首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Establishing if species contractions were the result of natural phenomena or human induced landscape changes is essential for managing natural populations. Fishers (Martes pennanti) in California occur in two geographically and genetically isolated populations in the northwestern mountains and southern Sierra Nevada. Their isolation is hypothesized to have resulted from a decline in abundance and distribution associated with European settlement in the 1800s. However, there is little evidence to establish that fisher occupied the area between the two extant populations at that time. We analyzed 10 microsatellite loci from 275 contemporary and 21 historical fisher samples (1880–1920) to evaluate the demographic history of fisher in California. We did not find any evidence of a recent (post-European) bottleneck in the northwestern population. In the southern Sierra Nevada, genetic subdivision within the population strongly influenced bottleneck tests. After accounting for genetic subdivision, we found a bottleneck signal only in the northern and central portions of the southern Sierra Nevada, indicating that the southernmost tip of these mountains may have acted as a refugium for fisher during the anthropogenic changes of the late 19th and early 20th centuries. Using a coalescent-based Bayesian analysis, we detected a 90% decline in effective population size and dated the time of decline to over a thousand years ago. We hypothesize that fisher distribution in California contracted to the two current population areas pre-European settlement, and that portions of the southern Sierra Nevada subsequently experienced another more recent bottleneck post-European settlement.  相似文献   

2.
The initial contact of European populations with indigenous populations of the Americas produced diverse admixture processes across North, Central, and South America. Recent studies have examined the genetic structure of indigenous populations of Latin America and the Caribbean and their admixed descendants, reporting on the genomic impact of the history of admixture with colonizing populations of European and African ancestry. However, relatively little genomic research has been conducted on admixture in indigenous North American populations. In this study, we analyze genomic data at 475,109 single-nucleotide polymorphisms sampled in indigenous peoples of the Pacific Northwest in British Columbia and Southeast Alaska, populations with a well-documented history of contact with European and Asian traders, fishermen, and contract laborers. We find that the indigenous populations of the Pacific Northwest have higher gene diversity than Latin American indigenous populations. Among the Pacific Northwest populations, interior groups provide more evidence for East Asian admixture, whereas coastal groups have higher levels of European admixture. In contrast with many Latin American indigenous populations, the variance of admixture is high in each of the Pacific Northwest indigenous populations, as expected for recent and ongoing admixture processes. The results reveal some similarities but notable differences between admixture patterns in the Pacific Northwest and those in Latin America, contributing to a more detailed understanding of the genomic consequences of European colonization events throughout the Americas.  相似文献   

3.
The current spatial distribution of genetic lineages across a region should reflect the complex interplay of both historical and contemporary processes. Postglacial expansion and recolonization in the distant past, in combination with more recent events with anthropogenic effects such as habitat fragmentation and overexploitation, can help shape the pattern of genetic structure observed in contemporary populations. In this study, we characterize the spatial distribution of mtDNA lineages for fisher (Martes pennanti) in north‐eastern North America. The history of fishers in this region is well understood and thus provides an opportunity to interpret patterns of genetic structure in the light of known historical (e.g. recolonization from glacial refugia) and contemporary events (e.g. reintroductions, fragmentation and natural recolonization). Our results indicate that fishers likely recolonized north‐eastern North America from a single Pleistocene refugium. Three genetically distinct remnant populations persisted through the population declines of the 1800s and served as sources for multiple reintroductions and natural recolonizations that have restored the fisher throughout north‐eastern North America. However, the spatial genetic structure of genetic lineages across the region still reflects the three remnant populations.  相似文献   

4.
The Maku are a linguistically distinct indigenous population of hunter-gatherers living deep within the tropical forest of northwestern Amazonia. Their geographical range greatly overlaps that of another indigenous population, the Tukanoans, riparian fisher -gardeners. In ecological terms, the two populations can be viewed as occupying different niches within their equatorial forest biome. A quantitative examination of the Maku diet indicates that calories may at times pose a dietary problem for the Maku. In contrast, the Tukanoans may occasionally face seasonal shortages of fish, their major protein source. Traditional exchanges of food and labor between members of the two populations may help avert potential dietary problems and increase overall human biomass in this geographical region.  相似文献   

5.
Contrary to highly selected commercial breeds, indigenous domestic breeds are composed of semi-wild or feral populations subjected to reduced levels of artificial selection. As a consequence, many of these breeds have become locally adapted to a wide range of environments, showing high levels of phenotypic variability and increased fitness under natural conditions. Genetic analyses of three loci associated with milk production (alpha(S1)-casein, kappa-casein and prolactin) and the locus BoLA-DRB3 of the major histocompatibility complex indicated that the Argentinean Creole cattle (ACC), an indigenous breed from South America, maintains high levels of genetic diversity and population structure. In contrast to the commercial Holstein breed, the ACC showed considerable variation in heterozygosity (H(e)) and allelic diversity (A) across populations. As expected, bi-allelic markers showed extensive variation in He whereas the highly polymorphic BoLA-DRB3 showed substantial variation in A, with individual populations having 39-74% of the total number of alleles characterized for the breed. An analysis of molecular variance (AMOVA) of nine populations throughout the distribution range of the ACC revealed that 91.9-94.7% of the total observed variance was explained by differences within populations whereas 5.3-8.1% was the result of differences among populations. In addition, the ACC breed consistently showed higher levels of genetic differentiation among populations than Holstein. Results from this study emphasize the importance of population genetic structure within domestic breeds as an essential component of genetic diversity and suggest that indigenous breeds may be considered important reservoirs of genetic diversity for commercial domestic species.  相似文献   

6.
China is rich in chicken genetic resources, and many indigenous breeds can be found throughout the country. Due to poor productive ability, some of them are threatened by the commercial varieties from domestic and foreign breeding companies. In a large-scale investigation into the current status of Chinese poultry genetic resources, 78 indigenous chicken breeds were surveyed and their blood samples collected. The genomes of these chickens were screened using microsatellite analysis. A total of 2740 individuals were genotyped for 27 microsatellite markers on 13 chromosomes. The number of alleles of the 27 markers ranged from 6 to 51 per locus with a mean of 18.74. Heterozygosity (H) values of the 78 chicken breeds were all more than 0.5. The average H value (0.622) and polymorphism information content (PIC, 0.573) of these breeds suggested that the Chinese indigenous chickens possessed more genetic diversity than that reported in many other countries. The fixation coefficients of subpopulations within the total population (F ST) for the 27 loci varied from 0.065 (LEI0166) to 0.209 (MCW0078), with a mean of 0.106. For all detected microsatellite loci, only one (LEI0194) deviated from Hardy-Weinberg equilibrium (HWE) across all the populations. As genetic drift or non-random mating can occur in small populations, breeds kept on conservation farms such as Langshan chicken generally had lower H values, while those kept on large populations within conservation regions possessed higher polymorphisms. The high genetic diversity in Chinese indigenous breeds is in agreement with great phenotypic variation of these breeds. Using Nei’s genetic distance and the Neighbor-Joining method, the indigenous Chinese chickens were classified into six categories that were generally consistent with their geographic distributions. The molecular information of genetic diversity will play an important role in conservation, supervision, and utilization of the chicken resources.  相似文献   

7.
China is regarded as one of the domestication cen-ters for chickens and archaeological studies provided evidence of chicken domestication in northern Chinaas early as 6000 BC[1]. At present, China has the larg-est chicken population in the world, represen…  相似文献   

8.
Admixture between wild and captive populations is an increasing concern in conservation biology. Understanding the extent of admixture and the processes involved requires identification of admixed and non-admixed individuals. This can be achieved by statistical methods employing Bayesian clustering, but resolution is low if genetic differentiation is weak. Here, we analyse stocked brown trout populations represented by historical (1943–1956) and contemporary (2000s) samples, where genetic differentiation between wild populations and stocked trout is weak (pairwise FST of 0.047 and 0.053). By analysing a high number of microsatellite DNA markers (50) and making use of linkage map information, we achieve clear identification of admixed and non-admixed trout. Moreover, despite strong population-level admixture by hatchery strain trout in one of the populations (70.8%), non-admixed individuals nevertheless persist (7 out of 53 individuals). These remnants of the indigenous population are characterized by later spawning time than the majority of the admixed individuals. We hypothesize that isolation by time mediated by spawning time differences between wild and hatchery strain trout is a major factor rescuing a part of the indigenous population from introgression.  相似文献   

9.
American wild-rice (Zizania palustris var. palustris) has served as a staple for indigenous North Americans for thousands of years, but has had significant habitat losses in recent centuries. We investigated genetic variability among 17 wild-rice populations in northern Wisconsin using 13 isozyme markers. We then compared these genetic patterns to differences in habitat and population characteristics and phenotypic variation in plant growth and reproduction across sites. Wild-rice's mean genetic diversity (0.15) is moderate compared to wind-pollinated outcrossers but lower than the mean (0.20) reported for the Poaceae. Estimated inbreeding coefficients within populations (f) average 0.12 but vary greatly among the populations (from -0.44-0.52), suggesting heterogeneous population histories. Larger populations in larger lakes express higher levels of genetic variability and smaller inbreeding coefficients than smaller or more isolated populations. The number of panicles per plant is also higher in populations with greater genetic variability. Estimated genetic differentiation among the 17 populations (F(ST)) was high (0.30), suggesting limited gene flow among drainages. Wild-rice population size and degree of isolation have opposing effects on its genetic variability, and plant performance is positively associated with genetic variability.  相似文献   

10.
The purpose of this study was to assess genetic diversity, genetic differentiation relationship and population structure among 10 Chinese sheep populations using 5 single nucleotide polymorphisms (SNPs) in MC1R gene. The genetic diversity indices suggested that the intra-population variation levels of Chinese Merino and Large-tailed Han breeds were lowest than Kazakh Fat-Rumped. Chinese sheep breeds have maintained a high intra-population variation levels (95.23%). The genetic differentiation patterns and genetic relationships among Chinese sheep breeds displayed a high consistency with the traditional classification. The cluster trees were constructed by UPMGA method. The results showed that Chinese indigenous sheep populations have distinct genetic differentiation. The inter-population variation levels in Chinese sheep populations indicated three geographically independent domestication events have occurred. The Bayesian cluster analyses also showed a reliable clustering pattern, which revealed three major clusters in Chinese indigenous sheep populations (Mongolian group, Kazakh group and Tibetan group), except for Duolang and Minxian Black-fur. There were probably caused by different breeding history, geography isolation and different levels of inbreeding. The findings supported the related records in literature, ten sheep populations originated on different time stage from the primogenitor population and communicated genetically with each other in the process of natural and artificial selection, and in different ecological environment. It is concluded that Chinese indigenous sheep have higher genetic variation and diversity, genetic differentiation exist between Chinese sheep populations.  相似文献   

11.
Population history plays an important role in shaping contemporary levels of genetic variation and geographic structure. This is especially true in small, isolated range‐margin populations, where effects of inbreeding, genetic drift and gene flow may be more pronounced than in large continuous populations. Effects of landscape fragmentation and isolation distance may have implications for persistence of range‐margin populations if they are demographic sinks. We studied four small, disjunct populations of ponderosa pine over a 500‐year period. We coupled demographic data obtained through dendroecological methods with microsatellite data to discern how and when contemporary levels of allelic diversity, among and within‐population levels of differentiation, and geographic structure, arose. Alleles accumulated rapidly following initial colonization, demonstrating proportionally high levels of gene flow into the populations. At population sizes of approximately 100 individuals, allele accumulation saturated. Levels of genetic differentiation among populations (FST and Jost's Dest) and diversity within populations (FIS) remained stable through time. There was no evidence of geographic genetic structure at any time in the populations' history. Proportionally, high gene flow in the early stages of population growth resulted in rapid accumulation of alleles and quickly created relatively homogenous genetic patterns among populations. Our study demonstrates that contemporary levels of genetic diversity were formed quickly and early in population development. How contemporary genetic diversity accumulates over time is a key facet of understanding population growth and development. This is especially relevant given the extent and speed at which species ranges are predicted to shift in the coming century.  相似文献   

12.
Pacific salmon (Oncorhynchus spp.) have been central to the development of management concepts associated with evolutionarily significant units (ESUs), yet there are still relatively few studies of genetic diversity within threatened and endangered ESUs for salmon or other species. We analyzed genetic variation at 10 microsatellite loci to evaluate spatial population structure and genetic variability in indigenous Chinook salmon (Oncorhynchus tshawytscha) across a large wilderness basin within a Snake River ESU. Despite dramatic 20th century declines in abundance, these populations retained robust levels of genetic variability. No significant genetic bottlenecks were found, although the bottleneck metric (M ratio) was significantly correlated with average population size and variability. Weak but significant genetic structure existed among tributaries despite evidence of high levels of gene flow, with the strongest genetic differentiation mirroring the physical segregation of fish from two sub-basins. Despite the more recent colonization of one sub-basin and differences between sub-basins in the natural level of fragmentation, gene diversity and genetic differentiation were similar between sub-basins. Various factors, such as the (unknown) genetic contribution of precocial males, genetic compensation, lack of hatchery influence, and high levels of current gene flow may have contributed to the persistence of genetic variability in this system in spite of historical declines. This unique study of indigenous Chinook salmon underscores the importance of maintaining natural populations in interconnected and complex habitats to minimize losses of genetic diversity within ESUs.  相似文献   

13.
For conservation purposes islands are considered safe refuges for many species, particularly in regions where introduced predators form a major threat to the native fauna, but island populations are also known to possess low levels of genetic diversity. The New Zealand archipelago provides an ideal system to compare genetic diversity of large mainland populations where introduced predators are common, to that of smaller offshore islands, which serve as predator-free refuges. We assessed microsatellite variation in South Island robins (Petroica australis australis), and compared large mainland, small mainland, natural island and translocated island populations. Large mainland populations exhibited more polymorphic loci and higher number of alleles than small mainland and natural island populations. Genetic variation did not differ between natural and translocated island populations, even though one of the translocated populations was established with five individuals. Hatching failure was recorded in a subset of the populations and found to be significantly higher in translocated populations than in a large mainland population. Significant population differentiation was largely based on heterogeneity in allele frequencies (including fixation of alleles), as few unique alleles were observed. This study shows that large mainland populations retain higher levels of genetic diversity than natural and translocated island populations. It highlights the importance of protecting these mainland populations and using them as a source for new translocations. In the future, these populations may become extremely valuable for species conservation if existing island populations become adversely affected by low levels of genetic variation and do not persist.  相似文献   

14.
Tai people are widely distributed in Thailand, Laos and southwestern China and are a large population of Southeast Asia. Although most anthropologists and historians agree that modern Tai people are from southwestern China and northern Thailand, the place from which they historically migrated remains controversial. Three popular hypotheses have been proposed: northern origin hypothesis, southern origin hypothesis or an indigenous origin. We compared the genetic relationships between the Tai in China and their “siblings” to test different hypotheses by analyzing 10 autosomal microsatellites. The genetic data of 916 samples from 19 populations were analyzed in this survey. The autosomal STR data from 15 of the 19 populations came from our previous study (Lin et al., 2010). 194 samples from four additional populations were genotyped in this study: Han (Yunnan), Dai (Dehong), Dai (Yuxi) and Mongolian. The results of genetic distance comparisons, genetic structure analyses and admixture analyses all indicate that populations from northern origin hypothesis have large genetic distances and are clearly differentiated from the Tai. The simulation-based ABC analysis also indicates this. The posterior probability of the northern origin hypothesis is just 0.04 [95%CI: (0.01–0.06)]. Conversely, genetic relationships were very close between the Tai and populations from southern origin or an indigenous origin hypothesis. Simulation-based ABC analyses were also used to distinguish the southern origin hypothesis from the indigenous origin hypothesis. The results indicate that the posterior probability of the southern origin hypothesis [0.640, 95%CI: (0.524–0.757)] is greater than that of the indigenous origin hypothesis [0.324, 95%CI: (0.211–0.438)]. Therefore, we propose that the genetic evidence does not support the hypothesis of northern origin. Our genetic data indicate that the southern origin hypothesis has higher probability than the other two hypotheses statistically, suggesting that the Tai people most likely originated from southern China.  相似文献   

15.
Anthropogenic activities, including the intentional releases of fish for enhancing populations (stocking), are recognized as adversely impacting the adaptive potential of wild populations. Here, the genetic characteristics of European barbel Barbus barbus were investigated using 18 populations in England, where it is indigenous to eastern‐flowing rivers and where stocking has been used to enhance these populations. Invasive populations are also present in western‐flowing rivers following introductions of translocated fish. Two genetic clusters were evident in the indigenous range, centered on catchments in northeast and southeast England. However, stocking activities, including the release of hatchery‐reared fish, have significantly reduced the genetic differentiation across the majority of this range. In addition, in smaller indigenous rivers, populations appeared to mainly comprise fish of hatchery origin. In the nonindigenous range, genetic data largely aligned to historical stocking records, corroborating information that one particular river (Kennet) in southeast England was the original source of most invasive B. barbus in England. It is recommended that these genetic outputs inform management measures to either restore or maintain the original genetic diversity of the indigenous rivers, as this should help ensure populations can maintain their ability to adapt to changing environmental conditions. Where stocking is considered necessary, it is recommended that only broodstock from within the catchment is used.  相似文献   

16.
The expected effects of breeding system on quantitative genetic variation under various models for the maintenance of such variation are examined, with particular emphasis on the contrast between randomly mating and highly self-fertilizing populations. Estimates of quantitative genetic parameters from plant populations are reviewed. There is some evidence for reduced within-population genetic variance in highly inbreeding populations, compared with outbreeders, but more empirical work appears necessary. Although the estimate of the magnitude of the effect of breeding system is subject to considerable error, the reduction in genetic variance in inbreeding populations appears greater than expected if the variation were maintained by overdominance, or if it were due to neutral mutations. It is more consistent with models involving mutation-selection balance, although a rather larger reduction in genetic variance is estimated than is expected theoretically. We discuss some possible reasons for the lower level of genetic variance in selfers than is predicted by such models.  相似文献   

17.
Melaleuca quinquenervia is a wetland tree species indigenous to eastern Australia. It was separately introduced to east and west Florida as an ornamental, but has since become invasive, dominating several habitat types. We tested the predictions that (1) Australian populations would exhibit more genetic variation than Florida populations, due to founder effect, and (2) high phenotypic plasticity would be found in all populations, due to the wide range of habitats occupied. We compared the phenotypic plasticity and familial variation among three Australian populations, two east Florida, and two west Florida populations in a greenhouse experiment. We grew seedlings collected from different maternal trees in each population under two water levels and three pH levels, reflecting the natural range of water levels and soil pH in Florida and Australian Melaleuca stands. We measured leaf size and shape, growth rate and above-ground biomass of seedlings and determined the components of phenotypic variance (familial, environmental, and their interaction) using univariate and multivariate analysis of variance. All traits showed significant among-population and among-family variation, as well as significant phenotypic plasticity, in response to both water level and pH level changes. Sensitivity to pH was particularly high, presumably because plants were grown under pHs ranging from 4.7 to 7.4, and because pH can influence nutrient availability. Familial variation contains genetic variation, but it may also be confounded with maternal environmental effects. Comparing Australian to Floridian Melaleuca, amounts of familial variation and phenotypic plasticity varied by trait. Overall, Australian Melaleuca had more among-population variation than Floridian Melaleuca, presumably reflecting the wider latitudinal range and longer time for evolutionary change in Australia, but had similar amounts of among-family variation, within any one population. If maternal effects are strong, among-population differences may merely reflect greater environmental differences among Australian sites than Florida sites. Australian Melaleuca had less phenotypic plasticity, possibly due to founder effects in Florida or to subsequent adaptive evolution of phenotypic plasticity in Floridian populations. Floridian Melaleuca shows little loss of familial variation, compared to indigenous Australian populations, and that, in combination with its high phenotypic plasticity, should allow it to continue to colonize new areas successfully.  相似文献   

18.
Local domestic chicken populations are of paramount importance as a source of protein in developing countries. Bangladesh possesses a large number of native chicken populations which display a broad range of phenotypes well adapted to the extreme wet and hot environments of this region. This and the fact that wild jungle fowls (JFs) are still available in some regions of the country, it urges to study the present genetic diversity and relationships between Bangladeshi autochthonous chicken populations. Here, we report the results of the mitochondrial DNA (mtDNA) sequence polymorphisms analyses to assess the genetic diversity and possible maternal origin of Bangladeshi indigenous chickens. A 648-bp fragment of mtDNA control region (D-loop) was analyzed in 96 samples from four different chicken populations and one red JF population. Sequence analysis revealed 39 variable sites that defined 25 haplotypes. Estimates of haplotype and nucleotide diversities ranged from 0.745 to 0.901 and from 0.011 to 0.016, respectively. The pairwise differences between populations ranged from 0.091 to 1.459 while most of the PhiSTST) values were significant. Furthermore, AMOVA analysis revealed 89.16 % of the total genetic diversity was accounted for within population variation, indicating little genetic differentiation among the studied populations. The median network analysis from haplotypes of Bangladeshi chickens illustrated five distinct mitochondrial haplogroups (A, D, E, F and I). Individuals from all Bangladeshi chicken populations were represented in the major clades D and E; those maternal origins are presumed to be from Indian Subcontinent and Southeast Asian countries, more particularly from South China, Vietnam, Myanmar and Thailand. Further, phylogenetic analysis between indigenous chicken populations and sub-species of red JFs showed G. g. gallus and G. g. spadiceus shared with almost all haplogroups and had major influence than G. g. murghi in the origin of indigenous chicken of Bangladesh. These results suggest that Bangladeshi indigenous chickens still have abundant genetic diversity and have originated from multiple maternal lineages, and further conservation efforts are warranted to maintain the diversity.  相似文献   

19.
The study of genetic information can reveal a reconstruction of human population’s history. We sequenced the entire mtDNA control region (positions 16.024 to 576 following Cambridge Reference Sequence, CRS) of 605 individuals from seven Mesoamerican indigenous groups and one Aridoamerican from the Greater Southwest previously defined, all of them in present Mexico. Samples were collected directly from the indigenous populations, the application of an individual survey made it possible to remove related or with other origins samples. Diversity indices and demographic estimates were calculated. Also AMOVAs were calculated according to different criteria. An MDS plot, based on FST distances, was also built. We carried out the construction of individual networks for the four Amerindian haplogroups detected. Finally, barrier software was applied to detect genetic boundaries among populations. The results suggest: a common origin of the indigenous groups; a small degree of European admixture; and inter-ethnic gene flow. The process of Mesoamerica’s human settlement took place quickly influenced by the region’s orography, which development of genetic and cultural differences facilitated. We find the existence of genetic structure is related to the region’s geography, rather than to cultural parameters, such as language. The human population gradually became fragmented, though they remained relatively isolated, and differentiated due to small population sizes and different survival strategies. Genetic differences were detected between Aridoamerica and Mesoamerica, which can be subdivided into “East”, “Center”, “West” and “Southeast”. The fragmentation process occurred mainly during the Mesoamerican Pre-Classic period, with the Otomí being one of the oldest groups. With an increased number of populations studied adding previously published data, there is no change in the conclusions, although significant genetic heterogeneity can be detected in Pima and Huichol groups. This result may be explained because populations historically assigned as belonging to the same group were, in fact, different indigenous populations.  相似文献   

20.
A common stereotype holds that in Mexico male violence toward women is common among indigenous peoples and reflects cultural norms that sanction a male's domination of his female partner. We employ a recent Mexican survey to examine the relative risk of violence against women as a function of the couple's ethnic homogamy. Among couples in which both partners are either non-indigenous or indigenous the female's risk of partner violence is similar. Among heterogamous couples non-indigenous females in relationships in which the male is indigenous are at elevated risk of violence, while indigenous women in relationships with non-indigenous males are at a lower risk of violence. The stresses associated with heterogamy appear to be more salient in determining a woman's risk of violence than ethnicity per se. The implications for future research and the need to deal with the issue of ethnic homogamy in culturally heterogeneous populations are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号