首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The study was designed to evaluate whether the preserved coronary flow reserve (CFR) 72 hours after reperfused acute myocardial infarction (AMI) is associated with less microvascular dysfunction and is predictive of left ventricular (LV) functional recovery and the final infarct size at follow-up.

Methods

In our study, CFR was assessed by transthoracic Doppler echocardiography (TDE) in 44 patients after the successful percutaneous coronary intervention during the acute AMI phase. CFR was correlated with contractile reserve assessed by low-dose dobutamine echocardiography and with the total perfusion defect measured by single-photon emission computed tomography 72 hours after reperfusion and at 5 months follow-up. The ROC analysis was performed to determine test sensitivity and specificity based on CFR. Categorical data were compared by an χ2 analysis, continuous variables were analysed with the independent Student's t test. In order to analyse correlation between CFR and the parameters of LV function and perfusion, the Pearson correlation analysis was conducted. The linear regression analysis was used to assess the relationship between CFR and myocardial contractility as well as the final infarct size.

Results

We estimated the CFR cut-off value of 1.75 as providing the maximal accuracy to distinguish between patients with preserved and impaired CFR during the acute AMI phase (sensitivity 91.7%, specificity 75%). Wall motion score index was better in the subgroup with preserved CFR as compared to the subgroup with reduced CFR: 1.74 (0.29) vs. 1.89 (0.17) (p < 0.001) during the acute phase and 1.47 (0.30) vs. 1.81 (0.20) (p < 0.001) at follow-up, respectively. LV ejection fraction was 47.78% (8.99) in preserved CFR group vs. 40.79% (7.25) in impaired CFR group (p = 0.007) 72 hours after reperfusion and 49.78% (8.70) vs. 40.36% (7.90) (p = 0.001) after 5 months at follow-up, respectively. The final infarct size was smaller in patients with preserved as compared to patients with reduced CFR: 5.26% (6.14) vs. 23.28% (12.19) (p < 0.001) at follow-up.

Conclusion

The early measurement of CFR by TDE can be of high value for the assessment of successful reperfusion in AMI and can be used to predict LV functional recovery, myocardial viability and the final infarct size.  相似文献   

2.
Inhibition of Na+/H+ exchange with amiloride analogues has been shown to provide functional protection during ischemia and reperfusion and to reduce infarct size in isolated rat hearts. In rat hearts, treatment with ethylisopropyl-amiloride (EIPA, a selective Na+/H+ exchange inhibitor) was additive to the protection afforded by ischemic preconditioning. In addition, such compounds have been demonstrated to reduce infarct size in in situ rabbit hearts. The aim of the present study was to determine to what extent preischemic treatment with EIPA could reduce infarct size in an in situ rabbit model of regional ischemia and reperfusion. We also wished to determine if this effect was additive to the infarct reducing effect of ischemic preconditioning. Anaesthetized, open chest rabbits, were subjected to 45 min of regional ischemia and 150 min of reperfusion. The risk zone was determined by fluorescent particles and infarct size was determined by TTC staining. Four groups were investigated: control, ischemic preconditioned (IP) (5 min of ischemia followed by 10 min reperfusion), EIPA (0.65 mg/kg iv given preischemically) and EIPA + IP. The main results expressed as percent infarction of the risk zone ± S.E.M. for the different groups were: control 59.2 ± 3.3% (n = 6), IP 16.3 ± 2.1% (n = 6) (p < 0.001 vs. control), EIPA 16.9 ± 4.1% (n = 5) (p < 0.001 vs. control), EIPA + IP 22.5 ± 9.5% (n = 6) (p < 0.001 vs. control). In conclusion: EIPA, when administered prior to ischemia, caused a reduction in infarct size in the in situ rabbit heart which was similar to that seen with ischemic preconditioning, however, the effect was not additive to ischemic preconditioning.  相似文献   

3.
Adenosine-enhanced ischemic preconditioning (APC) extends the cardioprotection of ischemic preconditioning (IPC) by both significantly decreasing myocardial infarct size and significantly enhancing postischemic functional recovery. In this study, the role of adenosine receptors during ischemia-reperfusion was determined. Rabbit hearts (n = 92) were used for Langendorff perfusion. Control hearts were perfused for 180 min, global ischemia hearts received 30-min ischemia and 120-min reperfusion, and IPC hearts received 5-min ischemia and 5-min reperfusion before ischemia. APC hearts received a bolus injection of adenosine coincident with IPC. Adenosine receptor (A(1), A(2), and A(3)) antagonists were used with APC before ischemia and/or during reperfusion. GR-69019X (A(1)/A(3)) and MRS-1191/MRS-1220 (A(3)) significantly increased infarct size in APC hearts when administered before ischemia and significantly decreased functional recovery when administered during both ischemia and reperfusion (P < 0.05 vs. APC). DPCPX (A(1)) administered either before ischemia and/or during reperfusion had no effect on APC cardioprotection. APC-enhanced infarct size reduction is modulated by adenosine receptors primarily during ischemia, whereas APC-enhanced postischemic functional recovery is modulated by adenosine receptors during both ischemia and reperfusion.  相似文献   

4.
We studied whether apelin-13 is cardioprotective against ischemia/reperfusion injury if given as either a pre- or postconditioning mimetic and whether the improved postischemic mechanical recovery induced by apelin-13 depends only on the reduced infarct size or also on a recovery of function of the viable myocardium. We also studied whether nitric oxide (NO) is involved in apelin-induced protection and whether the reported ischemia-induced overexpression of the apelin receptor (APJ) plays a role in cardioprotection. Langendorff-perfused rat hearts underwent 30 min of global ischemia and 120 min of reperfusion. Left ventricular pressure was recorded. Infarct size and lactate dehydrogenase release were determined to evaluate the severity of myocardial injury. Apelin-13 was infused at 0.5 μM concentration for 20 min either before ischemia or in early reperfusion, without and with NO synthase inhibition by N(G)-nitro-l-arginine (l-NNA). In additional experiments, before ischemia also 1 μM apelin-13 was tested. APJ protein level was measured before and after ischemia. Whereas before ischemia apelin-13 (0.5 and 1.0 μM) was ineffective, after ischemia it reduced infarct size from 54 ± 2% to 26 ± 4% of risk area (P < 0.001) and limited the postischemic myocardial contracture (P < 0.001). l-NNA alone increased postischemic myocardial contracture. This increase was attenuated by apelin-13, which, however, was unable to reduce infarct size. Ischemia increased APJ protein level after 15-min perfusion, i.e., after most of reperfusion injury has occurred. Apelin-13 protects the heart only if given after ischemia. In this protection NO plays an important role. Apelin-13 efficiency as postconditioning mimetic cannot be explained by the increased APJ level.  相似文献   

5.
Two novel calpain inhibitors (A-705239 and A-705253) were studied in isolated perfused rabbit hearts subjected to 60-min occlusion of the ramus interventricularis of the left coronary artery (below the origin of the first diagonal branch), followed by 120 min of reperfusion. The inhibitors were added to the perfusion fluid in various final concentrations from the beginning of the experiments before the coronary artery was blocked. Hemodynamic monitoring and biochemical analysis of perfusion fluid from the coronary outflow were carried out. Myocardial infarct size and the area at risk (transiently non-perfused myocardium) were determined from left ventricular slices after a special staining procedure with Evans blue and 2,3,5-triphenyltetrazolium chloride. The infarcted area (dead myocardium) was 77.9+/-2.3% of the area at risk in untreated controls ( n =12). The infarct size was significantly reduced in the presence of both calpain inhibitors. The best effect was achieved with 10 -8 M A-705253 ( n =8), which reduced ( p <0.001) the infarcted area to 49.3+/-3.9% of the area at risk, corresponding to an infarct reduction of 61.8%. No statistical difference was observed between the experimental groups in coronary perfusion, left ventricular pressure, and in the release of lactate dehydrogenase and creatine kinase from heart muscle.  相似文献   

6.
While baseline N-terminal brain natriuretic peptide (NT-proBNP) is useful in the prognosis of acute ST-elevation myocardial infarction (STEMI), it is unclear whether a relationship exists between serial NT-proBNP, reperfusion success, and prognosis. We prospectively defined a NT-proBNP analysis in the WEST (Which Early ST-elevation myocardial infarction Therapy) trial that enrolled 304 acute STEMI patients. NT-proBNP (pg/mL) was measured at baseline prior to treatment (n=258) and 72 to 96 h (n=247) and 30 days (n=221) after treatment (Delta NT-proBNP=72 h value - the baseline NT-proBNP). Reperfusion success was measured by ST-segment resolution at 180 min, infarct size by peak creatine kinase (CK) during the first 24 h, and QRS score at discharge (QRSd). The primary endpoint was a 30 day clinical composite. The ability of either baseline NT-proBNP or Delta NT-proBNP to predict the primary endpoint was compared using single-variable logistic regression and the c-statistic. Median (interquartile range) NT-proBNP in pg/mL was 87 (39-316) at baseline, 864 (338-1857) at 72 h, and 585 (264-1212) at 30 days. ST resolution was inversely correlated with Delta NT-proBNP (r=-0.23, p=0.002) and 30 day NT-proBNP (30 day NT-proBNP 1016, 828, and 397 for <30%, 30%-70%, >or=70% STR, respectively, p<0.001). Infarct size was correlated with Delta NT-proBNP by CK (r=0.41, p<0.001) and QRSd (r=0.31, p<0.001); the 30 day NT-proBNP relationship was similar for CK (r=0.48, p<0.001) and QRSd (p=0.003). The baseline NT-proBNP was associated with an increased 30-day composite endpoint (Q1, 19%; Q2, 20%; Q3, 15%; Q4, 38%; p=0.03 for trend) as was Delta NT-proBNP (Q1, 16%; Q2, 18%; Q3, 19%; Q4, 37%; p=0.009 for trend). The c-statistic for baseline, 72 to 96 h, and Delta NT-proBNP was 0.59, 0.61, and 0.62 for the 30-day composite and 0.64, 0.62, and 0.62 for the 90-day composite, respectively. Delta NT-proBNP clearly predicts short-term adverse cardiac events and is superior to baseline NT-proBNP, but similar to the 72 to 96 h NT-proBNP in predicting clinical events after STEMI. This likely reflects the variability in NT-proBNP at presentation and the ability to integrate subsequent important physiologic sequelae of STEMI such as reperfusion and infarct size.  相似文献   

7.
Glucose-free perfusion preconditions myocardium against the consequences of subsequent ischemia. We investigated whether mitochondrial ATP-sensitive potassium (mK (ATP)) channels are involved in preconditioning by glucose deprivation, and whether moderate glucose deprivation also preconditions myocardium. Isolated rat hearts underwent 30 min of no-flow ischemia followed by 1 h reperfusion. Controls were not further treated. Three groups were preconditioned by perfusion with 0, 40 or 80 mg/dl (0, 2.22, 4.44 mmol/l) glucose (correction of osmotic pressure by addition of urea) for 10 min followed by 10 min perfusion with normal buffer (150 mg/dl, or 8.33 mmol/l glucose) before the ischemia reperfusion protocol. In one group, 100 micromol/l of the mK (ATP) channel blocker 5-HD was added to the glucose-free perfusate. Two groups were treated with 5-HD or urea before ischemia without preconditioning. Left ventricular developed pressure and maximum ischemic contracture (82 +/- 21 mmHg) were similar in all groups. Mean left ventricular developed pressure was 100 +/- 16 mm Hg under baseline conditions, and poorly recovered to 8 +/- 11 mm Hg during reperfusion. Preconditioning with 0 and 40 mg/dl glucose containing buffer reduced infarct size from 41 +/- 10% (control) to 23 +/- 12% (p = 0.02) and 26 +/- 8% (p = 0.011). The 5-HD blocked preconditioning by glucose deprivation (38 +/- 9%, p = 0.04) while 80 mg/dl glucose, 5-HD and urea had no effect on infarct size (39 +/- 9%; 38 +/- 13%; 37 +/- 8%; p = 1.0 each). We conclude that transient severe glucose deprivation and moderate glucose deprivation preconditions the isolated rat heart. Preconditioning by complete glucose deprivation depends on the opening of mK (ATP) channels.  相似文献   

8.
Reactive oxygen species (ROS) contribute to ischemia-reperfusion injury of the heart. This study investigates the effects of tempol, a membrane-permeable radical scavenger on (i) the infarct size caused by regional myocardial ischemia and reperfusion of the heart in vivo (rat, rabbit) and in vitro (rat), and (ii) the cell injury caused by hydrogen peroxide (H2O2) in rat cardiac myoblasts (H9c2 cells). In the anesthetized rat, tempol reduced the infarct size caused by regional myocardial ischemia (25 min) and reperfusion (2 h) from 60 +/- 3% (control, n = 8) to 24 +/- 5% (n = 6, p < .05). In the anesthetized rabbit, tempol also attenuated the infarct size caused by myocardial ischemia (45 min) and reperfusion (2 h) from 59 +/- 3% (control, n = 6) to 39 +/- 5% (n = 5, p < .05). Regional ischemia (35 min) and reperfusion (2 h) of the isolated, buffer-perfused heart of the rat resulted in an infarct size of 54 +/- 4% (control n = 7). Reperfusion of hearts with buffer containing tempol (n = 6) caused a 37% reduction in infarct size (n = 6, p < .05). Pretreatment of rat cardiac myoblasts with tempol attenuated the impairment in mitochondrial respiration caused by H2O2 (1 mM for 4 h). Thus, the membrane-permeable radical scavenger tempol reduces myocardial infarct size in rodents.  相似文献   

9.
Lecour S  Owira P  Opie LH 《Life sciences》2006,78(15):1702-1706
INTRODUCTION: Ceramide induces programmed cell death and it is thought to contribute to cardiac ischemia/reperfusion (I/R) injury. In contrast, we have demonstrated that administration of low doses of ceramide engenders cardiac preconditioning (PC). Ceramide is known to generate reactive oxygen species (ROS) in cells. Since mechanisms triggering the ceramide-induced cardioprotection remain unknown, we investigated the role of ROS in the genesis of this protective mechanism. METHODS: Using an isolated Langendorff-perfused rat heart model, four groups (n > or = 6 in each group) were considered: Control hearts underwent 30 min index regional ischemia and 120 min of reperfusion. In the ceramide group, hearts were preconditioned with c2-ceramide 1 microM for 7 min followed by 10 min washout prior to the I/R insult. In additional groups, MPG (1 mM), a synthetic antioxidant was given for 15 min alone or bracketing the ceramide perfusion. In each group, infarct size was determined at the end of the reperfusion period and superoxide dismutases (CuZnSOD and MnSOD) and catalase activities were evaluated. RESULTS: Ceramide preconditioning reduced the infarct/area at risk (I/AAR) ratio (8.3 +/- 1.1% for ceramide vs. 36.4 +/- 1.2% for control, p < 0.001). Perfusion with MPG abolished the preconditioning effect of ceramide (I/AAR ratio = 36.7 +/- 4.9%). Ceramide was also associated with a 29% and 38% increase in catalase and CuZnSOD activities, respectively, compared with control group. CONCLUSION: Production of reactive oxygen species following ceramide preconditioning of the ischemic-reperfused heart appears to play a role in the cardioprotective effect of ceramide.  相似文献   

10.
Postconditioning (PoC) with brief intermittent ischemia after myocardial reperfusion has been shown to lessen some elements of postischemic injury including arrhythmias and, in some studies, the size of myocardial infarction. We hypothesized that PoC could improve reflow to the risk zone after reperfusion. Anesthetized, open-chest rabbits were subjected to 30 min of coronary artery occlusion followed by 3 h of reperfusion. In protocol 1, rabbits were randomly assigned to the control group (n = 10, no further intervention after reperfusion) or to the PoC group, which consisted of four cycles of 30-s reocclusions with 30 s of reperfusion in between starting at 30 s after the initial reperfusion (4 x 30/30, n = 10). In protocol 2, rabbits were assigned to the control group (n = 7) or the PoC group, which received PoC consisting of four cycles of 60-s intervals of ischemia and reperfusion starting at 30 s after the initial reperfusion (4 x 60/60, n = 7). No reflow was determined by injecting thioflavine S (a fluorescent marker of capillary perfusion), risk zone by blue dye, and infarct size by triphenyltetrazolium chloride. In protocol 1, there were no statistical differences in hemodynamics, ischemic risk zone, or infarct size (35 +/- 6% of the risk zone in the PoC group vs. 29 +/- 4% in the control group, P = 0.38) between the groups. Similarly, in protocol 2, PoC failed to reduce infarct size compared with the control group (45 +/- 4% of the risk zone in the PoC group vs. 42 +/- 6% in the control group, P = 0.75). There was a strong correlation in both protocols between the size of the necrotic zone and the portion of the necrotic zone that contained an area of no reflow. However, PoC did not affect this relationship. PoC did not reduce infarct size in this model, nor did it reduce the extent of the anatomic zone of no reflow, suggesting that this intervention may not impact postreperfusion microvascular damage due to ischemia.  相似文献   

11.
The importance of the activation of mitogen-activated protein kinases (MAPK) for the cardioprotection achieved by ischemic preconditioning (IP) is still controversial. We therefore measured infarct size and p38, extracellular signal-regulated kinase (ERK), and c-Jun NH(2)-terminal kinase (JNK) MAPK phosphorylation (by biopsies) in enflurane-anesthetized pigs. After 90 min low-flow ischemia and 120 min reperfusion, infarct size averaged 18.3 +/- 12.4 (SD)% (group 1, n = 14). At similar subendocardial blood flows, IP by 10 min ischemia and 15 min reperfusion (group 2, n = 14) reduced infarct size to 6.2 +/- 5.1% (P < 0.05). An inconsistent increase in p38, ERK, and p54 JNK phosphorylation (by Western blot) was found during IP; p46 JNK phosphorylation increased with the subsequent reperfusion. At 8 min of the sustained ischemia, p38, ERK, and p54 JNK phosphorylation were increased with no difference between groups (medians: p38: 207% of baseline in group 1 vs. 153% in group 2; ERK: 142 vs. 144%; p54 JNK: 171 vs. 155%, respectively). MAPK phosphorylation and reduction of infarct size by IP were not correlated, thus not supporting the concept of a causal role of MAPK in mediating cardioprotection by IP.  相似文献   

12.

Background

Myocardial contrast echocardiography has been used for determination of infarct size (IS) in experimental models. However, with intermittent harmonic imaging, IS seems to be underestimated immediately after reperfusion due to areas with preserved, yet dysfunctional, microvasculature. The use of exogenous vasodilators showed to be useful to unmask these infarcted areas with depressed coronary flow reserve. This study was undertaken to assess the value of adenosine for IS determination in an open-chest canine model of coronary occlusion and reperfusion, using real-time myocardial contrast echocardiography (RTMCE).

Methods

Nine dogs underwent 180 minutes of coronary occlusion followed by reperfusion. PESDA (Perfluorocarbon-Exposed Sonicated Dextrose Albumin) was used as contrast agent. IS was determined by RTMCE before and during adenosine infusion at a rate of 140 mcg·Kg-1·min-1. Post-mortem necrotic area was determined by triphenyl-tetrazolium chloride (TTC) staining.

Results

IS determined by RTMCE was 1.98 ± 1.30 cm2 and increased to 2.58 ± 1.53 cm2 during adenosine infusion (p = 0.004), with good correlation between measurements (r = 0.91; p < 0.01). The necrotic area determined by TTC was 2.29 ± 1.36 cm2 and showed no significant difference with IS determined by RTMCE before or during hyperemia. A slight better correlation between RTMCE and TTC measurements was observed during adenosine (r = 0.99; p < 0.001) then before it (r = 0.92; p = 0.0013).

Conclusion

RTMCE can accurately determine IS in immediate period after acute myocardial infarction. Adenosine infusion results in a slight better detection of actual size of myocardial damage.  相似文献   

13.
Pretreatment with tumor necrosis factor-alpha (TNF-alpha) antibodies abolishes myocardial infarct size reduction by late ischemic preconditioning (IP). Whether or not TNF-alpha is also important for myocardial infarct size reduction by classic IP is unknown. Anesthetized rabbits were untreated (group 1, n = 7), classically preconditioned by 5 min left coronary artery occlusion/10 min reperfusion (group 2, n = 6), or pretreated with TNF-alpha antibodies without (group 3, n = 6) or with IP (group 4, n = 6) before undergoing 30 min of occlusion and 180 min of reperfusion. Infarct size in group 1 was 44 +/- 11 (means +/- SD)% of the area at risk. With a comparable area at risk, infarct size was reduced to 13 +/- 7%, 23 +/- 8%, and 19 +/- 12% (all P < 0.05) in groups 2, 3, and 4, respectively. The circulating TNF-alpha concentration was increased during ischemia in group 1 from 752 +/- 403 to 1,542 +/- 482 U/ml (P < 0.05) but remained unchanged in all other groups. Circulating TNF-alpha concentration during ischemia and infarct size correlated in all groups (r = 0.76). IP, TNF-alpha antibodies, and the combined approach reduced infarct size to a comparable extent. Therefore, the question of whether or not TNF-alpha is causally involved in the infarct size reduction by IP in rabbits could not be answered.  相似文献   

14.
The relationship between hydroxyl radical (OH*) generation in the zone of ischemia/reperfusion and the size of infarction formed was investigated in 18-22-week-old anaesthetized male SHRSP and Wistar rats using a myocardial microdialysis technique. The marker of OH* generation, 2,3-dihydroxybenzoic acid (2,3-DHBA), was analyzed in dialyzates by high performance liquid chromatography with electrochemical detection. Myocardial ischemia was induced by ligation of the descending branch of the left main coronary artery for 30 min. The mean value of basal 2,3-DHBA level in the dialyzate samples from SHRSP (243 +/- 21 pg for 30 min) was significantly higher than that from Wistar rats (91 +/- 4 pg for 30 min, p < 0.0002); it positively correlated with left ventricular hypertrophy (r = 0.806; p < 0.05). During reperfusion total 2,3-DHBA output was 1.8-fold higher in SHRSP than in Wistar rats (659 +/- 60 pg versus 364 +/- 66 pg for 60 min, respectively, p < 0.0002). At the same time, 2,3-DHBA increase above the basal level was the same in Wistar and SHRSP rats (181 +/- 25 and 172 +/- 36 pg for 60 min, respectively). The infarct size in SHRSP (45.4 +/- 4.3%) was significantly higher (p < 0.05) than in Wistar rats (32.8 +/- 3.3%). There was a significant positive correlation between basal level of 2,3-DHBA and total reperfusion 2,3-DHBA content in SHRSP (r = 0.752; p < 0.05). Thus, data obtained clearly indicate that the hypertrophied myocardium of SHRSP was less tolerant to ischemia/reperfusion than that of Wistar rats due to chronically increased OH* production and enhanced total OH* output during reperfusion. Greater myocardial damage in SHRSP than in Wistar rats following the equal increase in OH* production above the basal level suggests the existence of deficit of the antioxidant defense in the hypertrophied myocardium.  相似文献   

15.
We hypothesized that low-pressure reperfusion may limit myocardial necrosis and attenuate postischemic contractile dysfunction by inhibiting mitochondrial permeability transition pore (mPTP) opening. Male Wistar rat hearts (n = 36) were perfused according to the Langendorff technique, exposed to 40 min of ischemia, and assigned to one of the following groups: 1) reperfusion with normal pressure (NP = 100 cmH(2)O) or 2) reperfusion with low pressure (LP = 70 cmH(2)O). Creatine kinase release and tetraphenyltetrazolium chloride staining were used to evaluate infarct size. Modifications of cardiac function were assessed by changes in coronary flow, heart rate (HR), left ventricular developed pressure (LVDP), the first derivate of the pressure curve (dP/dt), and the rate-pressure product (RPP = LVDP x HR). Mitochondria were isolated from the reperfused myocardium, and the Ca(2+)-induced mPTP opening was measured using a potentiometric approach. Lipid peroxidation was assessed by measuring malondialdehyde production. Infarct size was significantly reduced in the LP group, averaging 17 +/- 3 vs. 33 +/- 3% of the left ventricular weight in NP hearts. At the end of reperfusion, functional recovery was significantly improved in LP hearts, with RPP averaging 10,392 +/- 876 vs. 3,969 +/- 534 mmHg/min in NP hearts (P < 0.001). The Ca(2+) load required to induce mPTP opening averaged 232 +/- 10 and 128 +/- 16 microM in LP and NP hearts, respectively (P < 0.001). Myocardial malondialdehyde was significantly lower in LP than in NP hearts (P < 0.05). These results suggest that the protection afforded by low-pressure reperfusion involves an inhibition of the opening of the mPTP, possibly via reduction of reactive oxygen species production.  相似文献   

16.
The aim of this investigation was to examine whether any correlation exists between enzymatically estimated infarct size and arrhythmias arising in response to coronary reperfusion. Four hour occlusion of the left anterior coronary artery followed by reperfusion was carried out in conscious dogs. Serum creatine phosphokinase (CPK) analysis and planimetric determination of infarct size were performed. The Holter monitoring technique was used to analyze the arrhythmias. A good correlation was observed between the number of premature ventricular complexes (PVC) occurring during 4-h coronary artery occlusion and peak serum CPK values (CPKmax; r = 0.74). While PVC in the early 2-h reperfusion phase and on days 1 and 2 of the late reperfusion phase did not show a correlation with CPKmax nor with occlusion arrhythmias, arrhythmic activity on day 3 of the late reperfusion phase correlated well with CPKmax (r = 0.71) and occlusion arrhythmias (r = 0.75). Whereas it cannot be ruled out that arrhythmias on days 1 and 2 are related to coronary reperfusion as well as to the established infarction, we speculated that arrhythmias on day 3 are delayed arrhythmias in response to the occlusion procedure and not a consequence of reperfusion. Providing that arrhythmias occurring in the early reperfusion phase are almost exclusively induced by the arrhythmogenic phenomenon of reperfusion, we conclude that in contrast to occlusion arrhythmias, reperfusion arrhythmias are not markers of infarct size. Thus, a higher number of arrhythmias after reperfusion is not necessarily associated with a larger infarct size.  相似文献   

17.
Mild hypothermia reduces myocardial infarct size in small animals; however, the extent of myocardial protection in large animals with greater thermal mass remains unknown. We evaluated the effects of mild endovascular cooling on myocardial temperature, infarct size, and cardiac output in 60- to 80-kg isoflurane-anesthetized pigs. We occluded the left anterior descending coronary artery for 60 min, followed by reperfusion for 3 h. An endovascular heat-exchange catheter was used to either lower core body temperature to 34 degrees C (n = 11) or maintain temperature at 38 degrees C (n = 11). Additional studies assessed myocardial viability and microvascular perfusion with (99m)Tc-sestamibi autoradiography. Endovascular cooling reduced infarct size compared with normothermia (9 +/- 6% vs. 45 +/- 8% of the area at risk; P < 0.001), whereas the area at risk was comparable (19 +/- 3% vs. 20 +/- 7%; P = 0.65). Salvaged myocardium showed normal sestamibi uptake, confirming intact microvascular flow and myocyte viability. Cardiac output was maintained in hypothermic hearts because of an increase in stroke volume, despite a decrease in heart rate. Mild endovascular cooling to 34 degrees C lowers myocardial temperature sufficiently in human-sized hearts to cause a substantial cardioprotective effect, preserve microvascular flow, and maintain cardiac output.  相似文献   

18.
Myocardial ischemia-reperfusion injury contributes significantly to morbidity and mortality in patients with diabetes. Insulin decreases myocardial infarct size in animals and the rate of apoptosis in cultured cells. Ischemia-reperfusion activates p38 mitogen-activated protein kinase (MAPK), which regulates cellular apoptosis. To examine whether p38 MAPK affects insulin's cardioprotection against ischemia-reperfusion injury, we studied overnight-fasted adult male rats by use of an in vivo rat model of myocardial ischemia-reperfusion. A euglycemic clamp (3 mU.min(-1).kg(-1)) was begun either 10 min before ischemia (InsulinBI), 5 min before reperfusion (InsulinBR), or 30 min after the onset of reperfusion (InsulinAR), and continued until the end of the study. Compared with saline control, insulin decreased the infarct size in both InsulinBI (P < 0.001) and InsulinBR (P < 0.02) rats but not in InsulinAR rats. The ischemic area showed markedly increased phosphorylation of p38 MAPK compared with the nonischemic area in saline animals. Acute activation of p38 MAPK with anisomycin (2 mg/kg iv 10 min before ischemia) had no effect on infarct size in saline rats. However, it completely abolished insulin's protective effect in InsulinBI and InsulinBR rats. Activation of p38 MAPK by anisomycin was associated with marked and persistent elevation in IRS-1 serine phosphorylation. Treatment of animals with SB-239063, a potent and specific inhibitor of p38 MAPK, 10 min before reperfusion enabled insulin-mediated myocardial protection in InsulinAR rats. We conclude that insulin protects myocardium against ischemia-reperfusion injury when given prior to ischemia or reperfusion, and activation of p38 MAPK abolishes insulin's cardioprotective effect.  相似文献   

19.
In this study, the cardioprotective effects of nitric oxide (NO)-aspirin, the nitroderivative of aspirin, were compared with those of aspirin in an anesthetized rat model of myocardial ischemia-reperfusion. Rats were given aspirin or NO-aspirin orally for 7 consecutive days preceding 25 min of myocardial ischemia followed by 48 h of reperfusion (MI/R). Treatment groups included vehicle (Tween 80), aspirin (30 mg.kg(-1).day(-1)), and NO-aspirin (56 mg.kg(-1).day(-1)). NO-aspirin, compared with aspirin, displayed remarkable cardioprotection in rats subjected to MI/R as determined by the mortality rate and infarct size. Mortality rates for vehicle (n = 23), aspirin (n = 22), and NO-aspirin groups (n = 22) were 34.8, 27.3, and 18.2%, respectively. Infarct size of the vehicle group was 44.5 +/- 2.7% of the left ventricle (LV). In contrast, infarct size of the LV decreased in the aspirin- and NO-aspirin-pretreated groups, 36.7 +/- 1.8 and 22.9 +/- 4.3%, respectively (both P < 0.05 compared with vehicle group; P < 0.05, NO-aspirin vs. aspirin ). Moreover, NO-aspirin also improved ischemia-reperfusion-induced myocardial contractile dysfunction on postischemic LV developed pressure. In addition, NO-aspirin downregulated inducible NO synthase (iNOS; 0.37-fold, P < 0.01) and cyclooxygenase-2 (COX-2; 0.61-fold, P < 0.05) gene expression compared with the vehicle group after 48 h of reperfusion. Treatment with N(G)-nitro-L-arginine methyl ester (L-NAME; 20 mg/kg), a nonselective NOS inhibitor, aggravated myocardial damage in terms of mortality and infarct size but attenuated effects when coadministered with NO-aspirin. L-NAME administration did not alter the increase in iNOS and COX-2 expression but did reverse the NO-aspirin-induced inhibition of expression of the two genes. The beneficial effects of NO-aspirin appeared to be derived largely from the NO moiety, which attenuated myocardial injury to limit infarct size and better recovery of LV function following ischemia and reperfusion.  相似文献   

20.
目的:探讨乙醇后处理心肌保护作用是否与一氧化氮生成有关。方法:局部结扎冠状动脉左前降支30min,复灌120 min复制离体大鼠心肌缺血/复灌模型。心肌缺血末5 min,复灌初期10min给予乙醇50mmol/L,共灌流15 min进行乙醇后处理干预。实验随机分为五组,正常组,缺血/复灌组,乙醇后处理组,乙醇后处理+L-NAME组和乙醇后处理+苍术苷组。测定心室动力学指标和复灌期间冠脉流出液中乳酸脱氢酶(LDH)含量,TTC染色法测定心肌梗死面积,硝酸还原法测定心肌组织一氧化氮(NO)含量。RT-PCR检测左心室前壁心尖组织Bc-l2和BaxmRNA的表达。结果:与单纯缺血/复灌相比,乙醇后处理明显促进了左室发展压、左室做功的恢复,降低复灌期冠脉流出液中LDH的释放和心肌梗死面积,心肌组织NO释放减少,Bc-l 2/Bax mRNA比值增高。一氧化氮合酶抑制剂L-NAME和线粒体渗透性转换孔道开放剂苍术苷均抑制了乙醇后处理心室功能的恢复、LDH释放的减少和梗死面积的降低,心肌组织NO释放进一步减少,Bc-l 2/Bax mRNA比值降低。结论:乙醇后处理的心肌保护作用可能与减少NO的释放、抑制线粒体渗透性转换孔道的开放和抑制细胞凋亡的发生有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号