首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Highly organized interphase cortical microtubule (MT) arrays are essential for anisotropic growth of plant cells, yet little is known about the molecular mechanisms that establish and maintain the order of these arrays. The Arabidopsis thaliana spiral1 (spr1) mutant shows right-handed helical growth in roots and etiolated hypocotyls. Characterization of the mutant phenotypes suggested that SPR1 may control anisotropic cell expansion through MT-dependent processes. SPR1 was identified by map-based cloning and found to encode a small protein with unknown function. Proteins homologous to SPR1 occur specifically and ubiquitously in plants. Genetic complementation with green fluorescent protein fusion proteins indicated that the SPR1 protein colocalizes with cortical MTs and that both MT localization and cell expansion control are conferred by the conserved N- and C-terminal regions. Strong SPR1 expression was found in tissues undergoing rapid cell elongation. Plants overexpressing SPR1 showed enhanced resistance to an MT drug and increased hypocotyl elongation. These observations suggest that SPR1 is a plant-specific MT-localized protein required for the maintenance of growth anisotropy in rapidly elongating cells.  相似文献   

2.
A shared feature among all microtubule (MT)-dependent processes is the requirement for MTs to be organized in arrays of defined geometry. At a fundamental level, this is achieved by precisely controlling the timing and localization of the nucleation events that give rise to new MTs. To this end, MT nucleation is restricted to specific subcellular sites called MT-organizing centres. The primary MT-organizing centre in proliferating animal cells is the centrosome. However, the discovery of MT nucleation capacity of the Golgi apparatus (GA) has substantially changed our understanding of MT network organization in interphase cells. Interestingly, MT nucleation at the Golgi apparently relies on multiprotein complexes, similar to those present at the centrosome, that assemble at the cis-face of the organelle. In this process, AKAP450 plays a central role, acting as a scaffold to recruit other centrosomal proteins important for MT generation. MT arrays derived from either the centrosome or the GA differ in their geometry, probably reflecting their different, yet complementary, functions. Here, I review our current understanding of the molecular mechanisms involved in MT nucleation at the GA and how Golgi- and centrosome-based MT arrays work in concert to ensure the formation of a pericentrosomal polarized continuous Golgi ribbon structure, a critical feature for cell polarity in mammalian cells. In addition, I comment on the important role of the Golgi-nucleated MTs in organizing specialized MT arrays that serve specific functions in terminally differentiated cells.  相似文献   

3.
P. Apostolakos  B. Galatis 《Protoplasma》1985,128(2-3):120-135
Summary The preprophase-prophase initial aperture (IA) cells ofMarchantia paleacea undergo a particular sequence of protoplasmic changes, which reflects the establishment of an unusual premitotic polarization. The marking feature of preprophase-prophase thallus cells is the shape of the nucleus which becomes spindle-shaped. This phenomenon accompanies the organization of an extranuclear microtubule (MT) sheath, nucleated and/or organized by distinct polar MT organizing centres (MTOCs).The interphase MTs disappear after activation of polar MTOCs. In preprophase IA cells incomplete preprophase MT bands (PMBs) are organized. They consist of PMB portions which traverse only small portions of the cell cortex at the level of the future cytokinesis and do not form a complete ring. In the same cells other MT bundles, independent of the incomplete PMBs terminate in the cortical cytoplasm abutting on the lower part of the intercellular spaces (ISs) or the surface cavities (SCs). Almost complete or complete PMBs are organized in IA cells in which the plane of PMB formation coincides with that passing through ISs of the same growth.The observations suggest that in preprophase-prophase IA cells ofMarchantia paleacea cortical MTOCs function in regions distant from each other: One region is the PMB cortical cytoplasm, probably that covering the wall edges, and the other is the one adjacent to the lower part of the wall facing the IS(s) or that underlying the SCs. The competition between the cortical MTOCs as well as between them and the polar ones may be responsible for the organization of incomplete PMBs.  相似文献   

4.
C. J. Hogan 《Protoplasma》1987,138(2-3):126-136
Summary A monoclonal antibody to higher plant tubulin was used to trace microtubule (MT) structures by immunofluorescence throughout mitosis and meiosis in two angiosperms,Lycopersicon esculentum andOrnithogalum virens. Root tip cells showed stage specific MT patterns typical of higher plant cells. These included parallel cortical interphase arrays oriented perpendicular to the long axis of the cell, preprophase band MTs in late interphase through prophase, barrelshaped spindles, and finally phragmoplasts. Pollen mother cell divisions exhibited randomly oriented cortical MT arrays in prophase I, pointed spindles during karyokinesis, and elongate phragmoplasts. A preprophase band was not observed in either meiotic division. MT initiation sites were seen as broad zones associated with the nuclear envelope.  相似文献   

5.
A detailed comparative examination of microtubule (MT) organization in interphase and dividing cells of Uronema sp., Klebsormidium flaccidum, K. subtilissimum, Stichococcus bacillaris and S. chloranthus was made using tubulin immunofluorescence and transmission electron microscopy (TEM). During interphase all the species bear a well-organized cortical MT system, consisting of parallel bundles with different orientations. In Uronema sp. the cortical MT bundles are longitudinally oriented, whereas in the other species they are in transverse orientation to the axis of the cells. Considerable differences in MT organization were also observed during stages of mitosis, mainly preprophase, as well as cytokinesis. In Uronema sp., a particular radial MT assembly is organized during preprophase-early prophase, which was not observed in the other species. In Stichococcus a fine MT ring surrounded the nucleus during preprophase and prophase. An MT ring, together with single cytoplasmic MTs, was also found associated with the developing diaphragm during cytokinesis in Stichococcus. A phycoplast participates in cytokinesis in Uronema sp., but not in the other species. In Uronema sp. the centrosome functions as a microtubule organizing center (MTOC) during mitosis, but not during interphase and cytokinesis. The phylogenetic significance of these differences is discussed in combination with SSU/ITS sequencing and other, existing molecular data.  相似文献   

6.
Using confocal microscopy the organization of tubulin cytoskeleton including endoplasmic and cortical microtubules (CMTs) has been studied in epidermal and cortical cells of the different growth zones of main root of Brassica rapa L. 6-days-old seedlings in control conditions and under clinorotation. It was shown that changes in CMTs orientation occured only in the distal elongation zone (DEZ). In the control, CMT arrays oriented transversely to the root long axis. Under clinorotation appearance of the shorter randomly organized CMTs was observed. Simultaneously, a significant decrease in the cell length in the central elongation zone (CEZ) under clinorotation was detected. It is suggested that the decline of anisotropic growth typical for CEZ cells is connected with CMTs disorientation under clinorotation.  相似文献   

7.
Summary Cortical microtubules (MTs) at indifferent zones in immatureNitella internodes were investigated by injection of fluorescently tagged sheep brain tubulin into living cells and by immunofluorescence on fixed material. Nearly identical MT patterns and numbers were detected with the two techniques, indicating that sheep brain tubulin incorporated into all cortical MTs. MTs were aligned transversely to the long axis of the cell and approximately one MT was present every micrometer of longitudinal cell distance. Treatment of internodes with propionic acid to acidify cytosolic pH caused depolymerization of MTs and an increase in the unpolymerized tubulin pool. Transfer of young, vigorously elongating cells to media inducing premature growth cessation resulted in a slight decrease in microtubule numbers but did not significantly alter microtubule orientation patterns or microtubule lifespans. MTs remained transverse for days following growth cessation before finally assuming a more random alignment characteristic of mature, non-growing internodes. No differences in MT numbers, orientation, or dynamics were detected between acid and alkaline bands in internodes incubated in a band-inducing medium. Thus, properties of cortical MT arrays were not closely coupled to growth status or to regional differences in cellular physiology associated with pH banding.Abbrevations BIM band-inducing medium - CCM Chara culture medium - CF carboxyfluorescein - FRAP fluorescence redistribution after photobleaching - MT microtubule  相似文献   

8.
Mutants at the BOTERO1 locus are affected in anisotropic growth in all non-tip-growing cell types examined. Mutant cells are shorter and broader than those of the wild type. Mutant inflorescence stems show a dramatically reduced bending modulus and maximum stress at yield. Our observations of root epidermis cells show that the cell expansion defect in bot1 is correlated with a defect in the orientation of the cortical microtubules. We found that in cells within the apical portion of the root, which roughly corresponds to the meristem, microtubules were loosely organized and became much more highly aligned in transverse arrays with increasing distance from the tip. Such a transition was not observed in bot1. No defect in microtubule organization was observed in kor-1, another mutant with a radial cell expansion defect. We also found that in wild-type root epidermal cells, cessation of radial expansion precedes the increased alignment of cortical microtubules into transverse arrays. Bot1 roots still show a gravitropic response, which indicates that ordered cortical microtubules are not required for differential growth during gravitropism. Interestingly, the fact that in the mutant, these major changes in microtubule organization cause relatively subtle changes in cell morphology, suggest that other levels of control of growth anisotropy remain to be discovered. Together, these observations suggest that BOT1 is required for organizing cortical microtubules into transverse arrays in interphase cells, and that this organization is required for consolidating, rather than initiating, changes in the direction of cell expansion.  相似文献   

9.
The effects of lead and copper on the arrangement of microtubule (MT) cytoskeleton in root tip cells of Allium sativum L. were investigated. Batch cultures of garlic were carried out under defined conditions in the presence 10−4 M Pb/Cu of various duration treatments. With tubulin immunolabelling and transmission electron microscopy (TEM), we found four different types of MT structures depending on the cell cycle stage: the interphase array, preprophase band, mitotic spindle and phragmoplast were typical for the control cells. Pb/Cu affected the mechanisms controlling the organization of MT cytoskeleton, and induces the following aberrations in interphase and mitotic cells. (1) Pb/Cu induced the formation of atypical MT arrays in the cortical cytoplasm of the interphase cells, consisting of skewed, wavy MT bundles, MT fragments and ring-like tubulin aggregations. (2) Pb/Cu disordered the chromosome movements carried out by the mitotic spindle. The outcome was chromosome aberrations, for example, chromosome bridges and chromosome stickiness, as well as inhibition of cells from entering mitosis. (3) Depending on the time of exposure, MTs disintegrated into shorter fragments or they completely disappeared, indicating MT depolymerization. (4) Different metals had different effects on MT organization. MTs were more sensitive to the pressure of Cu ions than Pb. Moreover, TEM observations showed that the MTs were relatively short and in some places wavy when exposed to 10−4 M Pb/Cu solutions for 1–2 h. In many sections MTs were no longer visible with increasing duration of treatment (>4 h). Based on these results, we suggested that MT cytoskeleton is primarily responsible for Pb/Cu-associated toxicity and tolerance in plants.  相似文献   

10.
Cytoplasmic dynein is known to be involved in the establishment of radial microtubule (MT) arrays. During mitosis, dynein activity is required for tethering of the MTs at the spindle poles. In interphase cells, dynein inhibitors induce loss of radial MT organization; however, the exact role of dynein in the maintenance of MT arrays is unclear. Here, we examined the effect of dynein inhibitors on MT distribution and the centrosome protein composition in cultured fibroblasts. We found that while these inhibitors induced rapid ( t 1/2 ∼ 20 min) loss of radial MT organization, the levels of key centrosomal proteins or the rates of MT nucleation did not change significantly in dynein-inhibited cells, suggesting that the loss of dynein activity does not affect the structural integrity of the centrosome or its capacity to nucleate MTs. Live observations of the centrosomal activity showed that dynein inhibition enhanced the detachment of MTs from the centrosome. We conclude that the primary role of dynein in the maintenance of a radial MT array in interphase cells consists of retention of MTs at the centrosome and hypothesize that dynein has a role in the MT retention, separate from the delivery to the centrosome of MT-anchoring proteins.  相似文献   

11.
Summary Microtubule (MT) arrays in stomatal complexes ofLolium have been studied using cryosectioning and immunofluorescence microscopy. This in situ analysis reveals that the arrangement of MTs in pairs of guard cells (GCs) or subsidiary cells (SCs) within a complex is very similar, indicating that MT deployment is closely coordinated during development. In premitotic guard mother cells (GMCs), MTs of the transverse interphase MT band (IMB) are reorganized into a longitudinal array via a transitory array in which the MTs appear to radiate from the cell edges towards the centre of the walls. Following the longitudinal division of GMCs, cortical MTs are reinstated in the GCs at the edge of the periclinal and ventral walls. The MTs become organized into arrays which radiate across the periclinal walls, initially from along the length of the ventral wall and later only from the pore site. As the GCs elongate, the organization of MTs and the patterns of wall expansion differ on the internal and external periclinal walls. A final reorientation of MTs from transverse to longitudinal is associated with the elongation and constriction of GCs to produce mature complexes. During cytokinesis in the subsidiary mother cells (SMCs), MTs appear around the reforming nucleus in the daughter epidermal cells but appear in the cortex of the SC once division is complete. Our results are thus consistent with the idea that interphase MTs are nucleated in the cell cortex in all cells of the stomatal complex but not in adjacent epidermal cells.Abbreviations GMC guard mother cell - GC guard cell - IMB interphase microtubule band - MT microtubule - PPB preprophase band - SMC subsidiary mother cell - SC subsidiary cell  相似文献   

12.
We conducted kinematic and cytological studies on "between vein" epidermal cells of the gibberellin (GA)-deficient M489 dwarf mutant of barley (Hordeum vulgare L. Himalaya). GAs affect radial and axial components of cell expansion and cortical microtubule orientation. Adaxial cells in particular expand radially after leaving the elongation zone (EZ), probably as part of leaf unrolling. Exogenous gibberellic acid corrects the mutant's short, wide blades, short EZ, and slow elongation rate. Cell production rates increase more on the adaxial than on the abaxial surface. Cells spend equal periods of time elongating in dwarf and tall plants, but relative elemental growth rates start to decline sooner in the dwarf. GA increased the rate at which longitudinal wall area increased because the increased axial growth more than compensated for reduced radial growth. In dwarf leaves, increased radial expansion was detected in basal parts of the EZ before cortical microtubules lost transverse orientation in the distal elongation zone. We conclude that loss of microtubule orientation is not required for low GA levels to reduce growth anisotropy.  相似文献   

13.
Organization of tubulin cytoskeleton in epidermis and cortex cells in different root growth zones in Brassica rapa L. 6-day-old seedlings under clinorotation has been investigated. It was shown that changes in cortical microtubules orientation occur only in the distal elongation zone. In control, cortical microtubule arrays oriented transversely to the root long axis. Whereas under clinorotation an appearance of shorter randomly organized cortical microtubules was observed. Simultaneously, a significant decrease in a cell length in the central elongation zone under clinorotation was revealed. It is suggested that the decline of anisotropic growth, typical for central elongation zone cells, is connected with cortical microtubules disorientation under clinorotation.  相似文献   

14.
Summary Cortical microtubules (MTs) were visualized in root cortex cells ofHyacinthus orientalis L. using immunofluorescence techniques. Cellular MT orientation was determined adjacent to radial longitudinal and transverse walls of root tip, uncontracted, contracting, and fully contracted regions. As seen in longitudinal views, MTs formed parallel, apparently helical arrays which were oriented transversely, axially or obliquely depending upon the region. Transverse sectional views showed that MTs adjacent to transverse cell walls formed a variety of patterns which varied with developmental stage and cell location. Microtubules were oriented in crisscross or parallel arrays. The parallel arrays were oriented either parallel, perpendicular or oblique to the radius of the root. There was an apparent temporal progression in MT reorientation from outer cortical to inner cortical cell layers. A resultant progression of reoriented cell growth could account for root contraction. These findings corroborate earlier electron microscopic observations of changing MT orientation accompanying root contraction, and provide cytological evidence to test mathematical and biophysical models of the mechanics of cell expansion.Abbreviations MT microtubule - MF microfibril - MTSB microtubule stabilizing buffer - PBS phosphate buffered saline  相似文献   

15.
Treatment of interphase apical cells of Sphacelaria rigidula Kützing with 10 μmol L?1 taxol for 4 h induced drastic changes in microtubule (MT) organization. In normal cells these MTs converge on the centrosomes and are nucleated from the pericentriolar area. After treatment, the endoplasmic, perinuclear and centrosome‐associated MT almost disappeared, and a massive assembly of cortical/subcortical, well‐organized MT bundles was observed. The bundles tended to be axially oriented, usually following the cylindrical wall, although other orientations were not excluded. The MTs in the apical part of the cell seemed to reach the cortex of the apical dome, sometimes bending to follow its curvature, whereas those in the basal portion of the cell terminated close to the transverse wall. Mitotic cells were also highly affected. Typical metaphase stages were very rarely found, and typical anaphase arrangements of chromosomes were completely absent. The chromosomes usually appeared to be dispersed singly or in small groups. Different atypical mitotic configurations were observed, depending on the stage of the cell cycle when the treatment started. The position and the orientation of the atypical mitotic spindles was disturbed. The nuclear envelope was completely disintegrated. The separation of the duplicated centrioles, as well as their usual perinuclear position, was also disturbed. Cortical MT bundles similar to those found in interphase cells were not found in the affected mitotic cells. In contrast, numerous MTs, without definite focal points, were found in the pericentriolar areas. Cytokinesis was inhibited by taxol treatment. The perinuclear and centrosome‐associated MTs found in mitotic cells were gradually replaced by a MT system similar to that of interphase cells. When the cytokinetic diaphragm had already been initiated when taxol treatment began, MTs were found on the cytokinetic plane, a phenomenon not observed in normal untreated cells. The results show clearly that: (i) in interphase cells the ability of centrosomes to nucleate MTs is intensely disturbed by taxol; (ii) centrosome dynamics in MT nucleation vary during the cell cycle; and (iii) taxol strongly affects mitosis and cytokinesis. In addition, it seems that the cortical/subcortical cytoplasm of interphase cells assumes the capacity to form numerous MT bundles.  相似文献   

16.
It is still unclear how light and gibberellins are integrated to regulate petal size. Here, we report that light improves both the length and the width of the ray floret petals in G. hybrid, but GA(3) promotes only the petal length. It is also revealed that the control of the petal size by light and GA(3) depends on modulating the cell size, which is governed by the behavior of cortical microtubule.Light and gibberellins are important regulators of plant organ growth. However, little is known about their roles in petal size determination. Here, we report how light and gibberellic acid (GA(3)) signals are integrated to regulate the ray floret (Rf) size in Gerbera hybrida. The inflorescences of G. hybrida at stages 1.5 were cultivated in vitro for 9 d followed by the determination of the Rf petal size. Results demonstrated that the light signal significantly enhanced both the length and the width of Rf petals, but GA(3) promoted only the petal length. Moreover, GA(3) displayed a synergistic positive effect on the length but an antagonistic effect on the width with the light signal. Measurements of the petal cells revealed that the cell size, not the cell number, exhibited a dominant contribution to the petal size in response to light and GA(3) signals. Furthermore, light and GA(3) signals not only induced an obvious reorientation of cortical microtubules (MTs) into transverse arrays but also promoted the recovery of the MT lengths in petal cells following oryzalin (an MT depolymerizing agent) treatment. Importantly, disruption of the MT lengths and arrays by oryzalin could inhibit the cell expansion and the petal enlargement induced by light or/and GA(3) signals. Taken together, it is concluded that the control of the petal size by light and GA(3) signals mainly depends on modulating the cell size and, moreover, the organization of the cortical MTs plays a crucial role in the control of the cell size and hence the Rf petal growth.  相似文献   

17.
Aluminum (Al) induces agricultural problems limiting crop productivity in acid soils. Since Al causes morphological changes in roots, and because microtubules (MTs) play important roles in determination of tissue morphology, we investigated whether Al affects the arrangement of MTs in maize root meristem using immunolocalization techniques. When seedling roots were treated with 50 μM Al, the orientations of MTs were dramatically altered in a population of cells located in the protoderm and the two outer layers of cortex: interphase cortical MT arrays lost their normal transverse organization and became random or longitudinal; the preprophase band of MTs, mitotic spindle, and phragmoplast developed at planes 90° rotated compared to their counterparts in controls. These changes in MT orientation resulted in the change of the division plane from transverse to longitudinal, producing daughter cells positioned side by side instead of above and below. The rotation of the otherwise normal MT arrays and the division plane in Al-treated roots indicates that Al interferes with the normal polarity sensing mechanism, which may contribute to the reduced axial growth of the Al-treated roots.  相似文献   

18.
2,4—D对水稻根尖微管排列的影响   总被引:1,自引:0,他引:1  
通过共焦激光扫描显微镜对经过2,4-D处理水稻(Oryza sativa L.)根尖的微管骨轲的排列进行了研究。结果表明,对照(未经2,4-D处理)根尖的不同生长区微管呈现不同的排列方式,生长区皮导呈管呈随机排列,伸长区微管呈横向排列,根毛区的呈斜向排列。经过2,4-D处理的根,不但皮层细胞微管表现重新定向,同时也伴随着生长受到强烈抑制。1mg/L2,4-D处理1h,分生区细胞微管由随机排列变成横  相似文献   

19.
20.
Microtubules, MAPs and plant directional cell expansion   总被引:1,自引:0,他引:1  
Plant microtubules (MTs) polymerize and depolymerize in a process termed dynamic instability. This allows the assembly, reorganization, and disassembly of at least four MT arrays throughout the cell cycle. The cortical MT array lines the plasma membrane during interphase and plays a central role in directional cell expansion. Microtubule-associated proteins (MAPs) decorate cortical MTs with distinct patterns, regulating MT dynamic instability, MT severing, and other array-ordering processes. The Arabidopsis root has emerged as a highly useful system for identifying and studying cell-expansion-related MAPs. Here, we review how cortical MTs are thought to behave and become ordered in expanding root cells, and we discuss the emerging picture of how MAPs fundamentally govern MT ordering and directional growth processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号