首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anoxia occurs in bottom waters of stratified estuaries when respiratory consumption of oxygen, primarily by bacteria, outpaces atmospheric and photosynthetic reoxygenation. Once water becomes anoxic, bacterioplankton must change their metabolism to some form of anaerobic respiration. Analysis of redox chemistry in water samples spanning the oxycline of Chesapeake Bay during the summer of 2004 suggested that there was a succession of respiratory metabolism following the loss of oxygen. Bacterial community doubling time, calculated from bacterial abundance (direct counts) and production (anaerobic leucine incorporation), ranged from 0.36 to 0.75 day and was always much shorter than estimates of the time that the bottom water was anoxic (18 to 44 days), indicating that there was adequate time for bacterial community composition to shift in response to changing redox conditions. However, community composition (as determined by PCR-denaturing gradient gel electrophoresis analysis of 16S rRNA genes) in anoxic waters was very similar to that in surface waters in June when nitrate respiration was apparent in the water column and only partially shifted away from the composition of the surface community after nitrate was depleted. Anoxic water communities did not change dramatically until August, when sulfate respiration appeared to dominate. Surface water populations that remained dominant in anoxic waters were Synechococcus sp., Gammaproteobacteria in the SAR86 clade, and Alphaproteobacteria relatives of Pelagibacter ubique, including a putative estuarine-specific Pelagibacter cluster. Populations that developed in anoxic water were most similar (<92% similarity) to uncultivated Firmicutes, uncultivated Bacteroidetes, Gammaproteobacteria in the genus Thioalcalovibrio, and the uncultivated SAR406 cluster. These results indicate that typical estuarine bacterioplankton switch to anaerobic metabolism under anoxic conditions but are ultimately replaced by different organisms under sulfidic conditions.  相似文献   

2.
3.
Oxygen-depleted bodies of water are becoming increasingly common in marine ecosystems. Solutions to reverse this trend are needed and under development, for example, by the Baltic deep-water OXygenation (BOX) project. In the framework of this project, the Swedish Byfjord was chosen for a pilot study, investigating the effects of an engineered oxygenation on long-term anoxic bottom waters. The strong stratification of the water column of the Byfjord was broken up by pumping surface water into the deeper layers, triggering several inflows of oxygen-rich water and increasing oxygen levels in the lower water column and the benthic zone up to 110 μmol l−1.We used molecular ecologic methods to study changes in bacterial community structure in response to the oxygenation in the Byfjord. Water column samples from before, during and after the oxygenation as well as from two nearby control fjords were analyzed. Our results showed a strong shift in bacterial community composition when the bottom water in the Byfjord became oxic. Initially dominant indicator species for oxygen minimum zones such as members of the SUP05 clade declined in abundance during the oxygenation event and nearly vanished after the oxygenation was accomplished. In contrast, aerobic species like SAR11 that initially were restricted to surface waters could later be detected deep into the water column. Overall, the bacterial community in the formerly anoxic bottom waters changed to a community structure similar to those found in oxic waters, showing that an engineered oxygenation of a large body of anoxic marine water is possible and emulates that of a natural oxygenation event.  相似文献   

4.
Changes in the abundance of sympatric Achromatium spp. in response to the artificial manipulation of redox conditions in sediment microcosms was determined by fluorescence in situ hybridization (FISH). Adaptation to different redox conditions was shown to be one mechanism that supported the coexistence of functionally similar Achromatium spp. In sediment microcosms, in which the overlying water was oxygenated, Achromatium community size and composition remained unchanged over time. However, imposition of anoxic conditions induced changes in community structure. Anoxia caused a reduction in the relative abundance of Achromatium sp. RY8 (72 +/- 4% to 49 +/- 2%) and an increase in Achromatium sp. RY5 (19 +/- 5% to 32 +/- 3%) and a newly identified Achromatium sp., RYKS (14 +/- 4% to 27 +/- 2%). In anoxic microcosms supplemented with a single addition of nitrate at different initial concentrations the relative decline in Achromatium sp. RY8 was dependent on the initial nitrate concentration. In these experiments nitrate was rapidly removed. In contrast, when high levels of nitrate were maintained by periodic replacement of the overlying water with nitrate supplemented anoxic water, the composition of the Achromatium community remained stable over time. This suggested that all of the coexisting Achromatium spp. are obligate or facultative anaerobes, but, Achromatium sp. RY8 was more sensitive to sediment redox conditions than the other Achromatium species. Given the heterogeneous nature of sedimentary environments, redox-related niche differentiation may promote coexistence of sympatric Achromatium spp.  相似文献   

5.
Redox fluctuation structures microbial communities in a wet tropical soil   总被引:1,自引:0,他引:1  
Frequent high-amplitude redox fluctuation may be a strong selective force on the phylogenetic and physiological composition of soil bacterial communities and may promote metabolic plasticity or redox tolerance mechanisms. To determine effects of fluctuating oxygen regimens, we incubated tropical soils under four treatments: aerobic, anaerobic, 12-h oxic/anoxic fluctuation, and 4-day oxic/anoxic fluctuation. Changes in soil bacterial community structure and diversity were monitored with terminal restriction fragment length polymorphism (T-RFLP) fingerprints. These profiles were correlated with gross N cycling rates, and a Web-based phylogenetic assignment tool was used to infer putative community composition from multiple fragment patterns. T-RFLP ordinations indicated that bacterial communities from 4-day oxic/anoxic incubations were most similar to field communities, whereas those incubated under consistently aerobic or anaerobic regimens developed distinctly different molecular profiles. Terminal fragments found in field soils persisted either in 4-day fluctuation/aerobic conditions or in anaerobic/12-h treatments but rarely in both. Only 3 of 179 total fragments were ubiquitous in all soils. Soil bacterial communities inferred from in silico phylogenetic assignment appeared to be dominated by Actinobacteria (especially Micrococcus and Streptomycetes), "Bacilli," "Clostridia," and Burkholderia and lost significant diversity under consistently or frequently anoxic incubations. Community patterns correlated well with redox-sensitive processes such as nitrification, dissimilatory nitrate reduction to ammonium (DNRA), and denitrification but did not predict patterns of more general functions such as N mineralization and consumption. The results suggest that this soil's indigenous bacteria are highly adapted to fluctuating redox regimens and generally possess physiological tolerance mechanisms which allow them to withstand unfavorable redox periods.  相似文献   

6.
Phylogenetic diversity of the marine bacterioplankton in Kongsfjorden (Spitsbergen) was investigated by 16S rRNA gene analysis. Community fingerprint analysis by PCR-denaturing gradient gel electrophoresis revealed that there was no apparent difference of bacterioplankton community composition between sampling locations in the fjord. A higher biodiversity was observed in bottom water of station 3 in the central part of the fjord. By 16S rRNA gene clone library analysis, sequences detected both in surface and bottom water of station 3 fell into eight putative divisions, including Proteobacteria (Alpha, Beta, Gamma and Delta), Bacteroidetes, Actinobacteria, Verrucomicrobia and unidentified bacteria, in addition to chloroplasts of algae. Sequences representing Planctomycetes were only observed in bottom water. Compared to the preponderance of clones representing Gammaproteobacteria (36.5%) and Alphaproteobacteria (29.4%) in bottom water, Alphaproteobacteria (43.6%) and algae (27.7%) constituted two dominant fractions in surface water. Cloned sequences showed 82.1–100% similarity to those described sequences. It suggests that, attributing to the influence of ocean currents as well as freshwater input in the summer, the bacterial community in Kongsfjorden may consist of a mixture of cosmopolitan and uniquely endemic phylotypes.  相似文献   

7.
Nitrogen frequently limits oceanic photosynthesis and the availability of inorganic nitrogen sources in the surface oceans is shifting with global change. We evaluated the potential for abrupt increases in inorganic N sources to induce cascading effects on dissolved organic matter (DOM) and microbial communities in the surface ocean. We collected water from 5 m depth in the central North Pacific and amended duplicate 20 liter polycarbonate carboys with nitrate or ammonium, tracking planktonic carbon fixation, DOM production, DOM composition and microbial community structure responses over 1 week relative to controls. Both nitrogen sources stimulated bulk phytoplankton, bacterial and DOM production and enriched Synechococcus and Flavobacteriaceae; ammonium enriched for oligotrophic Actinobacteria OM1 and Gammaproteobacteria KI89A clades while nitrate enriched Gammaproteobacteria SAR86, SAR92 and OM60 clades. DOM resulting from both N enrichments was more labile and stimulated growth of copiotrophic Gammaproteobacteria (Alteromonadaceae and Oceanospirillaceae) and Alphaproteobacteria (Rhodobacteraceae and Hyphomonadaceae) in weeklong dark incubations relative to controls. Our study illustrates how nitrogen pulses may have direct and cascading effects on DOM composition and microbial community dynamics in the open ocean.  相似文献   

8.
Meromictic lakes with anoxic bottom waters often have active methane cycles whereby methane is generally produced biogenically under anoxic conditions and oxidized in oxic surface waters prior to reaching the atmosphere. Lakes that contain dissolved ferrous iron in their deep waters (i.e., ferruginous) are rare, but valuable, as geochemical analogues of the conditions that dominated the Earth's oceans during the Precambrian when interactions between the iron and methane cycles could have shaped the greenhouse regulation of the planet's climate. Here, we explored controls on the methane fluxes from Brownie Lake and Canyon Lake, two ferruginous meromictic lakes that contain similar concentrations (max. >1 mM) of dissolved methane in their bottom waters. The order Methanobacteriales was the dominant methanogen detected in both lakes. At Brownie Lake, methanogen abundance, an increase in methane concentration with respect to depths closer to the sediment, and isotopic data suggest methanogenesis is an active process in the anoxic water column. At Canyon Lake, methanogenesis occurred primarily in the sediment. The most abundant aerobic methane‐oxidizing bacteria present in both water columns were associated with the Gammaproteobacteria, with little evidence of anaerobic methane oxidizing organisms being present or active. Direct measurements at the surface revealed a methane flux from Brownie Lake that was two orders of magnitude greater than the flux from Canyon Lake. Comparison of measured versus calculated turbulent diffusive fluxes indicates that most of the methane flux at Brownie Lake was non‐diffusive. Although the turbulent diffusive methane flux at Canyon Lake was attenuated by methane oxidizing bacteria, dissolved methane was detected in the epilimnion, suggestive of lateral transport of methane from littoral sediments. These results highlight the importance of direct measurements in estimating the total methane flux from water columns, and that non‐diffusive transport of methane may be important to consider from other ferruginous systems.  相似文献   

9.
Coastal waters are a major source of marine methane to the atmosphere. Particularly high concentrations of this potent greenhouse gas are found in anoxic waters, but it remains unclear if and to what extent anaerobic methanotrophs mitigate the methane flux. Here we investigate the long-term dynamics in methanotrophic activity and the methanotroph community in the coastal oxygen minimum zone (OMZ) of Golfo Dulce, Costa Rica, combining biogeochemical analyses, experimental incubations and 16S rRNA gene sequencing over 3 consecutive years. Our results demonstrate a stable redox zonation across the years with high concentrations of methane (up to 1.7 μmol L−1) in anoxic bottom waters. However, we also measured high activities of anaerobic methane oxidation in the OMZ core (rate constant, k, averaging 30 yr−1 in 2018 and 8 yr−1 in 2019–2020). The OPU3 and Deep Sea-1 clades of the Methylococcales were implicated as conveyors of the activity, peaking in relative abundance 5–25 m below the oxic–anoxic interface and in the deep anoxic water respectively. Although their genetic capacity for anaerobic methane oxidation remains unexplored, their sustained high relative abundance indicates an adaptation of these clades to the anoxic, methane-rich OMZ environment, allowing them to play major roles in mitigating methane fluxes.  相似文献   

10.
Denitrification is a microbial process during which nitrate or nitrite is reduced under anaerobic condition to gaseous nitrogen. The Arabian Sea contains one of the major pelagic denitrification zones and in addition to this, denitrification also takes places along the continental shelf. Prokaryotic microorganisms were considered to be the only players in this process. However recent studies have shown that higher microeukaryotes such as fungi can also adapt to anaerobic mode of respiration and reduce nitrate to harmful green house gases such as NO and N2O. In this study we examined the distribution and biomass of fungi in the sediments of the seasonal anoxic region off Goa from two stations. The sampling was carried out in five different periods from October 2005, when dissolved oxygen levels were near zero in bottom waters to March 2006. We isolated mycelial fungi, thraustochytrids and yeasts. Species of Aspergillus and thraustochytrids were dominant. Fungi were isolated under aerobic, as well as anaerobic conditions from different seasons. Four isolates were examined for their denitrification activity. Two cultures obtained from the anoxic sediments showed better growth under anaerobic condition than the other two cultures that were isolated from oxic sediments. Our preliminary results suggest that several species of fungi can grow under oxygen deficient conditions and participate in denitrification processes.  相似文献   

11.
Rapidly fluctuating environmental conditions can significantly stress organisms, particularly when fluctuations cross thresholds of normal physiological tolerance. Redox potential fluctuations are common in humid tropical soils, and microbial community acclimation or avoidance strategies for survival will in turn shape microbial community diversity and biogeochemistry. To assess the extent to which indigenous bacterial and archaeal communities are adapted to changing in redox potential, soils were incubated under static anoxic, static oxic or fluctuating redox potential conditions, and the standing (DNA‐based) and active (RNA‐based) communities and biogeochemistry were determined. Fluctuating redox potential conditions permitted simultaneous CO2 respiration, methanogenesis, N2O production and iron reduction. Exposure to static anaerobic conditions significantly changed community composition, while 4‐day redox potential fluctuations did not. Using RNA : DNA ratios as a measure of activity, 285 taxa were more active under fluctuating than static conditions, compared with three taxa that were more active under static compared with fluctuating conditions. These data suggest an indigenous microbial community adapted to fluctuating redox potential.  相似文献   

12.
13.
Frequent high-amplitude redox fluctuation may be a strong selective force on the phylogenetic and physiological composition of soil bacterial communities and may promote metabolic plasticity or redox tolerance mechanisms. To determine effects of fluctuating oxygen regimens, we incubated tropical soils under four treatments: aerobic, anaerobic, 12-h oxic/anoxic fluctuation, and 4-day oxic/anoxic fluctuation. Changes in soil bacterial community structure and diversity were monitored with terminal restriction fragment length polymorphism (T-RFLP) fingerprints. These profiles were correlated with gross N cycling rates, and a Web-based phylogenetic assignment tool was used to infer putative community composition from multiple fragment patterns. T-RFLP ordinations indicated that bacterial communities from 4-day oxic/anoxic incubations were most similar to field communities, whereas those incubated under consistently aerobic or anaerobic regimens developed distinctly different molecular profiles. Terminal fragments found in field soils persisted either in 4-day fluctuation/aerobic conditions or in anaerobic/12-h treatments but rarely in both. Only 3 of 179 total fragments were ubiquitous in all soils. Soil bacterial communities inferred from in silico phylogenetic assignment appeared to be dominated by Actinobacteria (especially Micrococcus and Streptomycetes), “Bacilli,” “Clostridia,” and Burkholderia and lost significant diversity under consistently or frequently anoxic incubations. Community patterns correlated well with redox-sensitive processes such as nitrification, dissimilatory nitrate reduction to ammonium (DNRA), and denitrification but did not predict patterns of more general functions such as N mineralization and consumption. The results suggest that this soil's indigenous bacteria are highly adapted to fluctuating redox regimens and generally possess physiological tolerance mechanisms which allow them to withstand unfavorable redox periods.  相似文献   

14.
We assessed the composition of the bacterioplankton in the Atlantic sector of the Southern Ocean in austral fall and winter and in New Zealand coastal waters in summer. The various water masses between the subtropics/Agulhas–Benguela boundary region and the Antarctic coastal current exhibited distinct bacterioplankton communities with the highest richness in the polar frontal region, as shown by denaturing gradient gel electrophoresis of 16S rRNA gene fragments. The SAR11 clade and the Roseobacter clade‐affiliated (RCA) cluster were quantified by real‐time quantitative PCR. SAR11 was detected in all samples analysed from subtropical waters to the coastal current and to depths of > 1000 m. In fall and winter, this clade constituted < 3% to 48% and 4–28% of total bacterial 16S rRNA genes respectively, with highest fractions in subtropical to polar frontal regions. The RCA cluster was only present in New Zealand coastal surface waters not exceeding 17°C, in the Agulhas–Benguela boundary region (visited only during the winter cruise), in subantarctic waters and in the Southern Ocean. In fall, this cluster constituted up to 36% of total bacterial 16S rRNA genes with highest fractions in the Antarctic coastal current and outnumbered the SAR11 clade at most stations in the polar frontal region and further south. In winter, the RCA cluster constituted lower proportions than the SAR11 clade and did not exceed 8% of total bacterial 16S rRNA genes. In fall, the RCA cluster exhibited significant positive correlations with latitude and ammonium concentrations and negative correlations with concentrations of nitrate, phosphate, and for near‐surface samples also with chlorophyll a, biomass production of heterotrophic prokaryotes and glucose turnover rates. The findings show that the various water masses between the subtropics and the Antarctic coastal current harbour distinct bacterioplankton communities. They further indicate that the RCA cluster, despite the narrow sequence similarity of > 98% of its 16S rRNA gene, is an abundant component of the heterotrophic bacterioplankton in the Southern Ocean, in particular in its coldest regions.  相似文献   

15.
Anthropogenic activities on coastal watersheds increase nutrient concentrations of groundwater. As groundwater travels downslope it transports these nutrients toward the adjoining coastal water. The resulting nutrient loading rates can be significant because nutrient concentrations in coastal groundwaters may be several orders of magnitude greater than those of receiving coastal waters. Groundwater-borne nutrients are most subject to active biogeochemical transformations as they course through the upper 1 m or so of bottom sediments. There conditions favor anaerobic processes such as denitrification, as well as other mechanisms that either sequester or release nutrients. The relative importance of advective vs. regenerative pathways of nutrient supply may result in widely different rates of release of nutrients from sediments. The relative activity of denitrifiers also may alter the ratio of N to P released to overlying waters, and hence affect which nutrient limits growth of producers. The consequences of nutrient (particularly nitrate) loading include somewhat elevated nutrient concentrations in the watercolumn, increased growth of macroalgae and phytoplankton, reduction of seagrass beds, and reductions of the associated fauna. The decline in animals occurs because of habitat changes and because of the increased frequency of anoxic events prompted by the characteristically high respiration rates found in enriched waters.  相似文献   

16.
Anthropogenic activities on coastal watersheds increase nutrient concentrations of groundwater. As groundwater travels downslope it transports these nutrients toward the adjoining coastal water. The resulting nutrient loading rates can be significant because nutrient concentrations in coastal groundwaters may be several orders of magnitude greater than those of receiving coastal waters. Groundwater-borne nutrients are most subject to active biogeochemical transformations as they course through the upper 1 m or so of bottom sediments. There conditions favor anaerobic processes such as denitrification, as well as other mechanisms that either sequester or release nutrients. The relative importance of advective vs. regenerative pathways of nutrient supply may result in widely different rates of release of nutrients from sediments. The relative activity of denitrifiers also may alter the ratio of N to P released to overlying waters, and hence affect which nutrient limits growth of producers. The consequences of nutrient (particularly nitrate) loading include somewhat elevated nutrient concentrations in the watercolumn, increased growth of macroalgae and phytoplankton, reduction of seagrass beds, and reductions of the associated fauna. The decline in animals occurs because of habitat changes and because of the increased frequency of anoxic events prompted by the characteristically high respiration rates found in enriched waters.  相似文献   

17.
Marine bacterioplankton studies over the annual cycle in polar systems are limited due to logistic constraints in site access and support. Here, we conducted a comparative study of marine bacterioplankton sampled at several time points over the annual cycle (12 occasions each) at sub-Antarctic Kerguelen Islands (KI) and Antarctic Peninsula (AP) coastal sites in order to establish a better understanding of the extent and nature of variation in diversity and community structure at these different latitudes (49-64S). Molecular methods targeting the 16S rRNA gene (DGGE, CE-SSCP and tag pyrosequencing) suggest a strong seasonal pattern with higher richness in winter and a clear influence of phytoplankton bloom events on bacterioplankton community structure and diversity in both locations. The distribution of sequence tags within Gammaproteobacteria, Alphaproteobacteria and Bacteriodetes differed between the two regions. At both sites, several abundant Rhodobacteraceae, uncultivated Gammaproteobacteria and Bacteriodetes-associated tags displayed intense seasonal variation often with similar trends at both sites. This enhanced understanding of variability in dominant groups of bacterioplankton over the annual cycle contributes to an expanding baseline to understand climate change impacts in the coastal zone of polar oceans and provides a foundation for comparison with open ocean polar systems.  相似文献   

18.
Fluctuating soil redox regimes may facilitate the co-occurrence of microbial nitrogen transformations with significantly different sensitivities to soil oxygen availability. In an upland humid tropical forest, we explored the impact of fluctuating redox regimes on gross nitrogen cycling rates and microbial community composition. Our results suggest that the rapidly fluctuating redox conditions that characterize these upland soils allow anoxic and oxic N processing to co-occur. Gross nitrogen mineralization was insensitive to soil redox fluctuations. In contrast, nitrifiers in this soil were directly affected by low redox periods, yet retained some activity even after 3–6 weeks of anoxia. Dissimilatory nitrate reduction to ammonium (DNRA) was less sensitive to oxygen exposure than expected, indicating that the organisms mediating this reductive process were also tolerant of unfavorable (oxic) conditions. Denitrification was a stronger sink for NO3 in consistently anoxic soils than in variable redox soils. Microbial biomass and community composition were maintained with redox fluctuation, but biomass decreased and composition changed under static oxic and anoxic soil regimes. Bacterial community structure was significantly correlated with rates of nitrification, denitrification and DNRA, suggesting that redox-control of soil microbial community structure was an important determinant of soil N-cycling rates. Specific nitrogen cycling functional groups in this environment (such as nitrifiers, DNRA organisms, and denitrifiers) appear to have adapted to nutrient resources that are spatially and temporally variable. In soils where oxygen is frequently depleted and re-supplied, characteristics of microbial tolerance and resilience can frame N cycling patterns.  相似文献   

19.
Analyses of small subunit ribosomal RNA genes (SSU rDNAs) have significantly influenced our understanding of the composition of aquatic microbial assemblages. Unfortunately, SSU rDNA sequences often do not have sufficient resolving power to differentiate closely related species. To address this general problem for uncultivated bacterioplankton taxa, we analysed and compared sequences of polymerase chain reaction (PCR)-generated and bacterial artificial chromosome (BAC)-derived clones that contained most of the SSU rDNAs, the internal transcribed spacer (ITS) and the large subunit ribosomal RNA gene (LSU rDNA). The phylogenetic representation in the rRNA operon PCR library was similar to that reported previously in coastal bacterioplankton SSU rDNA libraries. We observed good concordance between the phylogenetic relationships among coastal bacterioplankton inferred from SSU or LSU rDNA sequences. ITS sequences confirmed the close intragroup relationships among members of the SAR11, SAR116 and SAR86 clades that were predicted by SSU and LSU rDNA sequence analyses. We also found strong support for homologous recombination between the ITS regions of operons from the SAR11 clade.  相似文献   

20.
We investigated the relationship between bacterioplankton production (BP), respiration (BR), and community composition measured by terminal restriction fragment length polymorphism in the southern North Sea over a seasonal cycle. Major changes in bacterioplankton richness were apparent from April to December. While cell-specific BP decreased highly significantly with increasing bacterioplankton richness, cell-specific BR was found to be variable along the richness gradient, suggesting that bacterioplankton respiration is rather independent from shifts in the bacterial community composition. As a consequence, the bacterial growth efficiency [BGE = BP/(BP + BR)] was negatively related to bacterioplankton richness, explaining approximately 43% of the variation in BGE. Our results indicate that despite the observed shifts in the community composition, the main function of the bacterioplankton, the remineralization of dissolved organic carbon to CO(2), is rather stable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号