首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
12-O-Tetradecanoylphorbol-13-acetate (TPA) caused strong suppression of gap junctional intercellular communication, altered phosphorylation status of the gap junction protein, connexin43, and disappearance of immunorecognizible connexin43-containing gap junction plaques in V79 fibroblasts. When TPA was removed, all parameters normalized during a 3- to 4-h period. The normalizations were independent of protein synthesis, suggesting the possible involvement of phosphatases. None of the phosphatase inhibitors okadaic acid, calyculin A, cyclosporin A, or FK506 affected intercellular communication or connexin43 phosphorylation status on their own. In sequential exposures to TPA and phosphatase inhibitors, only the protein-phosphatase 2B (PP2B) inhibitors cyclosporin A and FK506 delayed the recovery of the studied parameters. Rapamycin binds to the same set of proteins as does FK506, but without inhibiting PP2B. Rapamycin did not affect the recovery of intercellular communication, but it delayed the normalization of connexin43 band pattern and immunorecognition of gap junction plaques. Dephosphorylation of immunoprecipitated connexin43 was studied using PP1, 2A, 2B, and 2C. PP2A was the most efficient (by 100-fold on a molar basis). Connexin43 immunoprecipitated from TPA-exposed cells was a poor substrate for PP1, 2B, and 2C. Thus, PP2B appeared to play a role in normalization of intercellular communication, but not necessarily in direct dephosphorylation of connexin43. Peptidyl-prolyl isomerase activity of cyclosporin/FK506/rapamycin-binding proteins may promote the dephosphorylation of connexin43 in cells.  相似文献   

2.
《The Journal of cell biology》1990,111(5):2077-2088
Connexin43 is a member of the highly homologous connexin family of gap junction proteins. We have studied how connexin monomers are assembled into functional gap junction plaques by examining the biosynthesis of connexin43 in cell types that differ greatly in their ability to form functional gap junctions. Using a combination of metabolic radiolabeling and immunoprecipitation, we have shown that connexin43 is synthesized in gap junctional communication-competent cells as a 42-kD protein that is efficiently converted to a approximately 46-kD species (connexin43-P2) by the posttranslational addition of phosphate. Surprisingly, certain cell lines severely deficient in gap junctional communication and known cell-cell adhesion molecules (S180 and L929 cells) also expressed 42-kD connexin43. Connexin43 in these communication-deficient cell lines was not, however, phosphorylated to the P2 form. Conversion of S180 cells to a communication-competent phenotype by transfection with a cDNA encoding the cell-cell adhesion molecule L-CAM induced phosphorylation of connexin43 to the P2 form; conversely, blocking junctional communication in ordinarily communication-competent cells inhibited connexin43-P2 formation. Immunohistochemical localization studies indicated that only communication-competent cells accumulated connexin43 in visible gap junction plaques. Together, these results establish a strong correlation between the ability of cells to process connexin43 to the P2 form and to produce functional gap junctions. Connexin43 phosphorylation may therefore play a functional role in gap junction assembly and/or activity.  相似文献   

3.
Intercellular communication may be modulated by the rather rapid turnover and degradation of gap junction proteins, since many connexins have half-lives of 1–3 h. While several morphological studies have suggested that gap junction degradation occurs after endocytosis, our recent biochemical studies have demonstrated involvement of the ubiquitin–proteasome pathway in proteolysis of the connexin43 polypeptide. The present study was designed to reconcile these observations by examining the degradation of connexin43-containing gap junctions in rat heart-derived BWEM cells. After treatment of BWEM cells with Brefeldin A to prevent transport of newly synthesized connexin43 polypeptides to the plasma membrane, quantitative confocal microscopy showed the disappearance of immunoreactive connexin43 from the cell surface with a half-life of 1 h. This loss of connexin43 immunoreactivity was inhibited by cotreatment with proteasomal inhibitors (ALLN, MG132, or lactacystin) or lysosomal inhibitors (leupeptin or E-64). Similar results were seen when connexin43 export was blocked with monensin. After treatment of BWEM cells with either proteasomal or lysosomal inhibitors alone, immunoblots showed accumulation of connexin43 in both whole cell lysates and in a 1% Triton X-100-insoluble fraction. Immunofluorescence studies showed that connexin43 accumulated at the cell surface in lactacystin-treated cells, but in vesicles in BWEM cells treated with lysosomal inhibitors. These results implicate both the proteasome and the lysosome in the degradation of connexin43-containing gap junctions.  相似文献   

4.
To study the gap junction protein connexin37 (Cx37), we stably transfected cell lines with constructs of human Cx37 containing the epitope tag FLAG (DYKDDDDK). A Cx37 construct containing the FLAG moiety at the carboxyl terminus (Cx37F) was expressed in BWEM cells, and did not substantially alter the levels of endogenous Cx43 in these cells. Immunostaining showed that Cx37F colocalized with Cx43 at cell–cell contacts. Pulse-chase metabolic labeling and immunoprecipitation with anti-FLAG antibodies indicated that Cx37F was synthesized as a protein that ran at 35.9 ± 0.9 kDa on reducing SDS–PAGE but chased into a slower migrating band at 38.0 ± 1.0 kDa. This shift in mobility was due to phosphorylation on serine residues, based on [32P]-metabolic labeling, immunoprecipitation, and phosphoamino acid analyses. The transition to the phosphoCx37F correlated with a loss of solubility in 1% Triton X-100. Based on the [35S]-methionine pulse-chase experiments, the half-life of the labeled Cx37F was approximately 3 h, which is within the range reported for other connexins. Analysis of dye injection experiments indicated that dye transfer was reduced in Cx37-transfected cells in comparison to parental BWEM cells, suggesting that formation of heteromeric Cx37–Cx43 channels reduced the molecular permeability of communication between these cells. Moreover, the similarities of previously demonstrated kinetic details and modification of Cx43 to our new data regarding Cx37 provide evidence for a commonality in processing and assembly steps of these two connexins.  相似文献   

5.
Antibodies to the gap junction protein connexin45 (Cx45) were obtained by immunizing rabbits with fusion protein consisting of glutathione S-transferase and 138 carboxy-terminal amino acids of mouse Cx45. As shown by immunoblotting and immunofluorescence, the affinity-purified antibodies recognized Cx45 protein in transfected human HeLa cells as well as in the kidney-derived human and hamster cell lines 293 and BHK21, respectively. In Cx45-transfected HeLa cells, this protein is phosphorylated as demonstrated by immunoprecipitation after metabolic labeling. The phosphate label could be removed by treatment with alkaline phosphatase. A weak phosphorylation of Cx45 protein was also detected in the cell lines 293 and BHK21. Treatment with dibutyryl cyclic adenosine or guanosine monophosphate (cAMP, cGMP) did not alter the level of Cx45 phosphorylation, in either Cx45 transfectants or in 293 or BHK21 cells. The addition of the tumor-promoting agent phorbol 12-myristate 13-acetate (TPA) led to an increased 32P phosphate incorporation into the Cx45 protein in transfected cells.The Cx45 protein was found in homogenates of embryonic brain, kidney, and skin, as well as of adult lung. In kidney of four-day-old mice, Cx45 was detected in glomeruli and distal tubules, whereas connexin32 and –26 were coexpressed in proximal tubules. No connexin43 protein was detected in renal tubules and glomeruli at this stage of development. Our results suggest that cells in proximal and distal tubules are interconnected by gap junction channels made of different connexin proteins. The Cx45 antibodies characterized in this paper should be useful for investigations of Cx45 in renal gap junctional communication.  相似文献   

6.
Phorbol esters (e.g., TPA) activate protein kinase C (PKC), increase connexin43 (Cx43) phosphorylation, and decrease cell-cell communication via gap junctions in many cell types. We asked whether PKC directly phosphorylates and regulates Cx43. Rat epithelial T51B cells metabolically labeled with (32)P(i) yielded two-dimensional phosphotryptic maps of Cx43 with several phosphopeptides that increased in intensity upon TPA treatment. One of these peptides comigrated with the major phosphopeptide observed after PKC phosphorylation of immunoaffinity-purified Cx43. Purification of this comigrating peptide and subsequent sequencing indicated that the phosphorylated serine was residue 368. To pursue the functional importance of phosphorylation at this site, fibroblasts from Cx43(-/-) mice were transfected with either wild-type (Cx43wt) or mutant Cx43 (Cx43-S368A). Intercellular dye transfer studies revealed different responses to TPA and were followed by single channel analyses. TPA stimulation of T51B cells or Cx43wt-transfected fibroblasts caused a large increase in the relative frequency of approximately 50-pS channel events and a concomitant loss of approximately 100-pS channel events. This change to approximately 50-pS events was absent when cells transfected with Cx43-S368A were treated with TPA. These data strongly suggest that PKC directly phosphorylates Cx43 on S368 in vivo, which results in a change in single channel behavior that contributes to a decrease in intercellular communication.  相似文献   

7.
Cell-to-cell communication is achieved by passage of small molecules through gap junction membrane channels. The expression of the transforming gene from Rous sarcoma virus, v-src, induces a rapid and dramatic reduction in cell-to-cell communication in cultured cells. To determine whether connexin43, a major gap junction protein expressed in fibroblasts, is a target for the v-src protein tyrosine kinase activity, we examined the phosphorylation state of connexin43 in cells expressing variants of src. Using an antipeptide serum that recognizes connexin43, we demonstrate that this protein is phosphorylated on serine and tyrosine residues in avian and mammalian cells expressing activated src proteins. Connexin43 from control cells and cells expressing nonactivated variants of the src protein was phosphorylated solely on serine residues. In lysates from v-src-transformed cells, all phosphorylated connexin43 molecules were cleared from the lysate by sequential immunoprecipitations using the phosphotyrosine antibodies, suggesting that each molecule of phosphorylated connexin43 contains both phosphoserine and phosphotyrosine. We have also examined junctional permeability in cells expressing src variants and find that loss of cell-to-cell communication correlates with tyrosine phosphorylation of connexin43.  相似文献   

8.
Previous studies showed that the pesticide lindane (gamma-hexachlorocyclohexane) inhibits gap junction intercellular communication in rat myometrial cells. The present study tested the hypothesis that lindane and the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) inhibit gap junction communication in rat myometrial and liver WBr-F344 cells by the common mechanism of increasing phosphorylation of the gap junction protein connexin43. We evaluated changes of connexin43 phosphorylation using Western blot of standard SDS-PAGE gels and cell immunostaining, and we monitored gap junction communication using microinjection and transfer of Lucifer yellow dye. Exposure of rat myometrial cells to lindane or TPA nearly abolished dye transfer but did not alter the electrophoretic mobility of connexin43, and neither lindane nor TPA increased phosphorylation of connexin43 as assessed by immunoblot with anti-phospho-connexin43 (S368) antibody. However, TPA increased punctate immunofluorescence staining of phospho-connexin43 (S368) in myometrial cells whereas lindane had no such effect. In WBr-F344 cells, lindane and TPA inhibited dye transfer. Lindane increased immunostaining for phospho-connexin43 (S368) in WBr-F344 cells without altering the abundance, electrophoretic mobility or phosphorylation of connexin43 as detected in immunoblots. TPA intensified a slower migrating connexin43 band and increased phospho-connexin43 (S368) in immunoblots, and intensified phospho-connexin43 immunostaining at WBr-F344 cell interfaces and nuclear regions. These results show that phosphorylation of connexin43 at serine 368 occurred in cell and toxicant specific manners and was independent of changes in electrophoretic mobility in standard SDS-PAGE gels. Moreover, lindane inhibited gap junction communication in myometrial cells by a mechanism that was not be explained by changes in phosphorylation of connexin43.  相似文献   

9.
Gap junctions, composed of proteins from the connexin family, allow for intercellular communication between cells in tissues and are important in development, tissue/cellular homeostasis, and carcinogenesis. Genome databases indicate that there are at least 20 connexins in the mouse and human. Connexin phosphorylation has been implicated in connexin assembly into gap junctions, gap junction turnover, and cell signaling events that occur in response to tumor promoters and oncogenes. Connexin43 (Cx43), the most widely expressed and abundant gap junction protein, can be phosphorylated at several different serine and tyrosine residues. Here, we focus on the dynamic regulation of Cx43 phosphorylation in tissue and how these regulatory events are affected during development, wound healing, and carcinogenesis. The activation of several kinases, including protein kinase A, protein kinase C, p34cdc2/cyclin B kinase, casein kinase 1, mitogen-activated protein kinase, and pp60src kinase, can lead to the phosphorylation of different residues in the C-terminal region of Cx43. The use of antibodies specific for phosphorylation at defined residues has allowed the examination of specific phosphorylation events both in tissue culture and in vivo. These new antibody tools and those under development will allow us to correlate specific phosphorylation events with changes in connexin function.  相似文献   

10.
Gap junction channels are made of a family proteins called connexins. The best-studied type of connexin, Connexin43 (Cx43), is phosphorylated at several sites in its C-terminus. The tumor-promoting phorbol ester TPA strongly inhibits Cx43 gap junction channels. In this study we have investigated mechanisms involved in TPA-induced phosphorylation of Cx43 and inhibition of gap junction channels. The data show that TPA-induced inhibition of gap junction intercellular communication (GJIC) is dependent on both PKC and the MAP kinase pathway. The data suggest that PKC-induced activation of MAP kinase partly involves Src-independent trans-activation of the EGF receptor, and that TPA-induced shift in SDS-PAGE gel mobility of Cx43 is caused by MAP kinase phosphorylation, whereas phosphorylation of S368 by PKC does not alter gel migration of Cx43. We also show that TPA, in addition to phosphorylation of S368, also induces phosphorylation of S255 and S262, in a MAP kinase-dependent manner. The data add to our understanding of the molecular mechanisms involved in the interplay between signaling pathways in regulation of GJIC.  相似文献   

11.
12.
Cell-cell interaction via the gap junction regulates cell growth and differentiation, leading to formation of organs of appropriate size and quality. To determine the role of connexin43 in salivary gland development, we analyzed its expression in developing submandibular glands (SMGs). Connexin43 (Cx43) was found to be expressed in salivary gland epithelium. In ex vivo organ cultures of SMGs, addition of the gap junctional inhibitors 18α-glycyrrhetinic acid (18α-GA) and oleamide inhibited SMG branching morphogenesis, suggesting that gap junctional communication contributes to salivary gland development. In Cx43−/− salivary glands, submandibular and sublingual gland size was reduced as compared with those from heterozygotes. The expression of Pdgfa, Pdgfb, Fgf7, and Fgf10, which induced branching of SMGs in Cx43−/− samples, were not changed as compared with those from heterozygotes. Furthermore, the blocking peptide for the hemichannel and gap junction channel showed inhibition of terminal bud branching. FGF10 induced branching morphogenesis, while it did not rescue the Cx43−/− phenotype, thus Cx43 may regulate FGF10 signaling during salivary gland development. FGF10 is expressed in salivary gland mesenchyme and regulates epithelial proliferation, and was shown to induce ERK1/2 phosphorylation in salivary epithelial cells, while ERK1/2 phosphorylation in HSY cells was dramatically inhibited by 18α-GA, a Cx43 peptide or siRNA. On the other hand, PDGF-AA and PDGF-BB separately induced ERK1/2 phosphorylation in primary cultured salivary mesenchymal cells regardless of the presence of 18α-GA. Together, our results suggest that Cx43 regulates FGF10-induced ERK1/2 phosphorylation in salivary epithelium but not in mesenchyme during the process of SMG branching morphogenesis.  相似文献   

13.
Gap junctions and gap junction communication have long been recognized to play roles in tissue organization and remodeling through both cell autonomous and intercellular means. We hypothesized that these processes become dysregulated during pancreas cancer progression. Molecular and histological characterization of the gap junction protein, connexin43, during progression of pancreatic ductal adenocarcinoma could yield insight into how these events may contribute to or be modulated during carcinogenesis. In a mouse model of pancreatic ductal adenocarcinoma generated through targeted endogenous expression of Kras(G12D) in the murine pancreas, we examined the evolving expression and localization of connexin43. Overall, connexin43 expression increased over time, and its localization became more widespread. At early stages, connexin43 is found almost exclusively in association with the basolateral membrane of duct cells found in invasive lesions. Connexin43 became increasingly associated with the surrounding stroma over time. Connexin43 phosphorylation was also altered during tumorigenesis, as assessed by migrational changes of the protein in immunoblots. These data suggest a potential role for gap junctions and connexin43 in mediating interactions between and amongst the stromal and epithelial cells in pancreatic ductal adenocarcinoma.  相似文献   

14.
Cellular networks of pacemaker activity in intestinal movements are still a matter of debate. Because gap-junctional intercellular communication in the intestinal wall may provide important clues for understanding regulatory mechanisms of intestinal movements, we have attempted to clarify the distribution patterns of three types of gap junction proteins. Using antibodies for connexin40, connexin43, connexin45, smooth muscle actin, and vimentin, immunocytochemical observations were made with the confocal laser scanning microscope on cryosections of fresh-frozen small intestine and colon of the dog and rat. Connexin 45 was localized along the deep muscular plexus of the small intestine in both dog and rat. Double labeling studies revealed that connexin45 overlapped with vimentin –, but not actin-positive areas, indicating the fibroblast-like nature of the cells, rather than their being smooth muscle-like. Connexin43 immunoreactivity appeared along the smooth muscle cell surface in the outer circular layer of the small intestine of both animals. Connexin 40 immunoreactivity was not observed in the muscle layer other than in the wall of large blood vessels. It is suggested that connexin45-expressing cells along the deep muscular plexus of dog and rat small intestine are likely to act as a constituent of a pacemaker system, which may include a conductive system, by forming a cellular network operating via specific types of gap junctions.  相似文献   

15.
Gap junctions, composed of proteins from the connexin family, allow for intercellular communication between cells in essentially all tissues. There are 21 connexin genes in the human genome and different tissues express different connexin genes. Most connexins are known to be phosphoproteins. Phosphorylation can regulate connexin assembly into gap junctions, gap junction turnover and channel gating. Given the importance of gap junctions in development, proliferation and carcinogenesis, regulation of gap junction phosphorylation in response to wounding, hypoxia and other tissue insults is proving to be critical for cellular response and return to homeostasis. Connexin43 (Cx43) is the most widely and highly expressed gap junction protein, both in cell culture models and in humans, thus more research has been done on it and more reagents to it are available. In particular, antibodies that can report Cx43 phosphorylation status have been created allowing temporal examination of specific phosphorylation events in vivo. This review is focused on the use of these antibodies in tissue in situ, predominantly looking at Cx43 phosphorylation in brain, heart, endothelium and epithelium with reference to other connexins where data is available. These data allow us to begin to correlate specific phosphorylation events with changes in cell and tissue function. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.  相似文献   

16.
We previously demonstrated that the gap junction protein connexin43 is translated as a 42-kD protein (connexin43-NP) that is efficiently phosphorylated to a 46,000-Mr species (connexin43-P2) in gap junctional communication-competent, but not in communication-deficient, cells. In this study, we used a combination of metabolic radiolabeling and immunoprecipitation to investigate the assembly of connexin43 into gap junctions and the relationship of this event to phosphorylation of connexin43. Examination of the detergent solubility of connexin43 in communication-competent NRK cells revealed that processing of connexin43 to the P2 form was accompanied by acquisition of resistance to solubilization in 1% Triton X-100. Immunohistochemical localization of connexin43 in Triton-extracted NRK cells demonstrated that connexin43-P2 (Triton-insoluble) was concentrated in gap junctional plaques, whereas connexin43-NP (Triton-soluble) was predominantly intracellular. Using either a 20 degrees C intracellular transport block or cell-surface protein biotinylation, we determined that connexin43 was transported to the plasma membrane in the Triton-soluble connexin43-NP form. Cell-surface biotinylated connexin43-NP was processed to Triton-insoluble connexin43-P2 at 37 degrees C. Connexin43-NP was also transported to the plasma membrane in communication defective, gap junction-deficient S180 and L929 cells but was not processed to Triton-insoluble connexin43-P2. Taken together, these results demonstrate that gap junction assembly is regulated after arrival of connexin43 at the plasma membrane and is temporally associated with acquisition of insolubility in Triton X-100 and phosphorylation to the connexin43-P2 form.  相似文献   

17.
Antisera to the human erythrocyte Glc transporter immunoblotted a polypeptide of Mr 55,000 in membranes from human hepatocarcinoma cells, Hep G2, human fibroblasts, W138, and murine preadipocytes, 3T3-L1. This antisera immunoprecipitated the erythrocyte protein which had been photoaffinity labeled with [3H]cytochalasin B, immunoblotted its tryptic fragment of Mr 19,000, and immunoblotted the deglycosylated protein as a doublet of Mr 46,000 and 38,000. This doublet reduced to a single polypeptide of Mr 38,000 after boiling. When Hep G2, W138, and 3T3-L1 cells were metabolically labeled with L-[35S]methionine for 6 h, a broad band of Mr 55,000 was immunoprecipitated from membrane extracts. In pulse-chase experiments, two bands of Mr 49,000 and 42,000 were identified as putative precursors of the mature transporter. The t1/2 for mature Glc transporter was 90 min for Hep G2 cells that had been starved for methionine (2 h) and pulsed for 15 min with L-[35S]methionine. Polypeptides of Mr 46,000 and 38,000 were immunoprecipitated from Hep G2 cells that had been metabolically labeled with L-[35S]methionine in the presence of tunicamycin. This doublet reduced to the single polypeptide of Mr 38,000 after boiling. In the absence of tunicamycin, but not in its presence, mature polypeptide of Mr 55,000 was immunoprecipitated from Hep G2 cells metabolically labeled with D-[3H]GlcN. A polypeptide of Mr 38,000 was observed in boiled immune complexes from the in vitro translation products of Hep G2, W138, and 3T3-L1 cell RNA. Dog pancreatic microsomes cotranslationally, but not posttranslationally, converted this to a polypeptide of Mr 35,000. A model for Glc transporter biogenesis is proposed in which the primary translation product of Mr 38,000 is converted by glycosylations to a polypeptide of Mr 42,000. The latter is then processed via heterogeneous complex N-linked glycosylations to form the mature Glc transporter, Mr 55,000.  相似文献   

18.
Summary Lens epithelial cells are physiologically coupled to each other and to the lens fibers by an extensive network of intercellular gap junctions. In the rat, the epithelial-epithelial junctions appear to contain connexin43, a member of the connexin family of gap junction proteins. Limitations on the use of rodent lenses for the study of gap junction formation and regulation led us to examine the expression of connexin43 in embryonic chick lenses. We report here that chick connexin43 is remarkably similar to its rat counterpart in primary amino acid sequence and in several key structural features as deduced by molecular cDNA cloning. The cross-reactivity of an anti-rat connexin43 serum with chick connexin43 permitted definitive immunocytochemical localization of chick connexin43 to lens epithelial gap junctional plaques and examination of the biosynthesis of connexin43 by metabolic radiolabeling and immunoprecipitation. We show that chick lens cells synthesize connexin43 as a single, 42-kD species that is efficiently posttranslationally converted to a 45-kD form. Metabolic labeling of connexin43 with32P-orthophosphate combined with dephosphorylation experiments reveals that this shift in apparent molecular weight is due solely to phosphorylation. These results indicate that embryonic chick lens is an appropriate system for the study of connexin43 biosynthesis and demonstrate for the first time that connexin43 is a phosphoprotein.  相似文献   

19.
To examine the role of cell–cell communication via gap junctions in controlling proliferation and differentiation we transfected the malignant trophoblast cell line Jeg-3, which exhibits extremely low cell–cell communication mediated by endogenously expressed connexin40, with connexin26, connexin40, and connexin43, respectively.In vitrogrowth of all cell clones transfected with connexin genes was significantly reduced compared to controls. This effect corresponded to a significant increase in total junctional conductance of all clones. Single-channel conductances for channels formed by the transfected connexins were in the range of the values published previously. Though total junctional conductance varied highly among clones and even within one clone, differentiation of the cells indicated by β-hCG secretion was most prominent in the clones that revealed the largest amount of well-coupled cell pairs. Connexin26 channels enable cells of one clone to reduce drastically growth rate and produce significantly higher secretion of β-hCG. Connexin43 had only moderate effects on the differentiation properties of Jeg-3 cells. These findings suggest that restoration of cell–cell communication plays a role in growth reduction and in differentiation of tumor cells and that different channel proteins might have different effects.  相似文献   

20.
Hepatic blood vessels consist of the hepatic artery and three types of venous channels (the portal veins, the sinusoids, and the hepatic veins). This study was undertaken to analyze, by immunohistochemistry, connexin expression throughout the vascular development of the fetal mouse liver with special attention being given to portal vein development. In the adult liver, connexin37 and connexin40 were expressed in the endothelium of the portal vein and hepatic artery, but not in those of the hepatic vein and sinusoids. Connexin43 was expressed in mesothelial cells and smooth muscle cells of the portal veins. The preferential expression of connexin37 and connexin40 in portal veins was seen throughout liver development, including its primordium formation stage (10.5-day or 11.5-day stage), although connexin37 expression was transiently seen in free nonparenchymal cells in fetal stages. The differentiation of each blood vessel in the hepatic vascular system may occur in early developmental stages, soon after hepatic primordium formation. This work was supported by Special Coordination Funds for Promoting Science and Technology from the Ministry of Education, Culture, Sports, Science and Technology, Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号