首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wieners were formulated and processed approximating commercial conditions as closely as possible. Twenty-four batches of product were made with the addition of six levels of sodium nitrite (0, 50, 100, 150, 200, and 300 mug/g), four levels of sodium nitrate (0, 50, 150, and 450 mug/g), and two levels of Clostridium botulinum (0 and 620 spores/g). After formulation, processing, and vacuum packaging, portions of each batch were incubated at 27 C or held for 21 days at 7 C followed by incubation at 27 C for 56 days. The latter storage condition approximated distribution of product through commercial channels and potential temperature abuse at the consumer level. Samples were analyzed for botulinal toxin, nitrite, and nitrate levels after 3, 7, 14, 21, 28, and 56 days of incubation. When nitrite was not added, toxic samples were detected after 14 days of incubation at 27 C. At the lowest level of nitrite added (50 mug/g), no toxic samples were observed until 56 days of incubation. Higher levels of nitrite completely inhibited toxin production throughout the incubation period. Nine uninoculated samples, representing various levels and combinations of nitrite and nitrate, were evaluated organoleptically. The flavor quality of wieners made with nitrite was judged significantly higher (P = 0.05) than of wieners made without nitrite. The nine samples were negative for 14 volatile nitrosamines at a sensitivity level of 10 ng/g. The results indicated that nitrite effectively inhibited botulinal toxin formation at commercially employed levels in wieners and that detectable quantities of nitrosamines were not produced during preparation and processing of the product for consumption.  相似文献   

2.
Comminuted ham was formulated with different levels of sodium nitrite and nitrate, inoculated with Clostridium botulinum, and pasteurized to an internal temperature of 68.5 C. When added to the meat, nitrite concentrations decreased, and cooking had little effect on them. Nitrite concentrations decreased more rapidly during storage at 27 than at 7 C; however they remained rather constant at formulated levels throughout the experiment at both incubation temperatures. The level of nitrite added to the meat greatly influenced growth and toxin production of C. botulinum. The concentration of nitrite necessary to effect complete inhibition was dependent on the inoculum level. With 90 C. botulinum spores/g of meat, botulinum toxin developed in samples formulated with 150 but not with 200 mug of nitrite per g of meat. At a spore level of 5,000/g, toxin was detected in samples with 400 but not with 500 mug of nitrite per g of the product incubated at 27 C. At lower concentrations of nitrite, growth was retarded at both spore levels. No toxin developed in samples incubated at 7 C. Nitrate showed a statistically significant inhibitory effect at a given nitrite level; however, the effect was insufficient to be of practical value. Analyses for 14 volatile nitrosamines from samples made with varying levels of nitrite and nitrate were negative at a detection level of 0.01 mug of nitrite or nitrate per g of meat.  相似文献   

3.
Final internal processing temperatures within the range of 63 to 74 degrees C did not alter the degree of botulinal inhibition in inoculated perishable canned comminuted cured pork abused at 27 degrees C. Adding hemoglobin to the formulation reduced residual nitrite after processing and decreased botulinal inhibition. Different meats yielded different rates of botulinal outgrowth when substituted for fresh pork ham. Pork or beef heart meat showed no inhibition of the Clostridium botulinum inoculum even with a 156-microgram/g amount of sodium nitrite added to the product. This effect appears to be one of stimulating outgrowth, since residual nitrite depletion was not measurably altered.  相似文献   

4.
Final internal processing temperatures within the range of 63 to 74 degrees C did not alter the degree of botulinal inhibition in inoculated perishable canned comminuted cured pork abused at 27 degrees C. Adding hemoglobin to the formulation reduced residual nitrite after processing and decreased botulinal inhibition. Different meats yielded different rates of botulinal outgrowth when substituted for fresh pork ham. Pork or beef heart meat showed no inhibition of the Clostridium botulinum inoculum even with a 156-microgram/g amount of sodium nitrite added to the product. This effect appears to be one of stimulating outgrowth, since residual nitrite depletion was not measurably altered.  相似文献   

5.
In an acid forest soil of pH 4.0 to 4.2 amended with glucose, 1.0 mug of nitrite-N per g of soil inhibited the rate of O(2) utilization and CO(2) evolution. The inhibition was evident only for several hours after nitrite addition, and the subsequent rate of glucose mineralization was the same as in soil not receiving nitrite. The decomposition of protein hydrolysate was reduced by 10 mug of nitrite-N per g of soil but not lower concentrations, and the inhibition of this process by 20 mug of nitrite-N per g had dissipated after 24 h. Nitrite disappeared readily from this soil. More than 20 mug of bisulfite-S per g of soil was required to inhibit glucose decomposition. The data suggest that the possible antimicrobial effects of low levels of NO(2), which give rise to nitrite in soil, require further evaluation.  相似文献   

6.
The effects of the initial pH and a "short pump" on the outgrowth of Clostridium sporogenes PA 3679 spores in comminuted cured pork were studied. Fresh ground pork was cured with salt, sugar, phosphate, ascorbate, and varying amounts of sodium nitrite and sorbic acid. The product was comminuted and inoculated with 1,000 spores of C. sporogenes per g. The meat was stuffed into 1-ounce (ca. 28.4-g) aluminum tubes, cooked to 58.5 degrees C, cooled, and incubated at 27 degrees C to observe for swells. Product cured with 0.2% sorbic acid in combination with 40 ppm sodium nitrite (40 microgram/g) had better clostridium inhibition than did product cured with 120 ppm nitrite within a pH range of 5.0 to 6.7. The sorbic acid-40 ppm nitrite combination also gave better clostridial protection than did the 120 ppm nitrite alone when reduced amounts of curing ingredients were present.  相似文献   

7.
The effects of the initial pH and a "short pump" on the outgrowth of Clostridium sporogenes PA 3679 spores in comminuted cured pork were studied. Fresh ground pork was cured with salt, sugar, phosphate, ascorbate, and varying amounts of sodium nitrite and sorbic acid. The product was comminuted and inoculated with 1,000 spores of C. sporogenes per g. The meat was stuffed into 1-ounce (ca. 28.4-g) aluminum tubes, cooked to 58.5 degrees C, cooled, and incubated at 27 degrees C to observe for swells. Product cured with 0.2% sorbic acid in combination with 40 ppm sodium nitrite (40 microgram/g) had better clostridium inhibition than did product cured with 120 ppm nitrite within a pH range of 5.0 to 6.7. The sorbic acid-40 ppm nitrite combination also gave better clostridial protection than did the 120 ppm nitrite alone when reduced amounts of curing ingredients were present.  相似文献   

8.
Clostridial ferredoxin and pyruvate-ferredoxin oxidoreductase activity was investigated after in vitro or in vivo treatment with sodium nitrite. In vitro treatment of commercially available Clostridium pasteurianum ferredoxin with sodium nitrite inhibited ferredoxin activity. Inhibition of ferredoxin activity increased with increasing levels of sodium nitrite. Ferredoxin was isolated from normal C. pasteurianum and Clostridium botulinum cultures and from cultures incubated with 1,000 micrograms of sodium nitrite per ml for 45 min. The activity of in vivo nitrite-treated ferredoxin was decreased compared with that of control ferredoxin. Pyruvate-ferredoxin oxidoreductase isolated from C. botulinum cultures incubated with 1,000 micrograms of sodium nitrite per ml showed less activity than did control oxidoreductase. It is concluded that the antibotulinal activity of nitrite is due at least in part to inactivation of ferredoxin and pyruvate-ferredoxin oxidoreductase.  相似文献   

9.
Clostridial ferredoxin and pyruvate-ferredoxin oxidoreductase activity was investigated after in vitro or in vivo treatment with sodium nitrite. In vitro treatment of commercially available Clostridium pasteurianum ferredoxin with sodium nitrite inhibited ferredoxin activity. Inhibition of ferredoxin activity increased with increasing levels of sodium nitrite. Ferredoxin was isolated from normal C. pasteurianum and Clostridium botulinum cultures and from cultures incubated with 1,000 micrograms of sodium nitrite per ml for 45 min. The activity of in vivo nitrite-treated ferredoxin was decreased compared with that of control ferredoxin. Pyruvate-ferredoxin oxidoreductase isolated from C. botulinum cultures incubated with 1,000 micrograms of sodium nitrite per ml showed less activity than did control oxidoreductase. It is concluded that the antibotulinal activity of nitrite is due at least in part to inactivation of ferredoxin and pyruvate-ferredoxin oxidoreductase.  相似文献   

10.
An inhibitor of Clostridium perfringens formed when low levels of nitrite were autoclaved with a defined chemical medium. A systematic study of the medium revealed that only amino acids and mineral salts were involved in the production of this inhibitor, which was proven to be a toxic compound formed from cysteine, ferrous sulfate, and sodium nitrite. The inhibitor was compared to several known compounds. S-nitrosocysteine inhibited the test organism, but would not form in the test system in amounts large enough to explain the observed inhibition. Roussin red salt was unstable in the test system and therefore was not the inhibitor. Roussin black salt, which was also inhibitory, could form in sufficient amounts to explain the inhibition. A complex of cysteine, iron, and nitric oxide was detected in the autoclaved solution of cysteine, ferrous sulfate, and sodium nitrite; this cysteine complex did not appear to be inhibitory, however, at levels which could form in the autoclaved medium. The observed inhibition may have been due to the combined effects of sublethal concentrations of each compound.  相似文献   

11.
Dietary nitrite and nitrate are important sources of nitric oxide (NO). However, the use of nitrite as an antihypertensive drug may be limited by increased oxidative stress associated with hypertension. We evaluated the antihypertensive effects of sodium nitrite given in drinking water for 4 weeks in two-kidney one-clip (2K1C) hypertensive rats and the effects induced by nitrite on NO bioavailability and oxidative stress. We found that, even under the increased oxidative stress conditions present in 2K1C hypertension, nitrite reduced systolic blood pressure in a dose-dependent manner. Whereas treatment with nitrite did not significantly change plasma nitrite concentrations in 2K1C rats, it increased plasma nitrate levels significantly. Surprisingly, nitrite treatment exerted antioxidant effects in both hypertensive and sham-normotensive control rats. A series of in vitro experiments was carried out to show that the antioxidant effects induced by nitrite do not involve direct antioxidant effects or xanthine oxidase activity inhibition. Conversely, nitrite decreased vascular NADPH oxidase activity. Taken together, our results show for the first time that nitrite has antihypertensive effects in 2K1C hypertensive rats, which may be due to its antioxidant properties resulting from vascular NADPH oxidase activity inhibition.  相似文献   

12.
Samples of (i) a control or of (ii) sodium nitrite-containing or (iii) sorbic acid-containing, mechanically deboned chicken meat frankfurter-type emulsions inoculated with Clostridium botulinum spores, or a combination of ii and iii, were temperature abuse at 27 degrees C. Spore germination and total microbial growth were followed and examined at specified times and until toxic samples were detected. The spores germinated within 3 days in both control and nitrite (20, 40 and 156 micrograms/g) treatments. Sorbic acid (0.2%) alone or in combination with nitrite (20, 40, and 156 micrograms/g) significantly (P less than 0.05) inhibited spore germinations. No significant germination was recorded until toxic samples were detected. A much longer incubation period was necessary for toxin to be formed in nitrite-sorbic acid combination treatments as contrasted with controls or nitrite and sorbic acid used individually. Total growth was not affected by the presence of nitrite, whereas sorbic acid appeared to depress it. Possible mechanisms explaining the effects of nitrite and sorbic acid on spore germination and growth are postulated.  相似文献   

13.
Samples of (i) a control or of (ii) sodium nitrite-containing or (iii) sorbic acid-containing, mechanically deboned chicken meat frankfurter-type emulsions inoculated with Clostridium botulinum spores, or a combination of ii and iii, were temperature abuse at 27 degrees C. Spore germination and total microbial growth were followed and examined at specified times and until toxic samples were detected. The spores germinated within 3 days in both control and nitrite (20, 40 and 156 micrograms/g) treatments. Sorbic acid (0.2%) alone or in combination with nitrite (20, 40, and 156 micrograms/g) significantly (P less than 0.05) inhibited spore germinations. No significant germination was recorded until toxic samples were detected. A much longer incubation period was necessary for toxin to be formed in nitrite-sorbic acid combination treatments as contrasted with controls or nitrite and sorbic acid used individually. Total growth was not affected by the presence of nitrite, whereas sorbic acid appeared to depress it. Possible mechanisms explaining the effects of nitrite and sorbic acid on spore germination and growth are postulated.  相似文献   

14.
Addition of sodium isoascorbate to the formulation for perishable canned comminuted cured meat markedly enhanced the efficacy of nitrite against Clostridium botulinum. This effect was reproducible through a series of three tests. In one test it was found that the initial addition of 50 microgram of sodium nitrite per g plus isoascorbate was as effective as 156 microgram of sodium nitrite per g alone.  相似文献   

15.
Addition of sodium isoascorbate to the formulation for perishable canned comminuted cured meat markedly enhanced the efficacy of nitrite against Clostridium botulinum. This effect was reproducible through a series of three tests. In one test it was found that the initial addition of 50 microgram of sodium nitrite per g plus isoascorbate was as effective as 156 microgram of sodium nitrite per g alone.  相似文献   

16.
Chicken eggs of 4 or 6 days of incubation were injected with 10 mug 6-aminonicotinamide (6-AN) or 6-AN plus various doses of sodium ascorbate, calcium ascorbate, or ascorbic acid; 11-day embryos were examined grossly and histologically. 6-AN-treated embryos had various degrees of micromelia and were reduced in overall size. All three ascorbates inhibited 6-AN teratogenesis but not completely. The extent of inhibition was dose related. Increased amounts of intercellular matrix and decreased necrosis of chondrocytes in the limb cartilage of protected embryos correlated with the gross findings.  相似文献   

17.
The method by which sodium nitrite may act to prevent germination or outgrowth, or both, of heat-injured spores in canned cured meats was investigated by using Clostridium perfringens spores. Four possible mechanisms were tested: (i) prevention of germination of the heat-injured spores, (ii) prior combination with a component in a complex medium to prevent germination of heat-injured spores, (iii) inhibition of outgrowth of heat-injured spores, and (iv) induction of germination (which would render the spore susceptible to thermal inactivation). Only the third mechanism was effective with the entire spore population when levels of sodium nitrite commercially acceptable in canned cured meats were used. Concentrations of 0.02 and 0.01% prevented outgrowth of heat-sensitive and heat-resistant spores, respectively. Nitrite-induced germination occurred with higher sodium nitrite concentrations.  相似文献   

18.
D Arquette  L D Caren 《Life sciences》1992,50(11):753-759
Vitamin C is an effective antioxidant that neutralizes reactive oxygen radicals. The purpose of this study was to determine if sodium ascorbate would neutralize the reactive oxygen products generated during the respiratory burst of thioglycollate-elicited murine peritoneal exudate cells (PEC). In vitro and in vivo studies were done. Cells treated in vitro showed a significant, dose-dependent reduction in chemiluminescence (CL) after activation with opsonized zymosan. Higher concentrations of sodium ascorbate (24.2 mM) produced a significantly greater reduction in CL than did lower concentrations (0.242 mM). This range of sodium ascorbate concentrations overlaps those found in normal leukocytes (1-4 mM). Sodium ascorbate at physiological plasma concentrations (0.09 mM) did not reduce CL. Cells incubated with 500 mM sodium ascorbate in vitro and then washed once prior to zymosan activation also showed a significant reduction in CL. In contrast, PEC harvested from mice treated in vivo with sodium ascorbate (one or five daily doses of 1.0 M sodium ascorbate, 0.01 ml/g body weight) did not show a reduction in CL. This concentration of sodium ascorbate represents a dose that is 2310 times greater than the Recommended Dietary Allowance (RDA). These studies show that physiological doses of sodium ascorbate can quench CL in vitro, but even large doses of sodium ascorbate administered in vivo do not affect the CL of harvested murine PEC.  相似文献   

19.
20.
The addition of several different antibiotics to growing cultures of Streptococcus faecalis, ATCC 9790, was found to inhibit autolysis of cells in sodium phosphate buffer. When added to exponential-phase cultures, mitomycin C (0.4 mug/ml) or phenethyl alcohol (3 mg/ml) inhibited deoxyribonucleic acid synthesis, but did not appreciably affect the rate of cellular autolysis. Addition of chloramphenicol (10 mug/ml), tetracycline (0.5 mug/ml), puromycin (25 mug/ml), or 5-azacytidine (5 mug/ml) to exponential-phase cultures inhibited protein synthesis and profoundly decreased the rate of cellular autolysis. Actinomycin D (0.075 mug/ml) and rifampin (0.01 mug/ml), both inhibitors of ribonucleic acid (RNA) synthesis, also reduced the rate of cellular autolysis. However, the inhibitory effect of actinomycin D and rifampin on cellular autolysis was more closely correlated with their concomitant secondary inhibition of protein synthesis than with the more severe inhibition of RNA synthesis. The dose-dependent inhibition of protein synthesis by 5-azacytidine was quickly diluted out of a growing culture. Reversal of inhibition was accompanied by a disproportionately rapid increase in the ability of cells to autolyze. Thus, inhibition of the ability of cells to autolyze can be most closely related to inhibition of protein synthesis. Furthermore, the rapidity of the response of cellular autolysis to inhibitors of protein synthesis suggests that regulation is exerted at the level of autolytic enzyme activity and not enzyme synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号