共查询到20条相似文献,搜索用时 0 毫秒
1.
The architectural ground plan of beetle and other insect midguts is represented by a monolayer of epithelial cells arranged in a cylindrical configuration. Proliferation and differentiation of regenerative cells maintain the integrity of this monolayer in the face of continual losses of individual cells through cytoplasmic budding and/or expulsion of entire epithelial cells. Peritrophic membranes have conventionally been considered universal features of insect midguts that function to protect vulnerable microvillar surfaces of the midgut epithelium from abrasion by ingested food; however, peritrophic membranes were found in only a small fraction of the adult beetle species examined in this study. In adult beetles, midgut epithelial cells are continually replaced by cells recruited from populations of mitotic regenerative cells that are interspersed among the differentiated epithelial monolayer. To remain contiguous with the other cells in the midgut monolayer, some of these proliferating populations have adopted evaginated configurations of cells that extend for varying distances from the basal surface of the monolayer. These configurations are referred to as regenerative crypts or pouches and consist of progenitor cells and stem cells. The presence, the relative densities, and the relative lengths of these regenerative pouches vary considerably among families of beetles. Placement of longitudinal muscles of the midgut relative to the proximodistal axes of these regenerative pouches also varies among species of beetles. The presence, the size, and the density of regenerative cell populations are related to 1) feeding habits of adult beetles, 2) presence of peritrophic membranes, and 3) expulsion of entire midgut epithelial cells or fragments of these epithelial cells into midgut lumens. © 2012 Wiley Periodicals, Inc. 相似文献
2.
Aiguo Tian Virginia Morejon Sarah Kohoutek YiChun Huang WuMin Deng Jin Jiang 《The EMBO journal》2022,41(19)
Many adult tissues and organs including the intestine rely on resident stem cells to maintain homeostasis and regeneration. In mammals, the progenies of intestinal stem cells (ISCs) can dedifferentiate to generate ISCs upon ablation of resident stem cells. However, whether and how mature tissue cells generate ISCs under physiological conditions remains unknown. Here, we show that infection of the Drosophila melanogaster intestine with pathogenic bacteria induces entry of enteroblasts (EBs), which are ISC progenies, into the mitotic cycle through upregulation of epidermal growth factor receptor (EGFR)‐Ras signaling. We also show that ectopic activation of EGFR‐Ras signaling in EBs is sufficient to drive enteroblast mitosis cell autonomously. Furthermore, we find that the dividing enteroblasts do not gain ISC identity as a prerequisite to divide, and the regenerative ISCs are produced through EB mitosis. Taken together, our work uncovers a new role for EGFR‐Ras signaling in driving EB mitosis and replenishing the ISC pool during fly intestinal regeneration, which may have important implications for tissue homeostasis and tumorigenesis in vertebrates. 相似文献
3.
Magdalena M. Rost-Roszkowska Izabela Poprawa Piotr Swiatek 《Invertebrate Biology》2007,126(4):366-372
Abstract. In the newly hatched larva in Allacma fusca , the midgut epithelium was fully developed and formed by flattened epithelial cells surrounding the yolk mass in the midgut lumen. Immediately after hatching, the first larva began to feed; the migut lumen was filled with the yolk mass and food (mainly algae). Regenerative cells typical of the developing midgut epithelium of many insects were not observed. Initially, midgut cells of the larva were cuboidal but became columnar in shape with distinct regionalization in the distribution of cell organelles. Furthermore, urospherites appeared in the midgut cell cytoplasm, i.e., structures characteristic for the midgut epithelium of insects having no Malpighian tubules. As a result, cells with the capacity for digestion, absorption, and excretion were observed to be completely formed in the first larval stage. 相似文献
4.
Yihua Bei Fei Wang Changqing Yang Junjie Xiao 《Journal of cellular and molecular medicine》2015,19(7):1441-1454
Telocytes (TCs) are a distinct type of interstitial cells characterized by a small cell body and extremely long and thin telopodes (Tps). The presence of TCs has been documented in many tissues and organs (go to http://www.telocytes.com ). Functionally, TCs form a three‐dimensional (3D) interstitial network by homocellular and heterocellular communication and are involved in the maintenance of tissue homeostasis. As important interstitial cells to guide or nurse putative stem and progenitor cells in stem cell niches in a spectrum of tissues and organs, TCs contribute to tissue repair and regeneration. This review focuses on the latest progresses regarding TCs in the repair and regeneration of different tissues and organs, including heart, lung, skeletal muscle, skin, meninges and choroid plexus, eye, liver, uterus and urinary system. By targeting TCs alone or in tandem with stem cells, we might promote regeneration and prevent the evolution to irreversible tissue damage. Exploring pharmacological or non‐pharmacological methods to enhance the growth of TCs would be a novel therapeutic strategy besides exogenous transplantation for many diseased disorders. 相似文献
5.
Arvidson K Abdallah BM Applegate LA Baldini N Cenni E Gomez-Barrena E Granchi D Kassem M Konttinen YT Mustafa K Pioletti DP Sillat T Finne-Wistrand A 《Journal of cellular and molecular medicine》2011,15(4):718-746
This invited review covers research areas of central importance for orthopaedic and maxillofacial bone tissue repair, including normal fracture healing and healing problems, biomaterial scaffolds for tissue engineering, mesenchymal and foetal stem cells, effects of sex steroids on mesenchymal stem cells, use of platelet-rich plasma for tissue repair, osteogenesis and its molecular markers. A variety of cells in addition to stem cells, as well as advances in materials science to meet specific requirements for bone and soft tissue regeneration by addition of bioactive molecules, are discussed. 相似文献
6.
Qingsong Ye TzuCheng Sung JenMing Yang QingDong Ling Yan He Akon Higuchi 《Cell proliferation》2020,53(12)
There is a need to store very large numbers of conventional human pluripotent stem cell (hPSC) lines for their off‐the‐shelf usage in stem cell therapy. Therefore, it is valuable to generate “universal” or “hypoimmunogenic” hPSCs with gene‐editing technology by knocking out or in immune‐related genes. A few universal or hypoimmunogenic hPSC lines should be enough to store for their off‐the‐shelf usage. Here, we overview and discuss how to prepare universal or hypoimmunogenic hPSCs and their disadvantages. β2‐Microglobulin‐knockout hPSCs did not harbour human leukocyte antigen (HLA)‐expressing class I cells but rather activated natural killer (NK) cells. To avoid NK cell and macrophage activities, homozygous hPSCs expressing a single allele of an HLA class I molecule, such as HLA‐C, were developed. Major HLA class I molecules were knocked out, and PD‐L1, HLA‐G and CD47 were knocked in hPSCs using CRISPR/Cas9 gene editing. These cells escaped activation of not only T cells but also NK cells and macrophages, generating universal hPSCs. 相似文献
7.
Loeb MJ 《Archives of insect biochemistry and physiology》2006,61(2):55-64
Cultured midgut cells from Heliothis virescens larvae were incubated with anti-human integrin beta1 made in rabbit and then passed over a column of magnetic beads bound to anti-rabbit IgG (MACS, Miltenyi Bergisch Gladbach, Germany). Cells bound to integrin beta1 antibody also bound to the anti-rabbit IgG on the magnetic beads (MACS) and were retained in the column while it remained in the magnetic field. Non-bound cells were eluted at this time. They did not stain with anti-integrin antibody just after elution. Removing the column from the magnetic field allowed cells bound to the beads-integrin beta1 antibody to be eluted. All of these cells stained with human anti-integrin beta1 upon elution. Each cell fraction was cultured in medium for 3 days. During this time, the populations of cells tended to return to heterogeneous staining patterns characteristic of control populations. However, cells that did not stain immediately with anti-integrin beta1 antibody exhibited double the rate of multiplication and 8 times more differentiation than the integrin-antibody positive cells that eluted later, as well as the non-treated control cells. In a second experiment, midgut cells were incubated for 4 days with various titers of human anti-integrin beta1 to block surface integrin beta1-like reactive sites. Stem cells blocked with anti-integrin beta1 antibody during incubation exhibited double the rate of differentiation than non-treated control cells and those showing anti-integrin beta1-positive stain upon elution. 相似文献
8.
To investigate the boundaries between regenerative and non-regenerative animals, we first survey regenerative ability across animal phyla from sponges to chordates (including mammals). There are both regenerative and non-regenerative animals in each phylum. The cells participating in regeneration also vary among different species. Thus, it is hard to find clear rules concerning regeneration ability across the animal kingdom, suggesting that it is not useful to compare the difference of regenerative ability across phyla to seek the boundary between regenerative and non-regenerative animals. Instead, if we carefully compare the differences of regenerative ability between closely related species within each phylum and accumulate these differences at the cellular molecular levels, we may be able to clarify the boundary between regenerative and non-regenerative animals. Here we introduce our comparative analysis of cellular events after amputation of lower jaws between frogs and newts. Then we propose that such comparative analyses using closely related species within the same phylum should be accumulated to understand the boundary between regenerative and non-regenerative animals in order to apply this understanding for realizing regenerative medicine in the future. 相似文献
9.
意大利蜜蜂胚后发育过程中中肠上皮组织细胞的更替 总被引:1,自引:0,他引:1
中肠是昆虫消化、 吸收营养物质的主要部位。本研究通过形态解剖、 BrdU免疫组织化学和原位末端转移酶标记(TUNEL)细胞凋亡检测等技术, 对意大利蜜蜂Apis mellifera ligustica中肠胚后发育过程中细胞的增殖和凋亡模式进行了比较研究。结果表明:意大利蜜蜂幼虫发育早期, 中肠的增加主要来自于上皮细胞的分裂以及再生细胞的增殖。在变态发育期间, 中肠上皮经历了广泛的重组, 由再生细胞重新形成的蛹上皮替代了幼虫上皮。再生细胞在蜜蜂中肠的整个发育阶段始终存在, 为中肠的生长和更替提供了主要的细胞来源。本研究为昆虫组织细胞自噬和凋亡机制的研究提供一定的证据。 相似文献
10.
Spontaneous and experimentally induced pseudotumor formation in Carausius morosus impairs the midgut tissue homeostasis. Spontaneous pseudotumor formation begins by the break down of a single or a small group of columnar cells (CCs) and is followed by the degeneration of neighboring CCs. There are not only marked similarities but also decisive differences between normal dying CCs in healthy specimens and the degeneration of CCs leading to pseudotumors: in both cases, the apical cell parts with the nucleus are extruded into the midgut lumen, but only during of pseudotumor formation an “amorphous substance” originates from the basal parts of the CCs. Hemocytes are attracted to this substance and form a nodule‐like aggregation, which is responsible for the phenotype of pseudotumors. Pseudotumor infestation has also an impact on the midgut nidi, which consist of an intestinal stem cell and several CC progenitor cells. In healthy specimens only one progenitor cell per nidus differentiates at a time, but, several to all progenitor cells differentiate simultaneously in pseudotumor‐infested specimens. Extirpation of the ingluvial ganglion in healthy specimens results in an immediate onset of pseudotumor formation and a dramatic acceleration of pseudotumor growth. Importantly, the ultrastructural characteristics of spontaneous and experimentally induced pseudotumors are identical. This supports the idea that the stomatogastric nervous system plays an integral role in the maintenance of midgut tissue homeostasis. J. Morphol., 2009. © 2009 Wiley‐Liss, Inc. 相似文献
11.
Drosophila has long been an excellent model organism for studying stem cell biology. Notably, studies of Drosophila's germline stem cells have been instrumental in developing the stem cell niche concept. The recent discovery of somatic stem cells in adult Drosophila, particularly the intestinal stem cells (ISCs) of the midgut, has established Drosophila as an exciting model to study stem cell-mediated adult tissue homeostasis and regeneration. Here, we review the major signaling pathways that regulate the self-renewal, proliferation and differentiation of Drosophila ISCs, discussing how this regulation maintains midgut homeostasis and mediates regeneration of the intestinal epithelium after injury. 相似文献
12.
Julia B Cordero Rhoda K Stefanatos Alessandro Scopelliti Marcos Vidal Owen J Sansom 《The EMBO journal》2012,31(19):3901-3917
The ability to regenerate following stress is a hallmark of self-renewing tissues. However, little is known about how regeneration differs from homeostatic tissue maintenance. Here, we study the role and regulation of Wingless (Wg)/Wnt signalling during intestinal regeneration using the Drosophila adult midgut. We show that Wg is produced by the intestinal epithelial compartment upon damage or stress and it is exclusively required for intestinal stem cell (ISC) proliferation during tissue regeneration. Reducing Wg or downstream signalling components from the intestinal epithelium blocked tissue regeneration. Importantly, we demonstrate that Wg from the undifferentiated progenitor cell, the enteroblast, is required for Myc-dependent ISC proliferation during regeneration. Similar to young regenerating tissues, ageing intestines required Wg and Myc for ISC hyperproliferation. Unexpectedly, our results demonstrate that epithelial but not mesenchymal Wg is essential for ISC proliferation in response to damage, while neither source of the ligand is solely responsible for ISC maintenance and tissue self-renewal in unchallenged tissues. Therefore, fine-tuning Wnt results in optimal balance between the ability to respond to stress without negatively affecting organismal viability. 相似文献
13.
Following ingestion of spores of Bacillus popilliae by grubs of the European chafer, Amphimallon majalis, vegetative rods were observed within phagocytic vacuoles of midgut columnar cells prior to establishing primary infection foci in regenerative nidi areas. This resulted in increased activity of regenerative nidi and extrusion of degenerating epithelial cells frequently containing vegetative rods of B. popilliae. Circulating hemocytes adhered to the hemocoelic surface of the basement membrane and formed inflammatory capsules immediately adjacent to the areas of bacterial proliferation. Bacilli in various stages of degradation were observed in membrane-limited vacuoles of both mesenteric epithelial cells and capsular hemocytes. Despite these host defense reactions, some vegetative cells resisted degradation and were successful in traversing the epithelial, basal lamina, and capsular barriers to enter the hemolymph. 相似文献
14.
Caren E. Petrie Aronin Rocky S. Tuan 《Birth defects research. Part C, Embryo today : reviews》2010,90(1):67-74
Adult mesenchymal stem cells (MSCs) include a select population of resident cells within adult tissues, which retain the ability to differentiate along several tissue‐specific lineages under defined media conditions and have finite expansion potential in vitro. These adult progenitor populations have been identified in various tissues, but it remains unclear exactly what role both transplanted and native MSCs play in processes of disease and regeneration. Interestingly, increasing evidence reveals a unique antiinflammatory immunomodulatory phenotype shared among this population, lending support to the idea that MSCs play a central role in early tissue remodeling responses where a controlled inflammatory response is required. However, additional evidence suggests that MSCs may not retain infinite immune privilege and that the context with which these cells are introduced in vivo may influence their immune phenotype. Therefore, understanding this dynamic microenvironment in which MSCs participate in complex feedback loops acting upon and being influenced by a plethora of secreted cytokines, extracellular matrix molecules, and fragments will be critical to elucidating the role of MSCs in the intertwined processes of immunomodulation and tissue repair. Birth Defects Research (Part C) 90:67–74, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
15.
Chunyi Li 《Birth defects research. Part C, Embryo today : reviews》2012,96(1):51-62
Full regeneration of deer antlers, a bona fide epimorphic process in mammals, is in defiance of the general rule of nature. Revealing the mechanism underlying this unique exception would place us in a better position to promote organ regeneration in humans. Antler regeneration takes place in yearly cycles from its pedicle, a permanent protuberance on the frontal bone. Both growing antlers and pedicles consist of internal (cartilage and bone) and external components (skin, blood vessels, and nerves). Recent studies have demonstrated that the regeneration of both internal and external components relies on the presence of pedicle periosteum (PP). PP cells express key embryonic stem cell markers (Oct4, Nanog, and SOX2) and are multipotent, so are termed antler stem cells. Now it is clear that proliferation and differentiation of PP cells directly forms internal antler components; however, how PP initiates and maintains the regeneration of external antler components is thus far not known. Based on the direct as well as indirect evidence that is presented in this review, I put forward the following hypothesis to address this issue. The full regenerative ability of external antler tissue components is achieved through PP‐derived chemical induction and PP‐derived mechanical stimulation: the former triggers the regeneration of these external components, whereas the latter drives their rapid elongation. Eventual identification of the putative PP‐derived chemical factors would open up a new avenue for devising effective therapies for lesions involving each of these tissue components, be they traumatic, degenerative, or linked to developmental (genetic) anomalies. (Part C) 96:51–62, 2012. © 2012 Wiley Periodicals, Inc. 相似文献
16.
Loeb MJ Clark EA Blackburn M Hakim RS Elsen K Smagghe G 《Archives of insect biochemistry and physiology》2003,53(4):186-198
Previously, we showed that isolated stem cells from midguts of Heliothis virescens can be induced to multiply in response to a multiplication protein (MP) isolated from pupal fat body, or to differentiate to larval types of mature midgut cells in response to either of 4 differentiation factors (MDFs) isolated from larval midgut cell-conditioned medium or pupal hemolymph. In this work, we show that the responses to MDF-2 and MP in H. virescens stem cells decayed at different time intervals, implying that the receptors or response cascades for stem cell differentiation and multiplication may be different. However, the processes appeared to be linked, since conditioned medium and MDF-2 prevented the action of MP on stem cells; MP by itself appeared to repress stem cell differentiation. Epidermal growth factor, retinoic acid, and platelet-derived growth factor induced isolated midgut stem cells of H. virescens and Lymantria dispar to multiply and to differentiate to mature midgut cells characteristic of prepupal, pupal, and adult lepidopteran midgut epithelium, and to squamous-like cells and scales not characteristic of midgut tissue instead of the larval types of mature midgut epithelium induced by the MDFs. Midgut stem cells appear to be multipotent and their various differentiated fates can be influenced by several growth factors. 相似文献
17.
Loeb MJ Martin PA Narang N Hakim RS Goto S Takeda M 《In vitro cellular & developmental biology. Animal》2001,37(6):348-352
Summary Differentiated cells in the insect midgut depend on stem cells for renewal. We have immunologically identified Integrin β1, a promotor of cell-cell adhesion that also induces signals mediating proliferation, differentiation, and apoptosis on the
surfaces of culturedHeliothis virescens midgut cells; clusters of immunostained integrin β1-like material, indicative of activated integrin, were detected on aggregating midgut columnar cells. Growth factor-like peptides
(midgut differentiation factors 1 and 2 [MDF1 and MDF2]), isolated from conditioned medium containingManduca sexta midgut cells, may be representative of endogenous midgut signaling molecules. Exposing the cultured midgut cells toBacillus thuringiensis (Bt) toxin caused large numbers of mature differentiated cells to die, but the massive cell death simultaneously induced
a 150–200% increase in the numbers of midgut stem and differentiating cells. However, after the toxin was washed out, the
proportions of cell types returned to near-control levels within 2 d, indicating endogenous control of cell-population dynamics.
MDF1 was detected immunologically in larger numbers of Bt-treated columnar cells than controls, confirming its role in inducing
the differentiation of rapidly produced stem cells. However, other insect midgut factors regulating increased proliferation,
differentiation, as well as inhibition of proliferation and adjustment of the ratio of cell types, remain to be discovered.
Products mentioned in this article are not endorsed by the U.S. Department of Agriculture. 相似文献
18.
Quang Le Vedavathi Madhu Joseph M Hart Charles R Farber Eli R Zunder Abhijit S Dighe Quanjun Cui 《World journal of stem cells》2021,13(9):1248-1277
Injuries to the postnatal skeleton are naturally repaired through successive steps involving specific cell types in a process collectively termed “bone regeneration”. Although complex, bone regeneration occurs through a series of well-orchestrated stages wherein endogenous bone stem cells play a central role. In most situations, bone regeneration is successful; however, there are instances when it fails and creates non-healing injuries or fracture nonunion requiring surgical or therapeutic interventions. Transplantation of adult or mesenchymal stem cells (MSCs) defined by the International Society for Cell and Gene Therapy (ISCT) as CD105+ CD90+CD73+CD45-CD34-CD14orCD11b-CD79αorCD19-HLA-DR- is being investigated as an attractive therapy for bone regeneration throughout the world. MSCs isolated from adipose tissue, adipose-derived stem cells (ADSCs), are gaining increasing attention since this is the most abundant source of adult stem cells and the isolation process for ADSCs is straightforward. Currently, there is not a single Food and Drug Administration (FDA) approved ADSCs product for bone regeneration. Although the safety of ADSCs is established from their usage in numerous clinical trials, the bone-forming potential of ADSCs and MSCs, in general, is highly controversial. Growing evidence suggests that the ISCT defined phenotype may not represent bona fide osteoprogenitors. Transplantation of both ADSCs and the CD105- sub-population of ADSCs has been reported to induce bone regeneration. Most notably, cells expressing other markers such as CD146, AlphaV, CD200, PDPN, CD164, CXCR4, and PDGFRα have been shown to represent osteogenic sub-population within ADSCs. Amongst other strategies to improve the bone-forming ability of ADSCs, modulation of VEGF, TGF-β1 and BMP signaling pathways of ADSCs has shown promising results. The U.S. FDA reveals that 73% of Investigational New Drug applications for stem cell-based products rely on CD105 expression as the “positive” marker for adult stem cells. A concerted effort involving the scientific community, clinicians, industries, and regulatory bodies to redefine ADSCs using powerful selection markers and strategies to modulate signaling pathways of ADSCs will speed up the therapeutic use of ADSCs for bone regeneration. 相似文献
19.
Jingbo Zhai Wanyang Li Xin Liu Di Wang Dongli Zhang Yanli Liu Xiuwen Liang Zeliang Chen 《Cell biology international》2023,47(1):3-14
The signaling pathways are highly conserved between Drosophila and mammals concerning intestinal development, regeneration, and disease. The powerful genetic tools of Drosophila make it a valuable and convenient alternative to answer basic biological questions that can not be addressed using mammalian models. In this review, we discuss recent advances in how we use fly midgut to answer the following key questions: (1) How intestine stem cell niches are established; (2) which factors control asymmetric division of stem cells; (3) how intestinal cells interact with environmental factors, such as tissue damage, microbiota, and diet; (4) how to screen aging/cancer-related factors or drugs by fly intestine stem cells. 相似文献
20.
Cornelison DD 《Journal of cellular biochemistry》2008,105(3):663-669
Skeletal muscle is formed during development by the progressive specification, proliferation, migration, and fusion of myoblasts to form terminally differentiated, contractile, highly patterned myofibers. Skeletal muscle is repaired or replaced postnatally by a similar process, involving a resident myogenic stem cell population referred to as satellite cells. In both cases, the activity of the myogenic precursor cells in question is regulated by local signals from the environment, frequently involving other, non-muscle cell types. However, while the majority of studies on muscle development were done in the context of the whole embryo, much of the current work on muscle satellite cells has been done in vitro, or on satellite cell-derived cell lines. While significant practical reasons for these approaches exist, it is almost certain that important influences from the context of the injured and regenerating muscle are lost, while potential tissue culture artifacts are introduced. This review will briefly address extracellular influences on satellite cells in vivo and in vitro that would be expected to impinge on their activity. 相似文献