首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glaucoma is the second most frequent cause of irreversible blindness worldwide. Genetic factors have been implicated in the development of the disease. So far six loci (GLC1A-GLC1F) and two genes (TIGR/MYOC and OPTN) are involved in the development of juvenile (JOAG) and adult onset or chronic primary open angle glaucoma (COAG), while two loci (GLC3A,GLC3B) and one gene (CYP1B1) are known for primary congenital glaucoma (PCG). Here we summarize the results of the first genetic studies of glaucoma in Costa Rica. Nine families: 1 with JOAG, 1 with PCG and 7 with COAG were screened for mutations at the known genes. A 10 bp duplication, 1546-1555dupTCATGCCACC, at the CYP1B1 gene, causes, in homozygous state, glaucoma in the consanguineous PCG family. This mutation has been found in different countries and generates an early stop codon that termitates protein synthesis 140 amino acids earlier than the normal allele. In exon 1 of the T1GR/MYOC the innocuous Arg76Lys variant was found in two of the COAG families. In the OPTN gene two variants in the coding region (Thr34Thr, Met 98Lys) and 7 intronic changes were found in other Costa Rican glaucoma patients. One of the COAG families was chosen for a genome scan with 379 microsatellite markers and linkage analysis. LOD scores "suggestive" of linkage were obtained for several chromosomal regions. Evidence indicates that hereditary glaucoma in Costa Rica is highly heterogeneous and that further studies in the country will probably disclose some up to now unknown genes responsible for the disease.  相似文献   

2.
CYP1B1 has been implicated in primary congenital glaucoma with autosomal recessive mode of inheritance. Mutations in CYP1B1 have also been reported in primary open angle glaucoma (POAG) cases and suggested to act as a modifier of the disease along with Myocilin (MYOC). Earlier reports suggest that over-expression of myocilin leads to POAG pathogenesis. Taken together, we propose a functional interaction between CYP1B1 and myocilin where 17β estradiol acts as a mediator. Therefore, we hypothesize that 17β estradiol can induce MYOC expression through the putative estrogen responsive elements (EREs) located in its promoter and CYP1B1 could manipulate MYOC expression by metabolizing 17β estradiol to 4-hydroxy estradiol, thus preventing it from binding to MYOC promoter. Hence any mutation in CYP1B1 that reduces its 17β estradiol metabolizing activity might lead to MYOC upregulation, which in turn might play a role in glaucoma pathogenesis. It was observed that 17β estradiol is present in Human Trabecular Meshwork cells (HTM) and Retinal Pigment Epithelial cells (RPE) by immunoflouresence and ELISA. Also, the expression of enzymes related to estrogen biosynthesis pathway was observed in both cell lines by RT-PCR. Subsequent evaluation of the EREs in the MYOC promoter by luciferase assay, with dose and time dependent treatment of 17β estradiol, showed that the EREs are indeed active. This observation was further validated by direct binding of estrogen receptors (ER) on EREs in MYOC promoter and subsequent upregulation in MYOC level in HTM cells on 17β estradiol treatment. Interestingly, CYP1B1 mutants with less than 10% enzymatic activity were found to increase the level of endogenous myocilin in HTM cells. Thus the experimental observations are consistent with our proposed hypothesis that mutant CYP1B1, lacking the 17β estradiol metabolizing activity, can cause MYOC upregulation, which might have a potential implication in glaucoma pathogenesis.  相似文献   

3.
4.
Despite the importance of MYOC for glaucoma, the protein's normal function(s) and the pathogenic mechanism(s) of MYOC mutations are not clear. Elevated intraocular pressure (IOP) and glaucoma are sometimes induced by corticosteroids, and corticosteroid use can result in substantially increased MYOC expression. It has been suggested, therefore, that steroid-induced MYOC protein levels cause steroid-induced glaucoma and that protein level-increasing mutations in MYOC contribute to glaucoma not associated with steroid use. A causative role of elevated MYOC levels in steroid-induced glaucoma is controversial, however, and it is not clear if elevated MYOC levels can result in IOP elevation. To directly test if increased levels of MYOC can cause IOP elevation and glaucoma, we generated bacterial artificial chromosome transgenic mice that overexpress Myoc at a level similar to that induced by corticosteroid use. These mice do not develop elevated IOP or glaucoma. Our present findings, along with the absence of glaucoma in mice completely lacking MYOC, show that changing the level of MYOC is not pathogenic (from absent to approximately 15 times normal). These findings suggest that noncoding sequence variants are unlikely to influence glaucoma and that disease pathogenesis in primary open-angle glaucoma patients is dependent upon the expression of abnormal mutant proteins. This work does not support a causative role for increased MYOC levels or the MYOC gene in steroid-induced glaucoma.  相似文献   

5.
Myocilin (MYOC) is a 504 aa secreted glycoprotein induced by stress factors in the trabecular meshwork tissue of the eye, where it was discovered. Mutations in MYOC are linked to glaucoma. The glaucoma phenotype of each of the different MYOC mutation varies, but all of them cause elevated intraocular pressure (IOP). In cells, forty percent of wild-type MYOC is cleaved by calpain II, a cysteine protease. This proteolytic process is inhibited by MYOC mutants. In this study, we investigated the molecular mechanisms by which MYOC mutants cause glaucoma. We constructed adenoviral vectors with variants Q368X, R342K, D380N, K423E, and overexpressed them in human trabecular meshwork cells. We analyzed expression profiles with Affymetrix U133Plus2 GeneChips using wild-type and null viruses as controls. Analysis of trabecular meshwork relevant mechanisms showed that the unfolded protein response (UPR) was the most affected. Search for individual candidate genes revealed that genes that have been historically connected to trabecular meshwork physiology and pathology were altered by the MYOC mutants. Some of those had known MYOC associations (MMP1, PDIA4, CALR, SFPR1) while others did not (EDN1, MGP, IGF1, TAC1). Some, were top-changed in only one mutant (LOXL1, CYP1B1, FBN1), others followed a mutant group pattern. Some of the genes were new (RAB39B, STC1, CXCL12, CSTA). In particular, one selected gene, the cysteine protease inhibitor cystatin A (CSTA), was commonly induced by all mutants and not by the wild-type. Subsequent functional analysis of the selected gene showed that CSTA was able to reduce wild-type MYOC cleavage in primary trabecular meshwork cells while an inactive mutated CSTA was not. These findings provide a new molecular understanding of the mechanisms of MYOC-causative glaucoma and reveal CSTA, a serum biomarker for cancer, as a potential biomarker and drug for the treatment of MYOC-induced glaucoma.  相似文献   

6.
7.
K R  M D  Pj EP  N P  P S  Sr K  S K 《Bioinformation》2011,5(9):398-399
Glaucoma, a complex heterogenous disease, is the leading cause for optic nerve-related blindness worldwide. Primary open angle glaucoma (POAG) is the most common subset and by the year 2020 it is estimated that approximately 60 million people will be affected. MYOC, OPTN, CYP1B1 and WDR36 are the important candidate genes. Nearly 4% of the glaucoma patients have mutation in any one of these genes. Mutation in any of these genes causes disease either directly or indirectly and the severity of the disease varies according to position of the genes. We have compiled all the related mutations and SNPs in the above genes and developed a database, to help access statistical and clinical information of particular mutation. This database is available online at http:bicmku.in:8081/glaucoma The database, constructed using SQL, contains data pertaining to the SNPs and mutation information involved in the above genes and relevant study data. AVAILABILITY: The database is available for free at http:bicmku.in:8081/glaucoma.  相似文献   

8.
We recently reported three truncating mutations of the cytochrome P4501B1 gene (CYP1B1) in five families with primary congenital glaucoma (PCG) linked to the GLC3A locus on chromosome 2p21. This could be the first direct evidence supporting the hypothesis that members of the cytochrome P450 superfamily may control the processes of growth and differentiation. We present a comprehensive sequence analysis of the translated regions of the CYP1B1 gene in 22 PCG families and 100 randomly selected normal individuals. Sixteen mutations and six polymorphisms were identified, illustrating an extensive allelic heterogeneity. The positions affected by these changes were evaluated by building a three-dimensional homology model of the conserved C-terminal half of CYP1B1. These mutations may interfere with heme incorporation, by affecting the hinge region and/or the conserved core structures (CCS) that determine the proper folding and heme-binding ability of P450 molecules. In contrast, all polymorphic sites were poorly conserved and located outside the CCS. Northern hybridization analysis showed strong expression of CYP1B1 in the anterior uveal tract, which is involved in secretion of the aqueous humor and in regulation of outflow facility, processes that could contribute to the elevated intraocular pressure characteristic of PCG.  相似文献   

9.
Myocilin (MYOC, TIGR) variations are associated with juvenile and primary open angle glaucoma (POAG). To investigate consequences of MYOC wildtype overexpression and selected mutations, we established a heterologous insect cell system (High Five). Wildtype, Pro370Leu, Gln368X and Lys423Glu were cloned into a modified pIB/V5-His (pEXIV) vector with and without downstream GFP in frame fusion. Mutations were introduced by in vitro mutagenesis. Heterologous expression was shown and analysed by RT-PCR, Western blotting, immunocytochemistry and fluorescence microscopy. Extended cultivation (>14 days) resulted in accumulation of MYOC protein for all variants in growing dilated cisterns of the rough endoplasmic reticulum. Finally cell death for overexpressed wildtype and mutants occurs. A direct attachment of ribosomes to these growing vesicles preceding the cell death was observed by electron microscopy. Our observations indicate that this system is suitable to trace the intracellular effects of MYOC mutants.  相似文献   

10.
Cytochrome P450 1B1 (CYP1B1) is a universal cancer marker and is implicated in many other disorders. Mutations in CYP1B1 are also associated with childhood blindness due to primary congenital glaucoma (PCG). To understand the CYP1B1 mediated etiopathology of PCG and pathomechanism of various cancers, it is important to carry out its functional studies. Heterologous expression of CYP1B1 in prokaryotes is imperative because bacteria yield a higher amount of heterologous proteins in lesser time and so the expressed protein is ideal for functional studies. In such expression system there is no interference by other eukaryotic proteins. But the story is not that simple as expression of heterologous CYP1B1 poses many technical difficulties. Investigators have employed various modifications/deletions of CYP N-terminus to improve CYP1B1 expression. However, the drawback of these studies is that it changes the original protein and, as a result, invalidates functional studies. The present study examines the role of various conditions and reagents in successful and consistent expression of sufficient quantities of unmodified/native human CYP1B1 in E. coli. We aimed at expressing CYP1B1 in various strains of E. coli and in the course developed a protocol that results in high expression of unmodified protein sufficient for functional/biophysical studies. We examined CYP1B1 expression with respect to different expression vectors, bacterial strains, types of culture media, time, Isopropyl β-D-1-thiogalactopyranoside concentrations, temperatures, rotations per minute, conditioning reagents and the efficacy of a newly described technique called double colony selection. We report a protocol that is simple, easy and can be carried out in any laboratory without the requirement of a fermentor. Though employed for CYP1B1 expression, this protocol can ideally be used to express any eukaryotic membrane protein.  相似文献   

11.
Glaucoma is a leading cause of blindness, affecting over 70 million people worldwide. Vision loss is the result of death of the retinal ganglion cells. The best-known risk factor for glaucoma is an elevated intraocular pressure (IOP); however, factors leading to IOP elevation are poorly understood. Mutations in the MYOC gene are an important cause of open-angle glaucoma. Over 70 MYOC mutations have been identified, and they lead to approximately 5% of all primary open-angle glaucoma cases. Nevertheless, the pathogenic mechanisms by which these mutations elevate IOP are presently unclear. Data suggest that a dominant interfering effect of misfolded mutant MYOC molecules may be pathogenic. To test this hypothesis, we have generated mice carrying a mutant allele of Myoc that is analogous to a human mutation that leads to aggressive glaucoma in patients. We show that mutant MYOC is not secreted into the aqueous humor. Instead of being secreted, mutant MYOC accumulates within the iridocorneal angle of the eye, consistent with the behavior of abnormally folded protein. Surprisingly, the accumulated mutant protein does not activate the unfolded protein response and lead to elevated intraocular pressure or glaucoma in aged mice of different strains. These data suggest that production, apparent misfolding, and nonsecretion of mutant MYOC are not, by themselves, sufficient to cause glaucoma in vivo.  相似文献   

12.
BackgroundPrimary congenital glaucoma (PCG), occurs due to the developmental defects in the trabecular meshwork and anterior chamber angle in children. PCG exhibits genetic heterogeneity and the CYP1B1 gene has been widely implicated worldwide. Despite the diverse mutation spectra, the clinical implications of these mutations are yet unclear. The present study attempted to delineate the clinical profile of PCG in the background of CYP1B1 mutations from a large cohort of 901 subjects from India (n=601) and Brazil (n=300).MethodsGenotype-phenotype correlations was undertaken on clinically well characterized PCG cases from India (n=301) and Brazil (n=150) to assess the contributions of CYP1B1 mutation on a set of demographic and clinical parameters. The demographic (gender, and history of consanguinity) and quantitative clinical (presenting intraocular pressure [IOP] and corneal diameter [CD]) parameters were considered as binary and continuous variables, respectively, for PCG patients in the background of the overall mutation spectra and also with respect to the prevalent mutations in India (R368H) and Brazil (4340delG). All these variables were fitted in a multivariate logistic regression model using the Akaike Information Criterion (AIC) to estimate the adjusted odds ratio (OR) using the R software (version 2.14.1).ResultsThe overall mutation spectrum were similar across the Indian and Brazilian PCG cases, despite significantly higher number of homozygous mutations in the former (p=0.024) and compound heterozygous mutations in the later (p=0.012). A wide allelic heterogeneity was observed and only 6 mutations were infrequently shared between these two populations. The adjusted ORs for the binary (demographic) and continuous (clinical) variables did not indicate any susceptibility to the observed mutations (p>0.05).ConclusionsThe present study demonstrated a lack of genotype-phenotype correlation of the demographic and clinical traits to CYP1B1 mutations in PCG at presentation. However, the susceptibility of these mutations to the long-term progression of these traits are yet to be deciphered.  相似文献   

13.
A population-based series of 649 unselected incident cases of ovarian cancer diagnosed in Ontario, Canada, during 1995-96 was screened for germline mutations in BRCA1 and BRCA2. We specifically tested for 11 of the most commonly reported mutations in the two genes. Then, cases were assessed with the protein-truncation test (PTT) for exon 11 of BRCA1, with denaturing gradient gel electrophoresis for the remainder of BRCA1, and with PTT for exons 10 and 11 of BRCA2. No mutations were found in all 134 women with tumors of borderline histology. Among the 515 women with invasive cancers, we identified 60 mutations, 39 in BRCA1 and 21 in BRCA2. The total mutation frequency among women with invasive cancers, 11.7% (95% confidence interval [95%CI] 9.2%-14.8%), is higher than previous estimates. Hereditary ovarian cancers diagnosed at age <50 years were mostly (83%) due to BRCA1, whereas the majority (60%) of those diagnosed at age >60 years were due to BRCA2. Mutations were found in 19% of women reporting first-degree relatives with breast or ovarian cancer and in 6.5% of women with no affected first-degree relatives. Risks of ovarian, breast, and stomach cancers and leukemias/lymphomas were increased nine-, five-, six- and threefold, respectively, among first-degree relatives of cases carrying BRCA1 mutations, compared with relatives of noncarriers, and risk of colorectal cancer was increased threefold for relatives of cases carrying BRCA2 mutations. For carriers of BRCA1 mutations, the estimated penetrance by age 80 years was 36% for ovarian cancer and 68% for breast cancer. In breast-cancer risk for first-degree relatives, there was a strong trend according to mutation location along the coding sequence of BRCA1, with little evidence of increased risk for mutations in the 5' fifth, but 8.8-fold increased risk for mutations in the 3' fifth (95%CI 3.6-22.0), corresponding to a carrier penetrance of essentially 100%. Ovarian, colorectal, stomach, pancreatic, and prostate cancer occurred among first-degree relatives of carriers of BRCA2 mutations only when mutations were in the ovarian cancer-cluster region (OCCR) of exon 11, whereas an excess of breast cancer was seen when mutations were outside the OCCR. For cancers of all sites combined, the estimated penetrance of BRCA2 mutations was greater for males than for females, 53% versus 38%. Past studies may have underestimated the contribution of BRCA2 to ovarian cancer, because mutations in this gene cause predominantly late-onset cancer, and previous work has focused more on early-onset disease. If confirmed in future studies, the trend in breast-cancer penetrance, according to mutation location along the BRCA1 coding sequence, may have significant impact on treatment decisions for carriers of BRCA1-mutations. As well, BRCA2 mutations may prove to be a greater cause of cancer in male carriers than previously has been thought.  相似文献   

14.
Glaucoma is a heterogeneous eye disease and a major cause of blindness worldwide. Recently, primary open angle glaucoma (POAG)-associated mutations have been found in the trabecular meshwork inducible glucocorticoid response gene (TIGR), also known as the myocilin gene (MYOC), at the GLC1A locus on chromosome 1q21-q31. These mutations occurred in a subset of patients with juvenile- and adult-onset POAG and exhibited autosomal dominant inheritance. Ocular expression and its involvement in POAG suggest that TIGR/MYOC may have a role(s) in regulating intraocular pressure (IOP). Here, we report the generation and analysis of mice heterozygous and homozygous for a targeted null mutation in Myoc. Our study shows that Myoc mutant mice are both viable and fertile. Our in vivo findings further demonstrate that Myoc is not required for normal IOP or normal ocular morphology. The lack of a discernable phenotype in both Myoc-heterozygous and Myoc-null mice suggests that haploinsufficiency is not a critical mechanism for POAG in individuals with mutations in MYOC. Instead, disease-causing mutations in humans likely act by gain of function.  相似文献   

15.
The autosomal recessive disorder primary congenital glaucoma (PCG) is caused by unknown developmental defect(s) of the trabecular meshwork and anterior chamber angle of the eye. Homozygosity mapping with a DNA pooling strategy in three large consanguineous Saudi PCG families identified the GLC3A locus on chromosome 2p21 in a region tightly linked to PCG in another population. Formal linkage analysis in 25 Saudi PCG families confirmed both significant linkage to polymorphic markers in this region and incomplete penetrance, but it showed no evidence of genetic heterogeneity. For these 25 families, the maximum combined two-point LOD score was 15.76 at a recombination fraction of .021, with the polymorphic marker D2S177. Both haplotype analysis and homozygosity mapping in these families localized GLC3A to a 5-cM critical interval delineated by markers D2S2186 and D2S1356. Sequence analysis of the coding exons for cytochrome P4501B1 (CYP1B1) in these 25 families revealed three distinctive mutations that segregate with the phenotype in 24 families. Additional clinical and molecular data on some mildly affected relatives showed variable expressivity of PCG in this population. These results should stimulate a study of the genetic and environmental events that modify the effects of CYP1B1 mutations in ocular development. Furthermore, the small number of PCG mutations identified in this Saudi population makes both neonatal and population screening attractive public health measures.  相似文献   

16.
Primary open-angle glaucoma (POAG), which causes progressive loss of the visual fields, was subdivided into two groups according to age at onset: (1) chronic open-angle glaucoma (COAG) diagnosed after age 40 years and (2) juvenile open-angle glaucoma (JOAG) diagnosed between 3 years of age and early adulthood. A JOAG gene (GLC1A) was recently mapped to chromosome 1q. We studied 142 members of a huge multigenerational French Canadian family affected with autosomal dominant POAG. Either JOAG or COAG was diagnosed in 40 patients. Six subjects were also diagnosed with ocular hypertension (OHT), which may lead to POAG. To localize a common disease gene that might be responsible for both glaucoma subsets, we performed linkage analysis considering JOAG and COAG under the same phenotypic category. JOAG/COAG was tightly linked to seven microsatellite markers on chromosome 1q23-q25; a maximum lod score of 6.62 was obtained with AF-M278ye5. To refine the disease locus, we exploited a recombination mapping strategy based on a unique founder effect. The same characteristic haplotype, composed of 14 markers spanning 12 cM between loci D1S196 and D1S212, was recognized in all persons affected by JOAG, COAG, or OHT, but it did not occur in unaffected spouses and in normal family members > 35 years of age, except for three obligatory carriers. Key recombination events confined the disease region within a 9-cM interval between loci D1S445 and D1S416/D1S480. These observations demonstrate that the GLC1A gene is responsible for both adult-onset and juvenile glaucomas and suggest that the JOAG and COAG categories within this family may be part of a clinical continuum artificially divided at age 40 years.  相似文献   

17.
MYOC encoding a 55kDa secretory glycoprotein named myocilin is closely linked to primary open-angle glaucoma (POAG). To understand a role played by MYOC in glaucoma, we examined the cellular fate of various mutant myocilins that were adenovirally expressed in human trabecular meshwork cells. Most myocilins with mutations such as G364V, Q368X, K423E, Y437H, and I477N were intrinsically stable, and appeared to have interactions with wild-type myocilin but not with stromelysin and thereby selectively inhibited the secretion of the former protein. The myocilins expressed were identified to be concentrated into fine punctate aggregates in endoplasmic reticulum, but never developed into the formation of aggresomes. In endoplasmic reticulum, the accumulation of the myocilins resulted in the upregulation of 78kDa glucose-regulated protein and protein disulfide isomerase. In addition, the expression of the myocilins led to deformed cellular morphology and diminished cell proliferation, an effect postulated to result in the dysfunction of trabecular cells that could be a cause of glaucoma. Therefore, our results support the statement that gain of function rather than haploinsufficiency is a critical mechanism for POAG in individuals with mutations on MYOC.  相似文献   

18.
BackgroundPrimary open angle glaucoma (POAG) occurs due to the discrepancies in the angle of anterior chamber characterized by the alterations in intraocular pressure, optic nerves head changes and central loss of visual field. In molecular research, CYP1B1 mutations modulates an integral role in association with glaucoma. Current study was undertaken to reveal the homozygous and heterozygous patterns of CYP1B1 c.1169 G > A variant (rs56010818) in POAG patients of Pakistan.MethodsAfter consent, total n = 88 POAG patients undergone through standard ophthalmological investigations before their recruitment in this study. The blood samples were utilized for DNA isolation. The genotyping of CYP1B1 c.1169 G > A variant was carried out by Sanger sequencing. The mutational patterns and its association with clinical variables were demonstrated by statistical and bioinformatic tools.ResultsIt was evident that the frequencies of heterozygous G/A and homozygous mutants A/A genotypes were higher in males (36.5%, 7.7%) than females (30.6%, 2.8%) of POAG population. Furthermore, the juvenile patients exhibit high manifestation of carrier genotype (66.6%) in comparison to adult patients (31.7%). The results also indicated the significant relationship of intraocular pressure with homozygous mutant A/A genotype of CYP1B1 variant in POAG patients (p < 0.05).ConclusionsOur study provided the mutational data of CYP1B1 R390H variant and the patterns of homozygosity and heterozygosity along with clinical associations. Overall, this study revealed the genetic predisposition of CYP1B1 c.1169 G > A variant in the patients of POAG in Pakistan. The findings could be helpful for genetic screening and in-depth understanding of underlying causes in the pathogenesis of POAG.  相似文献   

19.
AIMS: Steroid 11beta-hydroxylase deficiency (11beta-OHD) is the second most common (5-8%) cause of congenital adrenal hyperplasia (CAH), and results from homozygous or compound heterozygous mutations or deletions of the responsible gene CYP11B1. In order to better understand the molecular basis causing 11beta-OHD, we performed detailed studies of CYP11B1 in a newly described patient diagnosed with the classical signs of 11beta-OHD. METHODS:CYP11B1 of the patient was investigated by polymerase chain reaction (PCR), sequencing, restriction fragment length polymorphism (RFLP) analysis, Southern blotting, and transient cell expression. RESULTS: We identified two new mutated alleles in CYP11B1. In one allele CYP11B1 has a g.940G-->C (p.G314R) missense mutation. On the other allele we found a chimeric gene that consists of part of the aldosterone synthase gene (CYP11B2) at exons 1-3 and part of the 11beta-hydroxylase gene (CYP11B1) at exons 4-9. Inin vitro studies, the g.940G-->C (p.G314R) mutation abolished all hydroxylase activity in comparison with the wild-type 11beta-hydroxylase. The chimeric CYP11B2/CYP11B1 protein retained 11beta-hydroxylase enzymatic activity in vitro. CONCLUSION: This case is caused by compound heterozygosity for a nonfunctional missense mutation and a chimeric CYP11B2/CYP11B1 gene with hydroxylase activity that is controlled by the CYP11B2 promoter. The most likely explanation is that the CYP11B2 promoter does not function in the zona fasciculata/reticularis where cortisol is exclusively synthesized.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号