首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2',6'-Dimethyl substitution of the Tyr(1) residue of opioid agonist peptides and deletion of the positively charged N-terminal amino group or its replacement with a methyl group has recently been shown to represent a general structural modification to convert opioid peptide agonists into antagonists. This conversion requires the syntheses of opioid peptide analogues containing either 3-(2,6-dimethyl-4-hydroxyphenyl)propanoic acid (Dhp) or (2S)-2-methyl-3-(2,6-dimethyl-4-hydroxyphenyl)propanoic acid [(2S)-Mdp] in place of Tyr(1). Using this approach, delta-, kappa- and mu-selective opioid peptide agonist peptides were successfully converted into corresponding delta-, kappa- and mu-selective antagonists, whereby receptor selectivity was often maintained or even improved. Thus, two (2S)-Mdp(1)-analogues of the delta-selective cyclic enkephalin analogue H-Tyr-c[D-Pen-Gly-Phe(pF)-Pen]-Phe-OH turned out to be potent and selective delta antagonists. Most successful was the development of kappa antagonists derived from dynorphin A (Dyn A), including the highly potent and selective kappa-antagonist [(2S)-Mdp(1)]Dyn A(1-11)-NH(2) (dynantin) and the enzymatically stable octapeptide analogue [(2S)-Mdp(1),MeArg(7),D-Leu(8)]Dyn A(1-8)-NH(2). The (2S)-Mdp(1)-analogues of dynorphin B and alpha-neoendorphin also were kappa antagonists and may be useful as pharmacological tools in studies of kappa receptor subtypes. Finally, the Dhp(1)-analogues of the mu-selective cyclic enkephalin analogue H-Tyr-c[N(epsilon ),N(beta)-carbonyl-D-Lys(2),Dap(5)]enkephalinamide and of endomorphin-2 were moderately potent mu opioid antagonists.  相似文献   

2.
3.
The cyclic enkephalin analog H-Tyr-c[D-Cys-Gly-Phe(pNO(2))-D-Cys]NH(2) is a highly potent opioid agonist with IC(50)s of 35 pm and 19 pm in the guinea-pig ileum (GPI) and mouse vas deferens (MVD) assays, respectively. The Phe(1)-analog of this peptide showed 370-fold and 6790-fold lower agonist potency in the GPI and MVD assays, respectively, indicating the importance of the Tyr(1) hydroxyl-group in the interaction with mu and delta opioid receptors. In the present study, the effect of various substituents (-NH(2), -NO(2), -CN, -CH(3), -COOH, -COCH(3), -CONH(2)) introduced in the para-position of the Phe(1)-residue of H-Phe-c[D-Cys-Gly-Phe(pNO(2))-D-Cys]NH(2) on the in vitro opioid activity profile was examined. Most analogs showed enhanced mu and delta agonist potencies in the two bioassays, except for the Phe(pCOOH)(1)-analog, which was weakly active, probably as a consequence of the negative charge. The most potent compounds were the Phe(pCOH(3))(1)- and the Phe(pCONH(2))(1)-analogs. The latter compound showed subnanomolar mu and delta agonist potencies and represents the most potent enkephalin analog lacking the Tyr(1) hydroxyl-group reported to date. Taken together, these results indicate that various substituents introduced in the para-position of Phe(1) enhance opioid activity via hydrogen bonding or hydrophobic interactions with the receptor. Comparison with existing structure-activity relationship on phenolic hydroxyl replacements in morphinans indicates that these nonpeptide opiates and some of the cyclic enkephalin analogs described here may have different modes of binding to the receptor.  相似文献   

4.
Models of mu- and delta-receptor-bound backbone conformations of enkephalin cyclic analogues containing Phe4 were determined by comparing geometrical similarity among the previously found low-energy backbone structures of [D-Cys2,Cys5]-enkephalinamide, [D-Cys2,D-Cys5]-enkephalinamide, [D-Pen2,L-Pen5]-enkephalin and [D-Pen2,D-Pen5]-enkephalin. The present mu-receptor-bound conformation resembles a beta-I bend in the peptide backbone centred on the Gly3-Phe4 region. Two slightly different models were found for the delta-receptor-bound conformation; both of them are more extended than the mu-receptor-bound conformation and include a gamma-turn (or a gamma-like turn) on the Gly3 residue. Energetically favourable rotamers of Tyr and Phe side chains were also determined for the mu- and delta-conformations. The present models of mu- and delta-conformations share geometrical similarity with the low-energy structures of Leu-enkephalin and the Tyr-D-Lys-Gly-Phe-analogue.  相似文献   

5.
David Hall  Nicola Pavitt 《Biopolymers》1984,23(11):2325-2334
A systematic survey has been made, using molecular mechanics, of the conformation of the ring entity of the enkephalin analogs, [D -Cys2-L -Cys5]-enkephalinamide and [D -Cys2-D -Cys5]enkephalinamide. These molecules are considerably more flexible than the analog Tyr-cyclo(Nγ-D -A2bu-Gly-Phe-Leu-), but the favored conformations of all three are very similar. The results of these studies are compatible with a Gly3-Phe4 type II′ bend in the active conformation of enkephalin.  相似文献   

6.
7.
Low-energy peptide backbone conformers were found by means of energy calculation for several cyclic analogues of enkephalin in an attempt to assess models for receptor-bound conformations for opioid receptors of the mu- and delta-types. They included [D-Cys2, L-Cys5]- and [D-Cys2, D-Cys5]-enkephalinamides showing moderate preference for mu-receptors, the delta-selective compounds [D-Pen2, L-Pen5] and [D-Pen2, D-Pen5]-enkephalins and Tyr-D-Lys-Gly-Phe- analogue possessing very high affinity to receptors of the mu-type. The low-energy conformers obtained for these analogues were in good agreement with the results of calculations by other authors and with experimental evidence. All of the analogues contain a Phe residue in position 4 of the peptide chain which facilitates the eventual search for geometrical similarity between the low-energy backbone conformers of different analogues in question.  相似文献   

8.
In order to prevent enzymatic degradation of beta-casomorphin-5 (1) and morphiceptin, reduced peptide bonds were incorporated at the 2-3 and 3-4 bonds, respectively. The analogues were synthesized by a combination of solid phase methodology and reductive alkylation of resin-bound peptide amines with Boc-amino acid aldehydes (Boc: tert-butyloxycarbonyl) in the presence of NaBH3CN. During reversed phase high pressure liquid chromatography purification, peak shape distortions could be observed. Epimerization was excluded, based on gas chromatography/mass spectroscopy analysis, which indicated acceptable levels of racemization (less than 3%) in the crude product. Instead, the phenomena could be attributed to slow cis/trans isomerizations originating from the Xxx-Pro bonds in the sequence. The presence of different conformational isomers was also established by 1H-nmr spectroscopy in DMSO-d6. All analogues showed high stability in blood plasma, enhanced binding affinity for the mu receptor, and very low binding to the delta receptor. While the Phe 3 psi(CH2-N)Pro4 analogues (3) and (5) displayed agonist activity, the Pro 2 psi(CH2-NH)Phe3 modified analogue (2) showed antagonist activity comparable to D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2.  相似文献   

9.
Biological activity of the enkephalin cyclic analogues with a disulphide bridge between second and fifth positions, and the dependence of the activity on the cycle size, disulfide bridge localization and configuration of the amino acid residues have been studied. The analogues were synthesized by chemical approach with the use of pentafluorophenyl esters. The cyclization was carried out at the C-terminal tetrapeptide stage by iodine in methanol after removing benzyl protecting groups from thiol groups of cysteine and homocysteine by sodium in liquid ammonia. The blocking activity in vitro (GPI and MVD tests) to the mu- and delta-receptors depends on cycle size, localization of disulphide bridge in the cycle, and amino acid configuration at second and fifth positions. Analogues with D-amino acids proved to be most active in vivo (analgesia, cataleptic activity, effect on frequency of heart contractions and body temperature). Conformational characteristics of enkephalin analogues were investigated by means of CD spectroscopy.  相似文献   

10.
The conformational energy surfaces of 12 active cytokinins and analogs are studied with the aid of PCILO quantum mechanical calculations. The resulting conformational energy maps indicate that cytokinin activity is associated with the ability of the above molecules to attain a specific conformation, presumably related to their conformation at the active site of cytokinin receptor(s). The calculations locate the conformational energy minima and describe the flexibility of the studied molecules in terms of conformational barriers and transition paths. An approximate relation is found between cytokinin activity and the values of energy barriers to transitions between certain local minima. According to this relation, active compounds should have rotational barriers within 4–12 kcal/mol, besides the known hitherto constitutional requirements for high physiological activity.  相似文献   

11.
A cystamine-enkephalin dimer, containing two molecules of [D-Ala2, Leu5] enkephalin cross-linked at the COOH-terminal leucine residue with cystamine, (NH2-CH2-CH2-S-)2, has been synthesized in order to examine directly the dimerization effect of an enkephalin molecule on the opiate receptor interactions. In a comparison of potencies against [3H]-[D-Ala2,D-Leu5] enkephalin (3H-DADLE) and [3H]-[D-Ala2,MePhe4,Gly-ol5] enkephalin (3H-DAGO) as delta and mu tracers, respectively, enkephalin dimer showed a very high affinity, especially for the delta opiate receptors. Dimer was almost threefold more potent than DADLE, which is one of the most utilized delta ligand to date. When the binding affinity of cystamine-dimer was compared with that of its reduced thiol-monomer, namely [D-Ala2,Leu5,cysteamine6] enkephalin, the increment in affinity was four to fivefold for both delta and mu receptors. The results strongly indicate that the dimeric enkephalin is more potent presumably due to the simultaneous interaction with the two binding sites of the opiate receptors.  相似文献   

12.
NMR and X-ray crystallographic studies have shown that cyclic pentapeptides of the general structure cyclo(D-Xxx-Pro-Gly-Pro-Gly) possess beta- and gamma-turn intramolecular hydrogen bonds. As part of our continuing series surveying the compatibility of various amide bond replacements on peptide structure, we have synthesized cyclo(D-Phe-Pro psi[CH2S]Gly-Pro-Gly). The pseudopeptide was prepared by solid phase methods and cleaved from the resin by a new procedure involving phase transfer catalysis using K2CO3 and tetrabutylammonium hydrogen sulfate. Cyclization was carried out with the use of DPPA, HOBt, and DMAP to afford the product in 69% yield. The conformational behavior of the pseudopeptide was analyzed by 1H and 13C (1D and 2D) NMR techniques. The backbone modification replaced the amide bond that is involved in a gamma-turn intramolecular hydrogen bond in the all-amide structure. In CDCl3, the pseudopeptide adopted the same all-trans conformation as its parent, although the remaining beta-turn hydrogen bond was weaker according to delta delta/delta TNH measurements. In DMSO-d6, the all-trans conformer and a second conformer were observed in a ratio of 55:45. These conformers, which slowly interconverted on the NMR time scale, could be separately assigned; peaks due to chemical exchange were readily distinguishable by the ROESY technique as reported earlier by others. 13C and ROESY experiments suggested the minor conformer contained one cis amide bond at the Gly1-Pro2 position. Thus, both the location and type of amide surrogate are important determinants affecting the compatibility of the replacement with a particular conformational feature.  相似文献   

13.
Human alpha defensins are a class of antimicrobial peptides with additional antiviral activity. Such antimicrobial peptides constitute a major part of mammalian innate immunity. Alpha defensins contain six cysteines, which form three well defined disulfide bridges under oxidizing conditions. Residues C3-C31, C5-C20, and C10-C30 form disulfide pairs in the native structure of the peptide. The major tissue in which HD5 is expressed is the crypt of the small intestine, an anaerobic niche that should allow for substantial pools of both oxidized and (partly) reduced HD5. We used ion mobility coupled to mass spectrometry to track the structural changes in HD5 upon disulfide bond reduction. We found evidence of stepwise unfolding of HD5 with sequential reduction of the three disulfide bonds. Alkylation of free cysteines followed by tandem mass spectrometry of the corresponding partially reduced states revealed a dominant pathway of reductive unfolding. The majority of HD5 unfolds by initial reduction of C5-C20, followed by C10-C30 and C3-C31. We find additional evidence for a minor pathway that starts with reduction of C3-C31, followed by C5-C20 and C10-C30. Our results provide insight into the pathway and conformational landscape of disulfide bond reduction in HD5.  相似文献   

14.
A recently developed series of highly selective and systemically active delta-agonists such as Tyr-X-Gly-Phe-Leu-Thr(OtBu), with X = D-Ser (OtBu) in BUBU and X = D-Cys(OtBu) in BUBUC, and complete inhibitors of enkephalin metabolism (Kelatorphan, RB 38A, RB 101) have enabled the major role played by mu-opioid receptors in supraspinal analgesia to be demonstrated. This is in agreement with the results of in vivo mu-receptor occupancy measured by taking into account the cross-reactivity of the delta-ligand for mu-sites. In contrast mu and delta binding sites seem to act independently to control pain at the spinal level. Strong analgesic effects can also be obtained by complete protection of tonically or phasically released endogenous enkephalins with mixed inhibitors. Chronic i.c.v. administration of the mu agonist DAMGO, led to a severe naloxone precipitated withdrawal syndrome whilst a weak dependence was seen with the delta agonist, DSTBULET or with RB 38A and none after repeated i.p. injection of RB 101, a systemically active mixed inhibitor. Moreover, chronic administration of RB 101 did not induce antinociceptive tolerance, a major side effect observed during chronic administration of opiates. These differences could be related to a more efficient and selective stimulation of opioid receptors by the endogenous enkephalins. This suggest that the large changes in receptor density, adenylate cyclase activity or phosphorylation of proteins following chronic morphine treatment is not significantly triggered by occupation of the opioid receptors by their natural ligands. All these data emphasize the interest in developing delta-agonists and mixed inhibitors with appropriate bioavailability for clinical evaluation.  相似文献   

15.
We constructed and characterized four Tet repressor (TetR) variants with engineered cysteine residues which can form disulfide bonds and are located in regions where conformational changes during induction by tetracycline (tc) might occur. All TetR mutants show nearly wild-type activities in vivo, and the reduced proteins also show wild-type activities in vitro. Complete and reversible disulfide bond formation was achieved in vitro for all four mutants. The disulfide bond in NC18RC94 immobilizes the DNA reading head with respect to the protein core and prevents operator binding. Formation of this disulfide bond is possible only in the tc-bound, but not in the operator-bound conformation. Thus, these residues must have different conformations when bound to these ligands. The disulfide bonds in DC106PC159' and EC107NC165' immobilize the variable loop between alpha-helices 8 and 9 located near the tc-binding pocket. A faster rate of disulfide formation in the operator-bound conformation and a lack of induction after disulfide formation show that the variable loop is located closer to the protein core in the operator-bound conformation and that a movement is necessary for induction. The disulfide bond in RC195VC199' connects alpha-helices 10 and 10' of the two subunits in the dimer and is only formed in the tc-bound conformation. The oxidized protein shows reduced operator binding. Thus, this bond prevents formation of the operator-bound conformation. The detection of conformational changes in three different regions is the first biochemical evidence for induction-associated global internal movements in TetR.  相似文献   

16.
We report here on the binding affinity and bioassay results of cyclic enkephalin analogs comprising a cyclic moiety and C-terminal fragment of MERGL, where ME denotes methionine enkephalin. MERGL (YGGFMRGL) has been suggested to be cleaved enzymatically by membrane-bound enkephalinase 24.11 to leave ME and the tripeptide RGL. In our study we have synthesized hybrids of DPDPE or DPLCE and the C-terminal tripeptide RGL in order to mimic a prohormone able to cross the blood-brain barrier. The study has shown that of the homologs presented here, analogs of DPLCE often are more potent at delta opioid receptors both in binding affinity and in bioactivity at the MVD, than DPDPE. Our hypothesis that hybrids (consisting of the drug and the spacer for the carrier) could be designed which would either have no opioid activity or, alternatively, be by themselves very active, has been verified.  相似文献   

17.
Molecular dynamics simulations were performed on the potent and slightly mu-receptor selective cyclic dermorphin analog H-Tyr-D-Orn-Phe-Glu-NH2 as well as on analogs containing a conformationally restricted phenylalanine derivative in place of Phe in the 3 position of the peptide sequence. Peptides studied included the potent and highly mu-selective analogs H-Tyr-D-Orn-Aic-Glu-NH2 (Aic = 2-aminoindan-2-carboxylic acid), H-Tyr-D-Orn-Atc-Glu-NH2 (Atc = 2-aminotetralin-2-carboxylic acid) and H-Tyr-D-Orn-D-Atc-Glu-NH2, and the weakly active analog H-Tyr-D-Orn-Tic-Glu-NH2 (Tic = tetrahydroisoquinoline-3-carboxylic acid). Four different starting conformations were chosen for each peptide, and after equilibration each simulation was allowed to proceed for 100 picoseconds at 600 degrees K. The 14-membered ring structures in the Phe-, Aic-, L- and D-Atc-containing analogs showed moderate structural flexibility, while the peptide ring in the Tic-containing analog was more rigid. As theoretically predicted, the phi 3 and psi 3 angles of the Aic-, L- and D-Atc-containing analogs were limited to values of either about +50 degrees or -50 degrees during almost the entire period of the simulations. In the Tic-containing analog the phi 3 and psi 3 angles were 0 degrees and 90 degrees, respectively, and did not change for the entire duration of the simulation. The side chains of the constrained amino acids showed limited movement, but transitions between the allowed conformations did occur on the time scale of the simulations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Conformational space of a novel cyclic enkephalin analogue, cyclo(N(epsilon),N(epsilon')-carbonyl-D-Lys2,Lys5)enkephalin amide, was exhaustively examined. A large number of conformations was selected and clustered into families on the basis of their structure and energy. For representative conformations ROESY spectra were generated and their linear combination was fitted to the spectra measured in water and Me2SO-d6. This procedure yielded an ensemble of most populated conformations of the peptide in the two solvents.  相似文献   

19.
The assembly of reduced pro-alpha chains of type I and type II procollagen into the native triple-helical molecule was examined in vitro in the presence and absence of pure protein disulfide isomerase. The data clearly indicates that protein disulfide isomerase is able to accelerate the formation of native interchain disulfide bonds in these procollagens. It takes about 6 min after disulfide bonding before triple-helical molecules exist, while the time required to produce triple-helical type I procollagen in the presence of protein disulfide isomerase is 9.4 min and that for type II procollagen 17.2 min. These values agree with those obtained for type I and II procollagen in vivo suggesting that protein disulfide isomerase is also an enzyme catalyzing interchain disulfide bond formation in procollagen in vivo. The formation of native disulfide bonds can proceed without any enzyme catalysis but then requires the presence of reduced and oxidized glutathione. Bonding is rather slow in such a case, however, resulting in a delay in the formation of the triple helix.  相似文献   

20.
G Mez?  M Szekerke  G Sármay  J Gergely 《Peptides》1990,11(3):405-415
In the present paper a new approach is reported, to increase the resistance of tuftsin toward enzymatic cleavage by the introduction of an isopeptide bond into the molecule. The tetrapeptides H-Lys(Thr)-Pro-Arg-OH and H-Lys(Ala)-Pro-Arg-OH, the pentapeptides H-Thr-Lys(Ala)-Pro-Arg-OH, H-Thr-Lys(Thr)-Pro-Arg-OH and H-Ala-Lys(Ala)-Pro-Arg-OH and their For- and Boc-protected derivatives were built up by stepwise elongation of the chain, using conventional solution-phase methods. Preliminary experiments confirmed that from the Lys residue in position 2 of tuftsin the alpha-peptide bond between the Thr and Lys is cleaved with a significantly higher rate by leucine aminopeptidase than the epsilon-peptide bond. Several of the isopeptide derivatives increased to a higher extent the interleukin (IL-1) secretion by monocytes than tuftsin or [Ala1]-tuftsin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号