首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The origin of midgut epithelium may begin either from yolk cells (energids), tips of stomo- and proctodaeum (ectoderm), inner layer (endoderm) or from both kinds of the above mentioned cells. The origin of the midgut epithelium in wingless insects (Apterygota) has still not been determined. In Thermobia domestica the formation of midgut is much delayed, and it completes in the post-embryonic stage, while the stomo- and the proctodaeum are well-developed in the embryonic period. The energids, which remain inside the yolk, start to migrate to its periphery, where they arrange singly close to cell membrane. The yolk mass with the energids at the 14th day of embryogenesis are referred to as the primary midgut. During the first instar larval stage more and more energids migrate to the yolk periphery and the cell membrane starts to form numerous foldings surrounding the groups of energids, which in turn lead to formation of isolated regenerative cell groups. Eventually the cell membrane invaginations reach the center of the yolk mass. Large cells of the primary epithelium, surrounding the newly formed midgut lumen are formed. The cells of the primary epithelium are filled with yolk and are equipped with microvilli pointing to the midgut lumen. As the yolk is being digested, the process of the primary epithelium cells degeneration begins. The cells are getting shorter and start to degenerate. The definitive midgut epithelium is formed from proliferating regenerative cells. It consists of regularly spaced regenerative cell groups as well as the epithelial cells. The ultrastructure of both these cell groups has been described.  相似文献   

2.
Summary The types of cell death in the midgut epithelium of the worker honey bee during the larva-to-pupa transformation were analyzed by light and electron microscopes. The metamorphosis begins with an increase in the number of autophagic vacuoles in larval epithelial cells and terminates with lytic destruction of the whole intestinal epithelium. Apoptosis seems to be independent of cell age, but important in fashioning of the new organ. Even in the cells in the regenerative nests of the larval epithelium, from which the pupal epithelium develops, apoptotic death occurs. Single apoptotic cells are eliminated gradually from the primary multilayer tissue until the monolayer pupal epithelium is formed. Some of the apoptotic cells are endocytosed by sister epithelial cells.  相似文献   

3.
Abstract. In the newly hatched larva in Allacma fusca , the midgut epithelium was fully developed and formed by flattened epithelial cells surrounding the yolk mass in the midgut lumen. Immediately after hatching, the first larva began to feed; the migut lumen was filled with the yolk mass and food (mainly algae). Regenerative cells typical of the developing midgut epithelium of many insects were not observed. Initially, midgut cells of the larva were cuboidal but became columnar in shape with distinct regionalization in the distribution of cell organelles. Furthermore, urospherites appeared in the midgut cell cytoplasm, i.e., structures characteristic for the midgut epithelium of insects having no Malpighian tubules. As a result, cells with the capacity for digestion, absorption, and excretion were observed to be completely formed in the first larval stage.  相似文献   

4.
Data considering the degeneration and regeneration of the midgut epithelium in the primitive wingless insects, such as Collembola, are rather poor. Also information, which treats the regenerative cells as the primordial cells, is poorly known. The midgut epithelium of Podura aquatica L. (Insecta, Collembola, Arthropleona) is formed by the epithelial and regenerative cells. The epithelial cells show distinct regionalisation in the organelles distribution. The ultrastructure of the basal, perinuclear and apical regions of the epithelial cells is described. As in insects without Malpighian tubules, structures which resemble urospherites occur in the cytoplasm of the epithelial cells. After degeneration of the entire midgut epithelium, a new epithelium is formed from regenerative cells. During the process of regeneration, the degenerated epithelium gradually is separated from the basal lamina by the newly formed one. Finally, the detached epithelium is moved into the midgut lumen. Regenerative cells play a role of primordial cells during epithelial regeneration.  相似文献   

5.
The Aedes aegypti midgut is restructured during metamorphosis; its epithelium is renewed by replacing the digestive and endocrine cells through stem or regenerative cell differentiation. Shortly after pupation (white pupae) begins, the larval digestive cells are histolized and show signs of degeneration, such as autophagic vacuoles and disintegrating microvilli. Simultaneously, differentiating cells derived from larval stem cells form an electron-dense layer that is visible 24 h after pupation begins. Forty-eight hours after pupation onset, the differentiating cells yield an electron-lucent cytoplasm rich in microvilli and organelles. Dividing stem cells were observed in the fourth instar larvae and during the first 24 h of pupation, which suggests that stem cells proliferate at the end of the larval period and during pupation. This study discusses various aspects of the changes during midgut remodeling for pupating A. aegypti.  相似文献   

6.
At the completion of metamorphosis, adult insect cells have traditionally been assumed to halt cell divisions and terminally differentiate. While this model of differentiation holds for adult ectodermal epithelia that secrete cuticular specializations of exoskeletons, adult endodermal epithelia are populated by discrete three-dimensional aggregates of stem cells that continue to divide and differentiate after adult emergence. Aggregates of these presumptive adult stem cells are scattered throughout larval and pupal midgut monolayers. At the beginning of adult development (pupal-adult apolysis), the number of cells within each aggregate begins to increase rapidly. Dividing cells form three-dimensional, coherent populations that project as regenerative pouches of stem cells into the hemocoel surrounding the midgut. Stem cell pouches are regularly spaced throughout endodermal monolayers, having adopted a spacing pattern suggesting that each incipient pouch inhibits the formation of a similar pouch within a certain radius of itself—a process referred to as lateral inhibition. At completion of adult development (pupal-adult ecdysis), a distinct basal-luminal polarity has been established within each regenerative pouch. Dividing stem cells occupying the basal region are arranged in three-dimensional aggregates. As these are displaced toward the lumen, they transform into two-dimensional monolayers of differentiated epithelial cells whose apical surfaces are covered by microvilli. This organization of stem cell pouches in insect midguts closely parallels that of regenerative crypts in mammalian intestines.  相似文献   

7.
The embryonic cytodifferentiation of Clitumnus midgut occurs very late when compared to that of other tissues in the embryo. It proceeds from hemolymph towards the yolk, first at the level of the muscular–connective tissue sheath, by the appearance of myofilaments in external–then internal–muscle fibers. In the gut epithelium, cytodifferentiation begins with the appearance of infoldings of the basal membranes of the cells. Then, microvilli and continuous junctions form at the apices of the cells. Microvilli appear in crypts, which seem to represent localized dilatations of intercellular spaces. At the level of these crypts, continuous junctions are formed somewhat later than are microvilli. This midgut differentiation coincides with deposition of the third embryonic (first larval) cuticle, and with a high titer of ecdysteroids.  相似文献   

8.
On the Antarctica continent the wingless midge, Belgica antarctica (Diptera, Chironomidae) occurs further south than any other insect. The digestive tract of the larval stage of Belgica that inhabits this extreme environment and feeds in detritus of penguin rookeries has been described for the first time. Ingested food passes through a foregut lumen and into a stomodeal valve representing an intussusception of the foregut into the midgut. A sharp discontinuity in microvillar length occurs at an interface separating relatively long microvilli of the stomodeal midgut region, the site where peritrophic membrane originates, from the midgut epithelium lying posterior to this stomodeal region. Although shapes of cells along the length of this non-stomodeal midgut epithelium are similar, the lengths of their microvilli increase over two orders of magnitude from anterior midgut to posterior midgut. Infoldings of the basal membranes also account for a greatly expanded interface between midgut cells and the hemocoel. The epithelial cells of the hindgut seem to be specialized for exchange of water with their environment, with the anterior two-thirds of the hindgut showing highly convoluted luminal membranes and the posterior third having a highly convoluted basal surface. The lumen of the middle third of the hindgut has a dense population of resident bacteria. Regenerative cells are scattered throughout the larval midgut epithelium. These presumably represent stem cells for the adult midgut, while a ring of cells, marked by a discontinuity in nuclear size at the midgut-hindgut interface, presumably represents stem cells for the adult hindgut.  相似文献   

9.
The midgut epithelium of Gerris najas (Heteroptera : Gerridae) consists of a single cell type in different differentiating and functioning states. Cells elongate from nests of regenerative cells, forming together with their differentiating neighbours an interepithelial cavity, which contains coat material of membrane-like structure, and aggregations of cubic crystals visible only at this stage. Having reached a fold, the contents of the cavity are discharged into the lumen, and the young cells join the columnar cells. Exocytosis of coat material continues, while the cells gradually change to typical digestive columnar cells. The membrane-like material spreads from the folds into the lumen in whorls without forming a continuous cover of the luminal surface. Therefore, a peritrophic membrane does not exist in Gerris.  相似文献   

10.
Arab A  Caetano FH 《Cytobios》2001,105(408):45-53
Solenopsis saevissima has a midgut composed of columnar, regenerative, and goblet cells. The midgut epithelium was covered by a basal lamina. Outside the basal lamina, layers of inner oblique, circular, and outer longitudinal muscles were present. Columnar cells showed a basal plasma membrane containing numerous folds, mitochondria, and the nucleus. Rough endoplasmic reticulum, Golgi bodies, membrane bounded vacuoles, and spherocrystals were found in this region. The apical plasma membrane was constituted by microvilli, which were above a region rich in mitochondria. Regenerative cells were found in groups lying by the basal lamina. Goblet cells were associated with an ion-transporting mechanism between the haemolymph and the midgut epithelium. These cells were lying by the midgut lumen and large microvilli were evident, but the cytoplasmic features were similar to the columnar cells.  相似文献   

11.
In the larvae of the silkworm, Bombyx mori, the regeneration of midgut cells infected with a cytoplasmic polyhedrosis virus (CPV), a flacherie virus (FV), and a small DNA virus (SDV) was studied. Large numbers of newly developed cells appeared in the CPV-infected part of the midgut epithelium just before larval molt, and along with their development, the CPV-infected old columnar cells were discharged into the midgut lumen during the molt. On the other hand, in the uninfected portion of the midgut only a few cells developed, and no columnar cells were discharged. Similarly, the marked replacement of midgut epithelial cells during larval molt was also observed in larvae infected with CPV + FV. In the larvae infected with CPV + SDV, the columnar cells lost their regenerative ability, and because of the exfoliation of infected columnar cells, the midgut epithelium consisted mainly of uninfected goblet cells at a late stage of infection. The degree of epithelial regeneration varied with the silkworm strain and the dosage of the virus.  相似文献   

12.
The midgut of Apis mellifera is remodeled during metamorphosis. The epithelium and, to a lesser extent, the muscular sheath degenerate between the end of the last larval instar and the onset of pupation (prepupa). The larval epithelium is shed to the midgut lumen and digested, while a new epithelium is reconstructed from larval regenerative cells. During pupation, some reorganization still occurs, mainly in brown-eyed pupae. In pharate adult, the midgut wall shows the characteristics of adult, although some cells have pycnotic nuclei. The localization of alkaline and acid phosphatases showed that these enzymes were not involved in the reabsorption of the midgut wall.  相似文献   

13.
The inner cell mass of the blastocyst has differentiated into epiblast and hypoblast (primitive endoderm) prior to implantation. Since endoderm cells extend beyond the epiblast, it can be considered that both parietal and visceral endoderm are present. At implantation, epiblast cells begin to show marked evidence of polarity. They form a spherical aggregate with their basal ends toward the basal lamina and apical ends toward the interior. The potential for an internal space is formed by this change in polarity of the cells. No cytological evidence of separation of those cells that will form amniotic epithelium from the rest of the epiblast is seen until a cavity begins to form. The amniotic epithelium is originally contiguous with overlying cytotrophoblast, and a diverticulum remains in this position during early development. Epiblast forms a pseudostratified columnar epithelium, but dividing cells are situated toward the amniotic cavity rather than basally. The first evidence of a trilaminar disc occurs when a strand of cells contiguous with epiblast is found extending toward visceral endoderm. These presumptive mesoderm cells are undifferentiated, whereas extraembryonic mesoderm cells are already a distinct population forming extracellular materials. After implantation, visceral endoderm cells proliferate forming an irregular layer one to three cells thick. Visceral endoderm cells have smooth apical surfaces, but very irregular basal surfaces, and no basal lamina. At the margins of the disc, visceral endoderm is continuous with parietal endoderm and reflects back over the apices of the marginal visceral endoderm cells. This sacculation by visceral endoderm cells precedes pinching off of the secondary yolk sac from the remaining primary yolk sac.  相似文献   

14.
The midgut epithelia of the millipedes Polyxenus lagurus, Archispirostreptus gigas and Julus scandinavius were analyzed under light and transmission electron microscopies. In order to detect the proliferation of regenerative cells, labeling with BrdU and antibodies against phosphohistone H3 were employed. A tube-shaped midgut of three millipedes examined spreads along the entire length of the middle region of the body. The epithelium is composed of digestive, secretory and regenerative cells. The digestive cells are responsible for the accumulation of metals and the reserve material as well as the synthesis of substances, which are then secreted into the midgut lumen. The secretions are of three types – merocrine, apocrine and microapocrine. The oval or pear-like shaped secretory cells do not come into contact with the midgut lumen and represent the closed type of secretory cells. They possess many electron-dense granules (J. scandinavius) or electron-dense granules and electron-lucent vesicles (A. gigas, P. lagurus), which are accompanied by cisterns of the rough endoplasmic reticulum. The regenerative cells are distributed individually among the basal regions of the digestive cells. The proliferation and differentiation of regenerative cells into the digestive cells occurred in J. scandinavius and A. gigas, while these processes were not observed in P. lagurus. As a result of the mitotic division of regenerative cells, one of the newly formed cells fulfills the role of a regenerative cell, while the second one differentiates into a digestive cell. We concluded that regenerative cells play the role of unipotent midgut stem cells.  相似文献   

15.
Apoptotic and necrotic changes in the midgut epithelium cells of Allacma fusca (Collembola, Symphypleona) are described at the ultrastructural level. The morphological sign indicating the beginning of the apoptotic process in these cells is their shrinkage and the transformation of their mitochondria. The nucleus assumes a lobular shape and finally undergoes fragmentation. The intercellular junctions between an apoptotic cell and adjacent epithelial cells gradually disappear. Apoptotic cells are discharged into the midgut lumen just beneath the peritrophic membrane, where they are initially distributed singly but ultimately form a single layer. No phagocytosis was observed, so no apoptotic bodies are formed. Only young midgut epithelium shows apoptosis; as cells age, necrosis accompanies apoptosis, and necrosis finally completely replaces apoptosis.  相似文献   

16.
Lysozyme in the midgut of Manduca sexta during metamorphosis.   总被引:1,自引:0,他引:1  
Low levels of lysozyme were found in the midgut epithelium of the tobacco hornworm, Manduca sexta, during the early part of the fifth larval stadium. This was observed in control insects as well as in bacterially challenged insects. No lysozyme was detected in the gut contents of either group of insects which were actively eating or in the early stages of metamorphosis. However, high levels of lysozyme activity were detected in homogenates of midgut tissue collected from insects later in the stadium. Immunocytochemical studies demonstrated that lysozyme accumulates in large apical vacuoles in regenerative cells of the midgut during the larval-pupal molt. These cells, initially scattered basally throughout the larval midgut epithelium, multiply and form a continuous cell layer underneath the larval midgut cells. At the larval/pupal ecdysis the larval midgut epithelium is sloughed off and the regenerative cells, now forming the single cell layer of the midgut, release the contents of their vacuoles into the midgut lumen. This release results in high lysozyme activity in the lumen of the pupal midgut and is thought to confer protection from bacterial infection. This is the first indication that the lysozyme gene may be developmentally regulated in a specific tissue in the absence of a bacterial infection.  相似文献   

17.
The embryonic development of Melasoma saliceti takes eight days at room temperature. At the beginning of the 5th day the endoderm cells have already formed a unilayered epithelium of the midgut primordium. The midgut epithelium is formed by flat cells that are not connected by specialized intercellular junctions. Large vesicles can be seen in dilated intercellular spaces of the epithelium. Cytoplasmic projections, similar to microvilli, appear in the vesicles. During the 5th day ofdevelopment, the vesicles grow and become enclosed by the intercellular junctions of a zonula adherens type. During the 6th day of development the cell junctions surrounding the vesicles become transformed into a septate type. On the 8th day of development the vesicles come close to the apical sides of the midgut cells and open towards the yolk. At the same time the microvilli spread over the apical surface of the midgut primordium to form the regular brushborder of the larval midgut. In the species studied the vesicles appear to "prefabricate" the apical surfaces of the future midgut epithelium.  相似文献   

18.
The epithelium of anterior midgut of adult Cenocorixa bifida was examined with light and electron microscopy. The folded epithelium is composed of tall columnar cells extending to the lumen, differentiating dark and light cells with interdigitating apices and regenerative basal cells in the nidi surrounded by villiform ridges that penetrate deeply into the epithelium. The columnar cells display microvilli at their luminal surface. Microvilli lined intercellular spaces and basal plasma membrane infoldings are associated with mitochondria. These ultrastructural features suggest their role in absorption of electrolytes and nutrients from the midgut lumen. The columnar cells contain large oval nuclei with prominent nucleoli. Their cytoplasm is rich in rough endoplasmic reticulum, Golgi complexes and electron-dense secretory granules indicating that they are also engaged in synthesis of digestive enzymes. The presence of secretory granules in close proximity of the apical plasma membrane suggests the release of secretion is by exocytosis. The presence of degenerating cells containing secretory granules at the luminal surface and the occurance of empty vesicles and cell fragments in the lumen are consistent with the holocrine secretion of digestive enzymes. Apical extrusions of columnar cells filled with fine granular material are most likely formed in response to the lack of food in the midgut. The presence of laminated concretions in the cytoplasm is indicative of storageexcretion of surplus minerals. The peritrophic membrane is absent from the midgut of C. bifida.  相似文献   

19.
The architectural ground plan of beetle and other insect midguts is represented by a monolayer of epithelial cells arranged in a cylindrical configuration. Proliferation and differentiation of regenerative cells maintain the integrity of this monolayer in the face of continual losses of individual cells through cytoplasmic budding and/or expulsion of entire epithelial cells. Peritrophic membranes have conventionally been considered universal features of insect midguts that function to protect vulnerable microvillar surfaces of the midgut epithelium from abrasion by ingested food; however, peritrophic membranes were found in only a small fraction of the adult beetle species examined in this study. In adult beetles, midgut epithelial cells are continually replaced by cells recruited from populations of mitotic regenerative cells that are interspersed among the differentiated epithelial monolayer. To remain contiguous with the other cells in the midgut monolayer, some of these proliferating populations have adopted evaginated configurations of cells that extend for varying distances from the basal surface of the monolayer. These configurations are referred to as regenerative crypts or pouches and consist of progenitor cells and stem cells. The presence, the relative densities, and the relative lengths of these regenerative pouches vary considerably among families of beetles. Placement of longitudinal muscles of the midgut relative to the proximodistal axes of these regenerative pouches also varies among species of beetles. The presence, the size, and the density of regenerative cell populations are related to 1) feeding habits of adult beetles, 2) presence of peritrophic membranes, and 3) expulsion of entire midgut epithelial cells or fragments of these epithelial cells into midgut lumens. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
In two archaeognathans, Lepismachilis notata and Machilis hrabei, the midgut epithelium and processes of its regeneration and degeneration have been described at the ultrastructural level. In both analysed species, the midgut epithelium is composed of epithelial and regenerative cells (regenerative nests). The epithelial cells show distinct regionalization in organelles distribution with the basal, perinuclear, and apical regions being distinguished. Degeneration of epithelial cells proceeds in a necrotic way (continuous degeneration) during the entire life of adult specimens, but just before each moult degeneration intensifies. Apoptosis has been observed. Regenerative cells fulfil the role of midgut stem cells. Some of them proliferate, while the others differentiate into epithelial cells. We compared the organisation of the midgut epithelium of M. hrabei and L. notata with zygentoman species, which have just been described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号