首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Characterization of lysocardiolipin from Acinetobacter sp. HO1-N.   总被引:5,自引:5,他引:0       下载免费PDF全文
Triacyl-lysocardiolipin (triacyl-LCL) and diacyl-LCL were isolated from Acinetobacter sp. HO1-N, and their structures were determined by chemical, physical, and enzymatic procedures. Deacylation of triacyl-LCL and diacyl-LCL yielded bis-glycerylphosphorylglycerol. Periodate oxidation of both lysolipids was negative. Diglyceride and 2-monoglyceride resulted from the acetic acid hydrolysis of triacyl-LCL, whereas 2-monoglyceride was the sole product obtained from diacyl-LCL. Cardiolipin (CL)-specific phospholipase D treatment of triacyl-LCL yielded lysophosphatidylglycerol and phosphatidic acid. Pancreatic lipase treatment of CL yielded triacyl-LCL and diacyl-LCL. 31P nuclear magnetic resonance spectrometry showed two resonance peaks separated by 40 HZ for CL, two overlapping peaks separated by 14 HZ for triacyl-LCL, and one peak for diacyl-LCL. The proportion of lysocardiolipin increased as a function of cell age, representing 2 to 3% of the total phospholipids in early- and mid-exponential growth, 5 to 7% in late-exponential growth, and 12% in the stationary growth phase.  相似文献   

2.
A minor phospholipid from Acinetobacter sp. HO1-N was identified as acyl-phosphatidylglycerol. Acyl-phosphatidylglycerol synthesis by outer-membrane preparations appeared to be a result of phospholipase A activity.  相似文献   

3.
A phospholipase A1 activity that hydrolyzed cardiolipin to triacyl- and diacyl-lysocardiolipin was localized in outer membrane preparations derived from Acinetobacter sp. HO1-N. The specific activity of the enzyme derived from hexadecane-grown cells was 2.5 to 3 times higher than that derived from NBYE-grown cells. An apparent Km of 2.22 mM was determined, although inhibition kinetics resulted at the higher cardiolipin substrate concentrations. Optimal reaction conditions established on metal requirements. Enzyme activity was obligately dependent on Triton X-100 (0.5%) and was inhibited by cationic and anionic detergents. Cardiolipin-specific phospholipase D converted triacyl-lysocardiolipin to lysophosphatidylglycerol and phosphatidic acid. The specific activity of this enzyme was approximately 100 times greater than that reported for other membrane preparations derived from microorganisms.  相似文献   

4.
The growth of Acinetobacter species HO1-N on a homologous series of dialkyl ethers yielded characteristic cellular and extracellular ether fatty acids. Microbial growth on diheptyl ether resulted in the appearance of 7-n-heptoxy-1-n-heptanoic acid as a cellular fatty acid and 2-n-heptoxy-1-acetic acid as the sole extracellular fatty acid. The oxidation of dinonyl ether and didecyl ether by Acinetobacter resulted in the extracellular accumulation of 2-n-nonoxy-acetic acid and 2-n-decoxy-1-acetic acid, respectively. The 16-carbon ether fatty acid, 6-n-decoxy-1-n-hexanoic acid, was identified as a major cellular fatty acid in didecyl ether-grown cells. The extracellular ether fatty acids accumulated in an inverse relationship to the disappearance of the dialkyl ether and appeared to represent end products of metabolism. The carbon and energy required for cellular growth and metabolism resided in the terminal 5-carbons of diheptyl ether, 7-carbons of dinonyl ether and 8-carbons of didecyl ether. Glutarate, adipate, pimelate and suberate were identified from cells grown at the expense of diheptyl, dioctyl, dinonyl and didecyl ether, respectively, suggesting a role for dibasic acids as metabolic intermediates. A new and novel mechanism for the metabolism of symmetrical dialkyl ethers is suggested. Terminal methyl group oxidation of the dialkyl ether results in the formation of an alkoxy-fatty acid followed by an internal carbon-carbon scission reaction 2-carbons removed from the oxygen atom. The resulting endproducts are alkoxyacetic acid and the corresponding dibasic acid.Non-Standard Abbreviations TLC Thin Layer Chromatography - PS-DEGS · PS Diethylene glycol succinate - DHE Diheptyl ether - DOE Dioctyl ether - DNE Dionyl ether - DDE Didecyl ether  相似文献   

5.
The relationship between respiratory chain composition and efficiency of coupling phosphorylation to electron transport was examined in Acinetobacter sp. strain HO1-N. Cells containing only cytochrome o as a terminal oxidase displayed the same stoichiometries of adenosine 5'-triphosphate synthesis and proton extrusion as cells which contained both cytochromes o and d as terminal oxidases. In addition, CO inhibition and photo-relief of cytochromes o or d did not alter the efficiency of energy coupling. These findings indicate that adenosine 5'-triphosphate synthesis is coupled to electron transport through both cytochromes o and d in Acinetobacter.  相似文献   

6.
The growth of Acinetobacter sp. strain HO1-N on hexadecanol results in the formation of intracytoplasmic membranes and intracellular rectangular inclusions containing one of the end products of hexadecanol metabolism, hexadecyl palmitate. The intracellular inclusions were purified and characterized as "wax ester inclusions" consisting of 85.6% hexadecyl palmitate, 4.8% hexadecanol, and 9.6% phospholipid, with a phospholipid-to-protein ratio of 0.42 mumol of lipid phosphate per mg of inclusion protein. The cellular lipids consisted of 69.8% hexadecyl palmitate, 22.8% phospholipid, 1.9% triglyceride, 4.7% mono- and diglyceride, 0.1% free fatty acid, and 0.8% hexadecanol, as compared with 98% hexadecyl palmitate and 1.9% triglyceride, which comprised the extracellular lipids. Cell-associated hexadecanol represented 0.05% of the exogenously supplied hexadecanol, with hexadecyl palmitate accounting for 14.7% of the total cellular dry weight. Acinetobacter sp. strain HO1-N possesses a mechanism for the intracellular packaging of hexadecyl palmitate in wax ester inclusions, which differ in structure and chemical composition from "hydrocarbon inclusions" isolated from hexadecane-grown cells.  相似文献   

7.
The role of fatty aldehyde dehydrogenases (FALDHs) in hexadecane and hexadecanol metabolism was studied in Acinetobacter sp. strain HO1-N. Two distinct FALDHs were demonstrated in Acinetobacter sp. strain HO1-N: a membrane-bound, NADP-dependent FALDH activity induced 5-, 15-, and 9-fold by growth on hexadecanol, dodecyl aldehyde, and hexadecane, respectively, and a constitutive, NAD-dependent, membrane-localized FALDH. The NADP-dependent FALDH exhibited apparent Km and Vmax values for decyl aldehyde of 5.0, 13.0, 18.0, and 18.3 microM and 537.0, 500.0, 25.0, and 38.0 nmol/min in hexadecane-, hexadecanol-, ethanol-, palmitate-grown cells, respectively. FALDH isozymes ald-a, ald-b, and ald-c were demonstrated by gel electrophoresis in extracts of hexadecane- and hexadecanol-grown cells. ald-a, ald-b, and ald-d were present in dodecyl aldehyde-grown cells, while palmitate-grown control cells contained ald-b and ald-d. Dodecyl aldehyde-negative mutants were isolated and grouped into two phenotypic classes based on growth: class 1 mutants were hexadecane and hexadecanol negative and class 2 mutants were hexadecane and hexadecanol positive. Specific activity of NADP-dependent FALDH in Ald21 (class 1 mutant) was 85% lower than that of wild-type FALDH, while the specific activity of Ald24 (class 2 mutant) was 55% greater than that of wild-type FALDH. Ald21R, a dodecyl aldehyde-positive revertant able to grow on hexadecane, hexadecanol, and dodecyl aldehyde, exhibited a 100% increase in the specific activity of the NADP-dependent FALDH. The oxidation of [3H]hexadecane byAld21 yielded the accumulation of 61% more fatty aldehyde than the wild type, while Ald24 accumulated 27% more fatty aldehyde, 95% more fatty alcohol, and 65% more wax ester than the wild type. This study provides genetic and physiological evidence for the role of fatty aldehyde as an essential metabolic intermediate and NADP-dependent FALDH as a key enzyme in the dissimilation of hexadecane, hexadecanol, and dodecyl aldehyde in Acinetobactor sp. strain HO1-N.  相似文献   

8.
Multiple alcohol dehydrogenases (ADH) were demonstrated in Acinetobacter sp. strain HO1-N. ADH-A and ADH-B were distinguished on the basis of electrophoretic mobility, pyridine nucleotide cofactor requirement, and substrate specificity. ADH-A is a soluble, NAD-linked, inducible ethanol dehydrogenase (EDH) exhibiting an apparent Km for ethanol of 512 microM and a Vmax of 138 nmol/min. An ethanol-negative mutant (Eth1) was isolated which contained 6.5% of wild-type EDH activity and was deficient in ADH-A. Eth1 exhibited normal growth on hexadecane and hexadecanol. A second ethanol-negative mutant (Eth3) was acetaldehyde dehydrogenase (ALDH) deficient, having 12.5% of wild-type ALDH activity. Eth3 had threefold-higher EDH activity than the wild-type strain. ALDH is a soluble, NAD-linked, ethanol-inducible enzyme which exhibited an apparent Km for acetaldehyde of 50 microM and a Vmax of 183 nmol/min. Eth3 exhibited normal growth on hexadecane, hexadecanol, and fatty aldehyde. ADH-B is a soluble, constitutive, NADP-linked ADH which was active with medium-chain-length alcohols. Hexadecanol dehydrogenase (HDH), a soluble and membrane-bound, NAD-linked ADH, was induced 5- to 11-fold by growth on hexadecane or hexadecanol. HDH exhibited apparent Kms for hexadecanol of 1.6 and 2.8 microM in crude extracts derived from hexadecane- and hexadecanol-grown cells, respectively. HDH was distinct from ADH-A and ADH-B, since HDH and ADH-A were not coinduced; Eth1 had wild-type levels of HDH; and HDH requires NAD, while ADH-B requires NADP. NAD- and NADP-independent HDH activity was not detected in the soluble or membrane fraction of extracts derived from hexadecane- or hexadecanol-grown cells. NAD-linked HDH appears to possess a functional role in hexadecane and hexadecanol dissimilation.  相似文献   

9.
An outer membrane phospholipase A active against phosphatidylglycerol and phosphatidylethanolamine was characterized from Acinetobacter sp. HO1-N.  相似文献   

10.
Three alcohol dehydrogenases have been identified in Acinetobacter calcoaceticus sp. strain HO1-N: an NAD(+)-dependent enzyme and two NADP(+)-dependent enzymes. One of the NADP(+)-dependent alcohol dehydrogenases was partially purified and was specific for long-chain substrates. With tetradecanol as substrate an apparent Km value of 5.2 microM was calculated. This enzyme has a pI of 4.5 and a molecular mass of 144 kDa. All three alcohol dehydrogenases were constitutively expressed. Three aldehyde dehydrogenases were also identified: an NAD(+)-dependent enzyme, an NADP(+)-dependent enzyme and one which was nucleotide independent. The NAD(+)-dependent enzyme represented only 2% of the total activity and was not studied further. The NADP(+)-dependent enzyme was strongly induced by growth of cells on alkanes and was associated with hydrocarbon vesicles. With tetradecanal as substrate an apparent Km value of 0.2 microM was calculated. The nucleotide-independent aldehyde dehydrogenase could use either Würster's Blue or phenazine methosulphate (PMS) as an artificial electron acceptor. This enzyme represents approximately 80% of the total long-chain aldehyde oxidizing activity within the cell when the enzymes were induced by growing the cells on hexadecane. It is particulate but can be solubilized using Triton X-100. The enzyme has an apparent Km of 0.36 mM for decanal.  相似文献   

11.
The ultrastructure of Acinetobacter sp. strain HO1-N grown on hydrocarbon and nonhydrocarbon substrates was compared using thin sections and freeze-etching. Hydrocarbon-grown cells were characterized by the presence of intracytoplasmic membrane-bound hexadecane inclusions. This membrane did not exhibit a typical unit membrane structure but appeared as a monolayer. The freeze-etch technique revealed the internal structure of the hexadecane inclusions and provided evidence for the presence of a smooth-surfaced limiting membrane. Freeze-etching also revealed intracytoplasmic membranes in the hexadecane-grown cells. These ultrastructural modifications were not present in nonhydrocarbon-grown cells. The hexadecane inclusions were isolated from Acinetobacter. Negative-staining of the inclusions revealed electron-transparent vesicles approximating the size of the inclusions seen in whole cells. Freeze-etching of the purified inclusions revealed membrane-bound vesicles. The purified inclusions exhibited a relatively high value of lipid phosphorus to protein. The lipid composition and the electrophoretic banding pattern of the inclusions on sodium dodecyl sulfate-polyacrylamide gels were determined and compared with other membrane fractions (outer membrane and cytoplasmic membrane) previously isolated from this organism.  相似文献   

12.
An NADP-dependent alcohol dehydrogenase was purified to homogeneity fromAcinetobacter sp. strain HO1-N. The enzyme appears to be a tetramer of sub-unit Mr 40,600, and it has kinetic and other properties almost identical to those of an enzyme previously isolated fromAcinetobacter calcoaceticus strain NCIB 8250. The alcohol dehydrogenases from both of these strains ofAcinetobacter oxidized primary alcohols. The highestk cat(app) values were with alcohols containing from four to eight carbon atoms; there was activity up to tetradecan-l-ol, although it was a poor substrate, but there was not measurable activity with hexadecan-l-ol. The highest specificity constant was found with hexan-l-ol as substrate when the messurements were made in the absence of dioxan, and with decan-l-ol as substrate when assayed in the presence of dioxan. It seems unlikely that this enzyme is involved in the metabolism of wax esters or of long-chain alkanes.  相似文献   

13.
In the present study, we addressed the possibility that the production of both bioemulsifiers and membrane-bound vesicles may be a common feature of the growth of Acinetobacter spp. on alkanes, and we determined the extent to which the release of extracellular products by these organisms is regulated by the concentrations of the alkane substrate and inorganic nutrients. To accomplish this objective, we grew Acinetobacter venetianus RAG-1 and Acinetobacter sp. strain HO1-N with different concentrations of nutrients and assayed for extracellular products. The results indicated that the release of vesicles, soluble protein, and bioemulsifier was promoted in various degrees by higher concentrations of hexadecane and inorganic nutrients, while the specific activities of the bioemulsifiers were enhanced with lower nutrient concentrations. Based on our findings, we propose that under conditions of nutrient excess, these strains produce membrane-bound vesicles to function in "luxury uptake" of the alkane substrate for delivery and storage in the form of inclusions. Under the same conditions, soluble bioemulsifier and protein may perform auxiliary roles in cell desorption and (or) alkane uptake. With low concentrations of nutrients, the decreased production of vesicles, protein, and bioemulsifier and the increased activity of the emulsifier may represent a mechanism for reducing biosynthetic demands and conserving cellular material.  相似文献   

14.
The influence of oxygen on the level of microsomal electron transport chain components has been studied during the growth of Saccharomyces cerevisiae. Enzyme activities and cytochrome content were assayed in microsomal fractions prepared from a protoplast lysate free from mitochondrial contamination. It was found that the cytochrome P-450 and cytochrome b5 content, to get her with the NADPH-cytochrome (P-450)-reductase and NADH-cytochrome (b5)-reductase activities, were increased in the cells as the pO2 of the medium was decreasing. At the same time an increase in the membrane surface of the endoplasmic reticulum can be observed.  相似文献   

15.
Acinetobacter baumanii, which may be found in water, is an important emerging hospital-acquired pathogen. Free-living amoebae can be recovered from the same water networks, and it has been shown that these protozoa may support the growth of other bacteria. In this paper, we have studied potential relationships between A. baumanii and Acanthamoeba species. Two strains of A. baumanii isolated from hospital water were co-cultivated with the trophozoites or supernatants of two free-living amoebae strains: Acanthamoeba castellanii or Acanthamoeba culbertsoni. Firstly, the presence of the amoebae or their supernatants induced a major increase in A. baumanii growth, compared with controls. Secondly, A. baumanii affected only the viability of A. culbertsonii, with no effect on A. castellanii. Electron microscopy observations of the cultures investigating the bacterial location in the protozoa showed persistence of the bacteria within cyst wall even after 60 days of incubation. In our study, the survival and growth of A. baumanii could be favored by Acanthamoeba strains. Special attention should consequently be paid to the presence of free-living amoebae in hospital water systems, which can promote A. baumanii persistence.  相似文献   

16.
An Acinetobacter sp. strain grown on carbohydrate substrates (mono- and disaccharides, molasses, starch) was shown to synthesize exopolysaccharides (EPS). Glucose catabolism proved to proceed via the Embden-Meyerhof-Parnas and Entner-Doudoroff pathways. Pyruvate entered the tricarboxylic acid cycle due to pyruvate dehydrogenase activity. Pyruvate carboxylation by pyruvate carboxylase was the anaplerotic reaction providing for the synthesis of intermediates for the constructive metabolism of Acinetobacter sp. grown on C6-substrates. The C6-metabolism in Acinetobacter sp. was limited by coenzyme A. Irrespective of the carbohydrate growth substrate (glucose, ethanol), the activities of the key enzymes of both C2- and C6-metabolism was high, except for the isocitrate lyase activity in glucose-grown bacteria. Isocitrate lyase activity was induced by C2-compounds (ethanol or acetate). After their addition to glucose-containing medium, both substrates were utilized simultaneously, and an increase was observed in the EPS synthesis, as well as in the EPS yield relative to biomass. The mechanisms responsible for enhancing the EPS synthesis in Acinetobacter sp. grown on a mixture of C2- and C6-substrates are discussed.  相似文献   

17.
Highly purified [D-glucose-1-14C]lactose has been used to study the transport of lactose by Klebsiella sp. strain CT-1. Strain CT-1 transports lactose by a lactose-inducible system that exhibited an apparent Km of 6 mM lactose and an apparent Vmax of 140 nmol/min per mg of cell protein. Lactose uptake was inhibited competitively by o-nitrophenyl-beta-D-galactoside with a Ki value of 8 mM, but was not inhibited by thio-beta-methyl-galactoside. D-Glucose, D-mannose, 2-deoxyglucose, and alpha-methyl-D-glucoside also inhibited lactose uptake. Phosphoenolpyruvate-dependent hydrolysis of o-nitrophenyl-beta-D-galactoside and lactose-dependent release of pyruvate from phosphoenolpyruvate by benzene-treated CT-1 cells showed that CT-1 transports lactose by a phosphoenolpyruvate:sugar phosphotransferase system. Correlations between the growth rate of CT-1 on lactose and properties of the transport system indicated that transport is the rate limiting step in utilization of lactose.  相似文献   

18.
19.
The partition of n-hexadecane in the spent growth medium of Acinetobacter sp. HOI-N was determined by measuring the increase in the relative aqueous solubility of 3H-hexadecane as compared to controls. The amount of hexadecane partitioned was proportional to the protein concentration. The specific solubility of hexadecane (nmol/mg protein) was analyzed by least-squares fitting yielding an average slope of 0.6 with a standard deviation of 0.3, indicating either nonequilibrium of hexadecane or physical aggregation of protein. The amount of hexadecane partitioned was concentration dependent yielding optically clear microemulsions at hexadecane concentrations of less than 1.4mM and macroemulsions at hexadecane concentrations of 1.4mM or greater. Preliminary results indicated that hexadecane and partitioned by a lipoprotein complex.  相似文献   

20.
Analysis of a clinical isolate of Acinetobacter baumannii showed that this bacterium was able to grow under iron-limiting conditions, using chemically defined growth media containing different iron chelators such as human transferrin, ethylenediaminedi-(o-hydroxyphenyl)acetic acid, nitrilotriacetic acid, and 2,2'-bipyridyl. This iron uptake-proficient phenotype was due to the synthesis and secretion of a catechol-type siderophore compound. Utilization bioassays using the Salmonella typhimurium iron uptake mutants enb-1 and enb-7 proved that this siderophore is different from enterobactin. This catechol siderophore was partially purified from culture supernatants by adsorption chromatography using an XAD-7 resin. The purified component exhibited a chromatographic behavior and a UV-visible light absorption spectrum different from those of 2,3-dihydroxybenzoic acid and other bacterial catechol siderophores. Furthermore, the siderophore activity of this extracellular catechol was confirmed by its ability to stimulate energy-dependent uptake of 55Fe(III) as well as to promote the growth of A. baumannii bacterial cells under iron-deficient conditions imposed by 60 microM human transferrin. Polyacrylamide gel electrophoresis analysis showed the presence of iron-regulated proteins in both inner and outer membranes of this clinical isolate of A. baumannii. Some of these membrane proteins may be involved in the recognition and internalization of the iron-siderophore complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号