.  相似文献   

8.
The mechanisms of three types of hyperpolarizing electrogenesis in hamster submandibular ganglion cells were analyzed with intracellular microelectrodes. These included (1) spike-induced hyperpolarizing afterpotential (S-HAP), (2) spontaneous transient hyperpolarizing potential (HP), and (3) the hyperpolarizing (H) phase of postsynaptic potential (PSP). Most of these hyperpolarizing potentials were due to conductance increases and reversed polarity at membrane potential (Em) between ?70 and ?85 mV, which was close to the K-equilibrium potential. The average resting potential of ganglion cells was ?53 mV. Action potential overshoot increased slightly in high [Ca2+]0 and decreased in low [Ca2+]0. In most neurons action potentials were completely suppressed by 10?7 M tetrodotoxin (TTX). The S-HAP has an initial component due to delayed rectification and a late component. The late component is enhanced by increasing [Ca2+]0, or by applying Ca-ionophore (A23187), TEA, caffeine, or dibutyryl cyclic (DBc-) AMP; it is suppressed by decreasing [Ca2+]0, or by applying Mn2+. Perfusion with Cl?-free saline reduced membrane potential slightly but did not modify the S-HAP. Depolarizing pulses also induced hyperpolarizing afterpotential (D-HAP), similar to the S-HAP. Spontaneous transient HPs occurred in some neurons at irregular intervals. HPs were insensitive to TTX but were suppressed by Mn2+. Caffeine induced low frequency rhythmic HPs in many neurons, often alternating with periods of repetitive spiking. The PSP was a monophasic depolarizing (D-) potential in some neurons, but in others the D-phase was followed by a small H-phase. Perfusion with A23187, caffeine or DBc-AMP increased the H-phase of the PSP. Perfusion with K+-free saline or treatment with 10?5M ouabain did not abolish the H-phase of PSPs. These membrane potential-dependent phenomena appear to be induced mainly by Ca-mediated K-conductance increases. This mechanism contributes to the regulation of low-frequency repetitive firing in submandibular ganglion cells.  相似文献   

9.
BACKGROUND/AIMS: Myoblasts undergoing differentiation sequentially express multiple K+ channels, and that ion channel expression varies depending on species and state of development. In this report, we reported a developmental regulation of fast activated and fast inactivated outward current in rat myoblasts. METHODS: The kinetic and pharmacological property of the outward current was investigated by using the patch-clamp technique. RESULTS: The outward current was elicited by a depolarizing step from -100 mV holding potential to +40 mV- +80 mV. The activation properties of this channel changed with days in culture. The outward current was blocked by 4-AP in a concentration dependent manner, with 0.5 mM and 2 mM 4-AP inhibiting the current by 10 +/- 3% and 56 +/- 3%, respectively. When 1 mM tetrodotoxin (TTX) was added to the bath solution or the membrane potential was depolarized to -50 mV, the fast outward current was aborted. Na+ dependent inhibition was observed when Na+ in the bath solution was replaced by Li+. In addition, replacement of K+ in the pipette solution by Cs+ almost completely eliminated the outward current. CONCLUSION: The developmentally regulated outward current recorded in rat myoblasts is a Na+ influx-dependent outward K+ current, which may contribute to myoblast membrane firing of action potential or myoblast fusion.  相似文献   

10.
The effect of primycin, a guanidine-type antibiotic was studied on the electric properties and 42K+ uptake of the frog sartorius and semitendinosus muscle. Both in normal and choline chloride Ringer solution, primycin evoked a concentration and time dependent depolarization of the surface membrane of the muscle. This depolarization was significantly increased by Na ions. Primycin treatment was shown to evoke a dose-dependent decrease of the depolarization induced by 20 mM K+-Ringer. When the muscles were incubated in a Ringer solution containing choline chloride, during an incubation period of 30 min the uptake of 42K+ was decreased to 12% upon the exposure to 5 x 10(-6) mol primycin as compared to the control value. As the primycin-induced depolarization increased, the shape and amplitude of the action potentials elicited by square-wave electric impulses were altered and decreased, respectively. In sodium isaethionate Ringer 1--2 x 10(-6) M primycin induced a slow depolarization resulting in firing potentials. The results suggest that primycin depolarizes the surface membrane exclusively through the blockade of the resting K+ channels, the other phenomena being the results of this depolarizing effect.  相似文献   

11.
After the offset of illumination, barnacle photoreceptors undergo a large hyperpolarization that lasts seconds or minutes. We studied the mechanisms that generate this afterpotential by recording afterpotentials intracellularly from the medial photoreceptors of the giant barnacle Balanus nubilus. The afterpotential has two components with different time-courses: (a) an earlier component due to an increase in conductance to K+ that is not blocked by extracellular tetraethylammonium ion (TEA+) or 3-aminopyridine (3-AP) and (b) a later component that is sensitive to cardiac glycosides and that requires extracellular K+, suggesting that it is due to an electrogenic Na+ pump. The K+ conductance component increases in amplitude with increasing CA++ concentration and is inhibited by extracellular Co++; the Co++ inhibition can be overcome by increasing the Ca++ concentration. Thus, the K+ conductance component is Ca++ dependent. An afterpotential similar to that evoked by a brief flash of light is generated by depolarization with current in the dark and by eliciting Ca++ action potentials in the presence of TEA+ in the soma, axon, or terminal regions of the photoreceptor. The action potential undershoot is generated by an increase in conductance to K+ that is resistant to TEA+ and 3-AP and inhibited by Co++. The similarity in time-course and pharmacology of the hyperpolarization afterpotentials elicited by (a) a brief flash of light, (b) depolarization with current, and (c) an action potential indicates that Ca++-dependent K+ channels throughout the photoreceptor membrane are responsible for all three hyperpolarizing events.  相似文献   

12.
Transmitter release from depolarized nerve terminals seems to be preceded by a rise in the intracellular concentration of ionized calcium. In squid giant axons, depolarization promotes calcium entry by two routes: one that is blocked by tetrodotoxin and one that is insensitive to tetrodotoxin. The TTX-sensitive route seems to be the sodium channel of the action potential; but the TTX-insensitive route seems to be quite distinct from the sodium and potassium channels of the action potential. It is blocked by Mg-2+, Mn-2+ and Co-2+ ions and by the organic calcium antagonist D-600 and has many features in common with the mechanism that couples excitation to secretion.  相似文献   

13.
The roles of K+, Ca2+, and Na+ ions in the mechanism of gonadotropin releasing hormone (GnRH) action on frog (Rana pipiens) hemipituitaries were studied using an in vitro superfusion system. The effects of elevated K+ alone or in combination with Ca2+-depleted medium, tetrodotoxin (TTX), or with 100 ng/ml GnRH were examined. The involvement of K+ was also studied indirectly through the use of tetraethyl ammonium chloride (TEA). The importance of Ca2+ was established by the loss of responsiveness to GnRH in Ca2+-depleted medium, or in the presence of the Ca2+ competitor CoCl2. The absence of a major dependence of GnRH on Na+ was revealed by the continued gonadotropin secretion after addition of 1 microM TTX to medium containing GnRH or 36.3 mM KCl, or by replacement of NaCL with choline chloride. High (10 X normal) KCl (36.3 mM) stimulated gonadotropin--both LH and FSH--secretion, but the response was more gradual than for GnRH. The inclusion of TEA (to block K+ efflux) in medium with GnRH accentuated the effect of GnRH, and the effects of elevated (36.3 mM) KCl and 100 ng/ml GnRH (a relatively high dose) were additive. Responses to high K+, like GnRH, were abolished by removal of Ca2+ from the medium. Overall, the roles of K+, Ca2+, and Na+ ions in the mechanism of GnRH action are very similar between mammals and frogs; Ca2+ apparently serves a critical function in the mechanism of GnRH action, while Na+ appears not to be involved. K+ can induce gonadotropin secretion, but it is not clear that it plays a direct role in the mediation of the action of GnRH.  相似文献   

14.
Wavelength-dependent, bistable phenomena were found in the receptor potential of Hermissenda crassicornis type A photoreceptors. Short exposure to blue light induced a prolonged depolarizing afterpotential (PDA) following the cessation of the light stimulus. Stronger adaptation to blue light, as caused by prolonged exposure and/or high intensity stimulation, effected a reduction in the early depolarizing transient of the late receptor potential (LRP) as elicited by subsequent stimuli. Vast separation of LRP emergence and PDA emergence could be obtained in photoreceptors in which a strong cancellation of the LRP was accomplished but a PDA still emerged after cessation of the light stimulus. Short exposure to yellow light cancelled the PDA, and stronger adaptation restored the LRP (opposite effect to blue light). The initial depolarizing part of the LRP had earlier been demonstrated to be mediated by the lightdependent increase of an inward conductance. In contrast, in this study the PDA was found to be accompanied by the reduction of an outward conductance, most likely a K+ conductance. A bistable photopigment system is thought to control the bistable receptor potential phenomenology by regulating the different membrane conductances during the LRP and the PDA.Abbreviations LRP late receptor potential - PDA prolonged depolarizing afterpotential - PHA prolonged hyperpolarizing afterpotential  相似文献   

15.
Intracellular calcium and the control of neuronal pacemaker activity   总被引:3,自引:0,他引:3  
Pacemaker activity of the Aplysia bursting pacemaker neuron R-15 was analyzed. It was shown that the free intracellular Ca2+ concentration, as measured by arsenazo III, increases during the depolarizing phase of the pacemaker cycle and declines throughout the hyperpolarizing phase that follows. This increase in Ca2+ results from the activation of voltage-dependent Ca2+ channels that open during the depolarizing phase of the cycle. The extracellular K+ concentration also increases during the depolarizing phase of the cycle and is correlated with an outward K+ current that opposes the inward current carried by Ca2+ ions. The increase in internal Ca2+ is sufficient to activate a K+ conductance that depends on the magnitude of the change in internal Ca2+ and on membrane potential, which is responsible for the hyperpolarizing phase of the cycle. It is proposed that the membrane oscillation depends on three separate but linked systems, which include a voltage-dependent Ca2+ channel, the internal Ca2+ concentration, and a Ca2+-activated K+ channel.  相似文献   

16.
The ionic requirement for the production of directly elicited action potentials of a tonically auto-active neuron (TAN) in the subesophageal ganglia of the giant African snail, Achatina fulica Ferussac, was studied electrophysiologically. Calcium free Ringer solution containing 1 mM EDTA reversibly abolished the directly elicited action potential. Verapamil (10 micrograms/ml) or cocaine (4 mg/ml) decreased both amplitude and Vmax of the action potentials. The amplitude of the action potential was also slightly decreased in sodium free choline Ringer. However, tetrodotoxin did not significantly affect either the amplitude or Vmax of the directly elicited action potentials. The results suggest that the ionic requirement for generating action potential in snail neuron is not an ordinary sodium spike. Both calcium and sodium ions may participate in carrying charges across the membrane of the action potential.  相似文献   

17.
Rat cerebral cortex synaptosomes were exposed in superfusion to various depolarizing stimuli and the release of somatostatin-like immunoreactivity (SRIF-LI) was measured by means of a radioimmunoassay procedure. High KCl (9-50 mM) concentration dependently evoked SRIF-LI release; the evoked overflow reached a plateau at 25 mM KCl and was completely abolished when Ca2+ ions were omitted from the superfusion medium, independently of the concentration of KCl used. The 15 mM K(+)-evoked release of SRIF-LI increased sharply as the Ca2+ concentration was raised to 0.8 mM, then leveled off and reached a plateau at 1.2 mM. The 15 mM K(+)-evoked overflow, but not the spontaneous outflow, was partially decreased (50%) by 1 microM tetrodotoxin. The presence in the superfusion fluid of a mixture of peptidase inhibitors did not improve the recovery of SRIF-LI both in the absence and in the presence of high K+. Exposure of synaptosomes to veratrine (1-50 microM) induced release of SRIF-LI in a concentration-dependent way. The effect of the alkaloid was strictly Ca2+ and tetrodotoxin sensitive. Replacement of extracellular Na+ by sucrose caused an acceleration of the spontaneous SRIF-LI outflow that was inversely correlated to the Na+ content in the superfusion medium. The release evoked by the sodium-deprived media did not exhibit any calcium dependence. HPLC analysis of the samples collected during superfusion showed that greater than 90% of the SRIF-LI released either during the spontaneous outflow or by 15 mM KCl was represented by SRIF-14 (SRIF-28(14-28]. These values reflected the ratio SRIF-14/SRIF-28 found in synaptosomes at the end of the experiments.  相似文献   

18.
We have used whole-cell patch clamp techniques to record from tall hair cells isolated from the apical half of the alligator cochlea. Some of these cells gave action potentials in response to depolarizing current injections. When the same cells were voltage clamped, large transient inward currents followed by smaller outward currents were seen in response to depolarizing steps. We studied the transient inward current after the outward current had been blocked by external tetraethylammonium (20 mM) or by replacing internal potassium with cesium. It was found to be a sodium current because it was abolished by either replacing external sodium with choline or by external application of tetrodotoxin (100 nM). The sodium current showed voltage-dependent activation and inactivation. Most of the spiking hair cells came from the apex of the cochlea, where they would be subject to low-frequency mechanical stimulation in vivo.  相似文献   

19.
Scorpion toxins, the basic miniproteins of scorpion venom, stimulated the passive uptake of Na+ and Ca2+ in chick embryo heart cells. Half-maximum stimulation was obtained for 20-30 nM Na+ and 40-50 nM Ca2+. Scorpion toxin-activated Na+ and Ca2+ uptakes were fully inhibited by tetrodotoxin, a specific inhibitor of the action potential Na+ ionophore in excitable membranes. Half-maximum inhibition was obtained with the same concentration of tetrodotoxin (10 nM) for both Na+ and Ca2+. Scorpion toxin-stimulated Ca2+ uptake was dependent on extracellular Na+ concentration and was not inhibited by Ca2+ channel blocking drugs which are inactive on heart cell action potential. Thus, in heart cells scorpion toxin affects the passive Ca2+ transport, which is coupled to passive Na+ ionphore. Other results suggest that (1) tetrodotoxin and scorpion toxin bind to different sites of the sarcolemma and (2) binding of scorpion toxin to its specific sites may unmask latent tetrodotoxin - sensitive fast channels.  相似文献   

20.
Action potentials evoked by depolarizing pulses were studied in immature cultured cerebral cortical neurons from chick embryos. The majority of action potentials were rather small, and they were still elicited in the presence of 10?7 gm/ml tetrodotoxin (TTX), but were almost completely abolished in Na+-free solution or by 10?5 gm/ml TTX in Tyrode's solution. The elevation of external Ca2+ concentration not only increased the maximum rates of rise of action potentials in normal Tyrode's solution with and without low (10?7 gm/ml) TTX but also regenerated action potentials in high (10?5 gm/ml) TTX-containing Tyrode's solution or in Na+-free solution. These high Ca2+ effects were blocked by Mn2+ or Co2+. These results suggest that action potentials, which were predominantly Na-dependent, are partially contributed by Ca ions in immature chick cerebral cortical neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号