首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary We investigated seed morphology in 34 species of the genus Lysimachia and in 14 species and two subspecies of six additional genera (Anagallis, Ardisiandra, Asterolinon, Glaux, Pelletiera, Trientalis), which have been shown to be closely related to, or are placed within Lysimachia in previous molecular studies. We studied seed shape, seed coat structure, and seed coat surface patterns. Three major types of seed shape were identified: (1) sectoroid, (2) polyhedral, and (3) coarsely rugose with concave hilar area. In addition, seeds may be keeled or winged. The outer layer of the seed coat is either sponge-like and adhering only loosely to the inner seed coat or it is thin and tightly adhering to the underlying tissue. Seed surface patterns can be divided into six main types: (1) reticulate, (2) tuberculate, (3) vesiculose, (4) colliculate, (5) undulate, or (6) poroid-alveolate. Seed surface patterns are mostly congruent with molecular phylogenetic relationships. A reticulate surface pattern is diagnostic of, e.g. Lysimachia subgenera Palladia and Hawaiian Lysimachiopsis. Mapping seed characters onto a recent phylogenetic tree, reveals that they provide potentially synapomorphic character states for various subclades of Lysimachia. Salient examples include a rugose seed shape, which turns out to be synapomorphic for the clade comprising the genus Pelletiera plus Asterolinon linum-stellatum and a sponge-like outer seed coat layer, which characterizes a clade with Lysimachia vulgaris, L. thyrsiflora, and L. terrestris, with an analogue that apparently evolved in parallel in Trientalis europaea. We also discuss possible habitat factors that may have favored the independent evolution of particular seed types such as winged seeds in various lineages.  相似文献   

2.
Seed coat surfaces of 127 species, representing 23 sections of the genusEuphorbia L. (Euphorbiaceae) have been examined with the scanning electron microscope (SEM). Various surface patterns and cell wall structures are described. In some groups the seed coat is rather uniform (e.g. in sect.Euphorbium), in other sections even closely related species can be separated by seed coat morphology (e.g.Tithymalus). The taxonomic application of testa micromorphology and the possible systematic position of certain taxa are briefly discussed. The seed coat cells of all species in sect.Tithymalus show remarkable intercellulares filled with small particles, which are described in detail for the first time.
  相似文献   

3.
K. Hausmann 《Protoplasma》1979,100(2):199-213
Summary The membranes of the pellicle of the ciliatePseudomicrothorax dubius are investigated using thin section electron microscopy and freeze-fracture replicas. The plasma membrane is covered by a surface coat and is connected to the outer alveolar membrane by short, sometimes branched, bridges. The inner alveolar membrane is coated on both sides. The epiplasm lies in intimate contact with the cytoplasmic surface of this membrane, and there is a corresponding deposit on the other surface. This deposit is regularly striated.The epiplasmic layer and the alveoli are interrupted at sites of cytotic activity,e.g., the attachment sites of trichocysts, the cytoproct, and the parasomal sacs. The striated deposit ends where the epiplasm ends, indicating a direct relationship between these two epimembranous layers.There is a deposit along the sides of the first part of the tip of the trichocysts, and in this region the trichocyst membrane is free of intramembranous particles.The membrane of the parasomal sacs has a coat on both surfaces. That on the extraplasmic surface is similar to the surface coat of the plasma membrane. The origin of the cytoplasmic coat is unknown. The cytotic activity of these sacs is indicated by their highly irregular profiles.  相似文献   

4.
Summary Correlations between the presence of surface coat and immobilization antigen of Paramecium tetraurelia were studied. Supravital, partial removal of the surface coat resulted in accelerated response of monobacterially and axenically grown cells to the homologous antiserum. Ciliates pretreated with trypsin or pronase (0.5mg/ml for 45 min at 0–4° C) were immobilized approximately twice as fast as untreated control cells. The probable localization of at least part, of the immobilization antigen within the surface coat of P. tetraurelia is discussed.The author thanks Prof. S. Dryl (Department of Cell Biology, M. Nencki Institute of Experimental Biology) and Prof. T.M. Sonneborn (Department of Zoology, Indiana University, Bloomington, USA) for donating antisera and for helpful discussion  相似文献   

5.
Pollen-stigma interactions on wet- and dry-type stigmas involve similar processes: the hydration of the pollen, followed by pollen tube growth and penetration of the stigma. Furthermore, in some species, identical molecules, namely lipids, are used to achieve this. In addition to lipids, oleosin-like proteins of the pollen coat of dry-type stigma plants have been shown to be involved in pollen-stigma interactions. However, little information is present about the proteins on the surface of pollen of wet-type stigma plants, in particular that of the Solanaceae. To analyze proteins from the surface of pollen of Nicotiana tabacum (tobacco), a solanaceous plant, we used an antiserum raised against Brassica pollen coat, a dry-type stigma plant of the Brassicaceae. In addition we used a molecular approach to identify tobacco homologues of oleosin-like genes. Our results show that no proteins similar to Brassica oleracea pollen coat proteins are present on the surface of tobacco pollen, and that oleosin-like genes are not expressed in tobacco anthers or stigmas.  相似文献   

6.
Summary The electron microscopical investigation of Y-organs of Astacus astacus revealed that during intermoult (stage C) the cytoplasm is poorly developed and that it increases at premoult (stage D). It then shows the typical signs of steroid production, namely agranular endoplasmic reticulum and mitochondria of the tubular type. Furthermore, a larger type of mitochondria with a regular pattern of internal structure is described.Supported by Sächsische Akademie der Wissenschaften zu LeipzigWe are grateful for technical assistance to Mrs. B. Cosack und Mrs. A. Schmidt  相似文献   

7.
Summary The surface of extracellular merozoites of P. knowlesi is covered with a coat 15–20 nm thick, made up of clusters of filaments standing erect on the plasma membrane. Filaments have stems 2 nm thick, the peripheral ends of which are complex, branching or ending in long trailing threads. Coat filaments occur on the surface of the parasite in regular rows at an early schizont stage, and persist until well after merozoite release. They are sensitive to trypsin and papain, and bind ethanolic phosphotungstate, indicating a proteinaceous nature. They are also removed by exposure to phosphate-buffered saline. Filaments bear negative charges, binding cationised ferritin throughout the depth of the coat and staining with ruthenium red. They cover the whole merozoite surface and mediate intercellular adhesion at distances of 15–150 nm, membrane to membrane. It is suggested that these filaments correspond to a major merozoite surface protein, and are important in the initial capture of red cells.  相似文献   

8.
Cytochemical and ultrastructural studies of Candida albicans   总被引:9,自引:0,他引:9  
Ultrastructural modifications of the cell wall coat of Candida albicans during adherence to host cells were investigated using various cytochemical techniques. Attachment of the fungus to buccal epithelial cells appeared to involve spatial rearrangement of their cell wall surface. In particular adhering yeast developed a fibrogranular surface layer visualized by the periodic acid — thiocarbohydrazide silver proteinate technique (a polysaccharide detectron technique); Concanavalin A binding sites detected on their cell wall coat were highly increased. Attachment of yeasts to epithelial cells appeared mediated by fibrillar structures or polysaccharidic granules distributed on the cell wall coat. But free extra-cell wall material containing mannoproteins released from the yeast surface suggested additional mechanisms.Abbreviations Con A Concanavalin A - Man-fer mannosyl ferritin - PATAg Periodic acid-thiocarbohydrazide-silver proteinate  相似文献   

9.
E. Schnepf  S. Gold 《Protoplasma》2000,210(3-4):133-137
Summary Calcofluor White inhibits the division of the marine nanoflagellateCryothecomonas longipes and causes the development of monstrously lobed cells. It disturbs the assembly of a putative noncellulosic fibrillar polysaccharide in the theca. The compact layer of the theca becomes thicker and wider, less densely packed and less rigid. The deposition of thecal components becomes uncoordinated. In consequence the initially unaffected coat of the theca and loose portions of the compact layer protrude from the cell surface. These are then convoluted, with the coat on their convex faces. The spacing of the coat ridges is increased here. The tension between the different layers obviously stabilizes the theca and contributes to its rigidity and elasticity.Abbreviations CW Calcofluor White - DCB 2-chloro-6-dichlo-robenzonitrile  相似文献   

10.
The conversion of the submerged form ofRiccia fluitans to the landform either by transfer to a moist solid surface or by treatment with abscisic acid (ABA), is accompanied by the formation of a set of new polypeptides and concomitant down-regulation of other polypeptides. Changes in gene expression were analyzed by twodimensional separations of proteins and differential screening of a cDNA library. One of the landform-specific proteins might depend on the expression of the newly discoveredRic 1 gene. The deduced amino acid sequence of the isolatedRic 1 cDNA clone codes for a protein with a molecular mass of 30.1 kDa. This polypeptide possesses two amino acid sequences which are repeated five times each and it is largely hydrophilic with the exception of a hydrophobic carboxyl-terminal region. Under ABA treatment the expression of theRic 1 mRNA had already reached its maximum after 1 h of incubation. Transferring submerged thalli onto an agar surface resulted in a slower induction. TheRic 1 gene product shows homology to an embryo-specific polypeptide of carrot seeds and to the group 3 of late-embryogenesis-abundant (LEA) proteins. Interestingly, ABA treatment improved the desiccation tolerance of the submerged thalli. Additionally, ABA stimulated the synthesis of a protein which is immunologically related to a tonoplast protein. This finding, together with the fact that the ABA-induced landform exhibits an increased activity of several vacuolar enzymes, may indicate a special role of the tonoplast and the vacuole during ABA-induced conversion of the thallus from the submerged to the terrestrial form.Abbreviations ABA abscisic acid - 2-D PAGE two-dimensional polyacrylamide gel electrophoresis - Fo, Fm initial and maximal chlorophylla fluorescence - LEA late embryogenesis abundant - Q a primary quinone acceptor of PS II We are grateful to the Deutsche Forschungsgemeinschaft for financial support SFB 251, SFB 176 to Prof. O.H. Volk (Institut für Biowissenschaften, Universität Würzburg, Germany) for generous supply ofRiccia fluitans thalli and many useful discussions and to Mrs B. Arbinger and Mrs B. Dierich for skilful technical assistance.  相似文献   

11.
Summary Although seeds have been the subject of extensive studies for many years, their seed coats are just beginning to be examined from the perspective of molecular genetics and control of development. The seed coat, plays a vital role in the life cycle of plants by controlling the development of the embryo and determining seed dormancy and germination. Within the seed coat are a number of unique tissues that undergo differentiation to serve specific functions in the seed. A large number of genes are known to be specifically expressed within the seed coat tissues; however, very few of them are understood functionally. The seed coat synthesizes a wide range of novel compounds that may serve the plant in diverse ways, including defense and control of development. Many of the compounds are sources of industrial products and are components of food and feeds. The use of seed coat biotechnology to enhance seed quality and yield, or to generate novel components has not been exploited, largely because of lack of knowledge of the genetic systems that govern seed coat development and composition. In this review, we will examine the recent advances in seed coat, biology from the perspective of structure, composition and molecular genetics. We will consider the diverse avenues that are possible for seed coat biotechnology in the future. This review will focus principally on the seed coats of the Brassicaceae and Fabaceae as they allow us to merge the areas of molecular biology, physiology and structure to gain a perspective on the possibilities for seed coat modifications in the future. The authors have contributed equally and are considered first authors.  相似文献   

12.
Summary The surface coat of the electrocyte of the main electric organ of Electrophorus electricus was studied using cytochemical methods (periodic acid-silver methenamine, periodic acid-chromic acid-silver methenamine, periodic acid-thiosemicarbazide-silver proteinate, Concanavalin A — horseradish peroxidase, ruthenium red, Alcian-blue lanthanum nitrate, colloidal iron hydroxide and cationized ferritin). The surface of the electrocyte presents perpendicularly oriented tubular invaginations of the cell membrane. The fibrous coat 50–100 nm thick, penetrates into the lumen of the invaginations. It is also observed in the synaptic clefts existent in the posterior face of the electrocyte. The coating of the surface membrane gives a positive reaction with all techniques used. Binding of colloidal iron hydroxide particles was observed only in the outer layer of the coat. With the Alcian-blue lanthanum nitrate technique, microtubules were observed in the cytoplasm of the electrocyte.The results indicate that the surface coat of the electrocyte contains mucopolysaccharides, glycoproteins, acid mucopolysaccharides and anionic sites detected at low (colloidal iron hydroxyde) and neutral (cationized ferritin) pH.This work has been supported by Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq), Conselho de Ensino e Pesquisa da UFRJ (CEPG) and Banco Nacional de Desenvolvimento Econômico  相似文献   

13.
Summary The uptake of the diamine 3H-putrescine by Tetrahymena pyriformis GL was studied in cultures which were synchronized by heat shocks. An inverse correlation was found between the uptake of putrescine and the acid stability of DNA, but there was also a parallelism between putrescine uptake and the intracellular amount of putrescine. There was no evidence for a transformation of the labeled putrescine to other amino compounds within the cells. Electronmicroscopical autoradiography showed a structure-bound radioactivity localized to nuclear and mitochondrial structures. In the nucleus, both the chromatin and the nucleoli showed labeling.The authors are indebted to fil. kand. Per Arlock, who participated in some preliminary experiments, and to Mrs Siv Nilsson and Mrs Annagreta Petersen for skilful technical assistance. The investigation was financially supported by the Swedish Natural Science Research Council, the Swedish Cancer Society and the C.-B. Nathhorst Scientific Foundation.  相似文献   

14.
Summary The ultrastructure of zoospores of several zoosporic fungi was examined using a modified cryofixation technique. An atomizer was used to spray a zoospore suspension into the cold propane reservoir of a conventional plunge freeze-substitution apparatus. Spray-freeze fixation and freeze-substitution of zoospores porvided better fixation of vacuolar structures, membranes and the extracellular coat than that obtained with chemical fixation. The overall shape of cryofixed spores was closer to that seen in living zoospores. Two types of vacuoles were seen in cryofixed zoospores ofMonoblepharella andChytridium. One type of vacuole contained electron-opaque material within the lumen while the other type had no visible internal material in the lumen and appeared to be part of the water expulsion vacuole complex. Coated pits and coated vesicles were observed associated with both the water expulsion vacuoles and the plasma membrane inMonoblepharella andPhytophthora, suggesting that endocytosis of the plasma membrane and expulsion vacuoles is part of membrane recycling during osmoregulatory events. An extracellular coat was seen on the outer surface of cryofixed zoospores ofMonoblepharella sp.,Chytridium confervae andPhytophthora palmivora without the use of carbohydrate-specific stains. The spray-freeze method gave good and reproducible fixation of the wall-less spores in quantities greater than those obtained in previously described zoospore cryofixation studies. The technique is potentially useful for cell suspensions in that freeze damage from excess water is limited.Abbreviations ddH2O deionized distilled water - PME Pipes/MgCl2/EGTA buffer - WEV water expulsion vacuole  相似文献   

15.
Summary The coenecium of Rhabdopleura consists of a series of tubes, some erect and some repent. These tubes are composed of rings, one stacked within another. The rings are smooth on the inside surface and rough outside. Newly laid down rings are thin and smooth on both surfaces, fibrous material is laid down on the external surface during growth in thickness by the cephalic shield of the zooid. The erect tubes remain discrete, but the repent tubes, which are attached to the substratum can become incorporated in a mass of secreted material. The external vertical fibres cross several rings and probably serve to anchor the stack. Besides these fibrils that run for several segments, there are other shorter fibres that run along the length of each cylindrical ring, and are not continuous across the rings. These long and short fibres have features in common with those found in the graptolites.I wish to thank Dr. A. Boyde for scanning electron microscope facilities and for making his expertise so freely available. Dr. A. Stebbing helped me to obtain the specimens. Mrs. E. Bailey and Mr. R. Moss ably provided the technical and photographic assistance  相似文献   

16.
17.
The seed coat morphology, investigated in taxa representative of the main European groups ofAconitum, are in good agreement with the current taxonomy of the genus. The seed coat microcharacteristics (warty epidermal cells) are very constant. There is a trend for the reduction of longitudinal wings on the edges concomitant with the development of ridges and transverse wings on the faces. Another morphological progression leads from smooth to rugulose and eventually to transverse wing-bearing seed faces. A working hypothesis suggests an ecological adaptative significance to these changes.  相似文献   

18.
19.
Summary The epithelial framework of the human thymus has been studied in parallel by immunohistochemical methods at the light- and electron-microscopic levels. Different monoclonal antibodies were used, reacting with components of the major histocompatibility complex, keratins, thymic hormones and other as yet antigenically undefined substances, which show specific immunoreactivities with human thymus epithelial cells.The electron-microscopic immunocytochemical observations clearly confirm microtopographical differences of epithelial cells not only between the thymic cortex and medulla, but also within the cortex itself. At least four subtypes of epithelial cells could be distinguished: 1) the cortical surface epithelium; 2) the main cortical epithelial cells and thymic nurse cells; 3) the medullary epithelial cells; and 4) the epithelial cells of Hassall's corpuscles.The various epithelial cell types of the thymus display several common features like tonofilaments, desmosomes and some surface antigens as demonstrated by anti-KiM3. In other respects, however, they differ from each other. The cortical subtype of thymic epithelial cells including the thymic nurse cells shows a distinct pattern of surface antigens reacting positively with antibodies against HLA-DR (anti-HLA-DR) and anti-21A62E. Electron-microscopic immunocytochemistry with these antibodies clearly reveals a surface labeling and a narrow contact to cortical thymocytes particularly in the peripheral cortical regions. An alternative staining pattern is realized by antibodies to some antigens associated with other subtypes of thymic epithelial cells. Medullary epithelial cells as well as the cortical surface epithelium react likewise positively with antibodies to special surface antigens (anti-Ep-1), to special epitopes of cytokeratin (anti-IV/82), and to thymic hormones (anti-FTS). The functional significance of distinct microenvironments within the thymus provided by different epithelial cells is discussed in view of the maturation of T-precursor cells.Glossary of Abbreviations Anti-X anti-X antibody - APUD-cells amine precursor uptake and decarboxylation (gastro-intestinal endocrine cells) - DAB diamino-benzidine - DMSO dimethyl sulfoxide - FTS facteur thymique sérique - HLA-A, B, C human leucocyte antigen, A, B, C-region related - HLA-DR human leucocyte antigen, D-region related - IDC interdigitating cell - MHC major histocompatibility gene complex - PBS phosphate-buffered saline - TNC thymic nurse cell This investigation was supported by grants from the Deutsche Forschungsgemeinschaft, and its Sonderforschungsbereich 111Fellow of the Alexander von Humbold-Stiftung, Institute of Pathology, University of Würzburg, Federal Republic of GermanyThe authors appreciate the contribution of human thymus tissue from Professor Alexander Bernhard, Abteilung kardiovasculäre Chirurgie der Universität Kiel; the gift of monoclonal antibodies from Dr. M.J.D. Anderson, Dr. M. Dardenne and Dr. H.J. Radzun; and the excellent technical assistence of Mrs. O.M. Bracker, Mrs. H. Hansen, Mrs. R. Köpke, Mrs. M. v. Kolszynski, Mrs. J. Quitzau, Mrs. H. Siebke, and Mrs. H. Waluk  相似文献   

20.
Summary Blocks of human normal renal pelvis and ureter obtained at the time of surgery were fixed in glutaraldehyde and osmium with or without ruthenium red, for electron microscopic observations. The transitional epithelium is arranged in three cell layers: basal, intermediate and superficial. All epithelial cells show numerous microvilli and contain the characteristic vesicles of transitional epithelium, bundles of cytoplasmic filaments, microtubules and numerous free ribosomes. The epithelial extracellular compartment is notably large and appears as an intricate, tridimensional network of canaliculi and cisternae which are wider in the intermediate and superficial layers and in which microvilli and cytoplasmic folds of vicinal cells are often attached or interdigitated. At these sites there are desmosomes.The surface of all transitional epithelial cells is covered by a fibrillar mucous coat which is more developed at the plasmalemma of the free border of luminal cells in which microvilli are also seen. Ruthenium red stains selectively the plasmalemma and the mucous coat of the free surface of the epithelium, indicating the presence of an acid polysaccharide. With this technic (Luft, 1965), it is observed, radiating from the plasmalemma, branching filaments which measure 100 Å in diameter forming a zone of varying density which is about 400 m wide and which corresponds, at the light microscopic level, to the luminal border of the transitional epithelial cells in which a sialomucin has been identified. The slender filaments have a beaded appearance. At the free border, superficial cells are attached by functional complexes in which tight junctions seal the epithelial intercellular space, which is opened at the level of the basement membrane where only desmosomes are observed.The ultrastructure of human transitional epithelium of urinary tract resembles the duct cells of the salt gland of certain marine birds (Fawcett, 1962) and the amphibian epidermis (Farquhar and Palade, 1965) in which there are active processes of transport. The mucous surface coat, selectively stained by the ruthenium red, contains a sialomucin (Monis and Dorfman, 1965, 1967).The ultrastructure and histochemistry of the mucous fluffy coat of man transitional epithelium and the observations of Porter and Tamm (1955), on the ultrastructure of preparations of the Tamm and Horsfall mucoprotein (1952) are bases for suggesting that transitional epithelium of urinary tract of man is the site of biosynthesis of certain urinary mucoids. Present investigations are directed to obtain evidence to substantiate this hypothesis.General Abbreviations B basal cell - E exfoliating cell - I intermediate cell - L lumen - S superficial cell - SC surface coat - bm basement membrane - ci cell infolding - d desmosome (macula adhaerens) - f fibroblast - fi cytoplasmic filaments - is intercellular space - jc junctional complex - ly lysosome - lym lymphocyte - mt microtubules - m mitochondria - mv microvilli - n nucleus - r ribosomes - rv round vesicle - zo zonula occludens - za zonula adherens Dr. Monis wishes to thank Dr. E. De Robertis for the use of the electron microscope facilities of the Instituto de Anatomía General y Embriologia, Facultad de Medicina, Universidad de Buenos Aires. — Prof. E. Trabucco and Dr. R. J. Borzone (Cátedra de Clinica Genitourinaria de la Facultad de Medicina, Universidad de Buenos Aires) generously supplied the specimens which were the bases of this study. — Thanks are due to Mrs. A. M. Novara and Mrs. Defilippi-Novoa for efficient technical help and to Miss Rosa Gentile for secretarial assistance. Photomicrography by Mr. M. A. Saenz.Dr. Zambrano is investigator (CNICT).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号