首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The precise control of many T cell functions relies on cytosolic Ca(2+) dynamics that is shaped by the Ca(2+) release from the intracellular store and extracellular Ca(2+) influx. The Ca(2+) influx activated following T cell receptor (TCR)-mediated store depletion is considered to be a major mechanism for sustained elevation in cytosolic Ca(2+) concentration ([Ca(2+)](i)) necessary for T cell activation, whereas the role of intracellular Ca(2+) release channels is believed to be minor. We found, however, that in Jurkat T cells [Ca(2+)](i) elevation observed upon activation of the store-operated Ca(2+) entry (SOCE) by passive store depletion with cyclopiazonic acid, a reversible blocker of sarco-endoplasmic reticulum Ca(2+)-ATPase, inversely correlated with store refilling. This indicated that intracellular Ca(2+) release channels were activated in parallel with SOCE and contributed to global [Ca(2+)](i) elevation. Pretreating cells with (-)-xestospongin C (10 microM) or ryanodine (400 microM), the antagonists of inositol 1,4,5-trisphosphate receptor (IP3R) or ryanodine receptor (RyR), respectively, facilitated store refilling and significantly reduced [Ca(2+)](i) elevation evoked by the passive store depletion or TCR ligation. Although the Ca(2+) release from the IP3R can be activated by TCR stimulation, the Ca(2+) release from the RyR was not inducible via TCR engagement and was exclusively activated by the SOCE. We also established that inhibition of IP3R or RyR down-regulated T cell proliferation and T-cell growth factor interleukin 2 production. These studies revealed a new aspect of [Ca(2+)](i) signaling in T cells, that is SOCE-dependent Ca(2+) release via IP3R and/or RyR, and identified the IP3R and RyR as potential targets for manipulation of Ca(2+)-dependent functions of T lymphocytes.  相似文献   

2.
The resistance of inositol 1,4,5-trisphosphate receptor (IP3R)-deficient cells to multiple forms of apoptosis demonstrates the importance of IP3-gated calcium (Ca2+) release to cellular apoptosis. However, the specific upstream biochemical events leading to IP3-gated Ca2+ release during apoptosis induction are not known. We have shown previously that the cyclin-dependent kinase 1/cyclin B (cdk1/CyB or cdc2/CyB) complex phosphorylates IP3R1 in vitro and in vivo at Ser421 and Thr799. In this study, we show that: 1) the cdc2/CyB complex directly interacts with IP3R1 through Arg391, Arg441, and Arg871; 2) IP3R1 phosphorylation at Thr799 by the cdc2/CyB complex increases IP3 binding; and 3) cdc2/CyB phosphorylation increases IP3-gated Ca2+ release. Taken together, these results demonstrate that cdc2/CyB phosphorylation positively regulates IP3-gated Ca2+ signaling. In addition, identification of a CyB docking site(s) on IP3R1 demonstrates, for the first time, a direct interaction between a cell cycle component and an intracellular calcium release channel. Blocking this phosphorylation event with a specific peptide inhibitor(s) may constitute a new therapy for the treatment of several human immune disorders.  相似文献   

3.
H Sugawara  M Kurosaki  M Takata    T Kurosaki 《The EMBO journal》1997,16(11):3078-3088
Stimulation of B-cell antigen receptor (BCR) induces a rapid increase in cytoplasmic free calcium due to its release from intracellular stores and influx from the extracellular environment. Inositol 1,4,5-trisphosphate receptors (IP3Rs) are ligand-gated channels that release intracellular calcium stores in response to the second messenger, inositol 1,4,5-trisphosphate. Most hematopoietic cells, including B cells, express at least two of the three different types of IP3R. We demonstrate here that B cells in which a single type of IP3R has been deleted still mobilize calcium in response to BCR stimulation, whereas this calcium mobilization is abrogated in B cells lacking all three types of IP3R. Calcium mobilization by a transfected G protein-coupled receptor (muscarinic M1 receptor) was also abolished in only triple-deficient cells. Capacitative Ca2+ entry, stimulated by thapsigargin, remains unaffected by loss of all three types of IP3R. These data establish that IP3Rs are essential and functionally redundant mediators for both BCR- and muscarinic receptor-induced calcium mobilization, but not for thapsigargin-induced Ca2+ influx. We further show that the BCR-induced apoptosis is significantly inhibited by loss of all three types of IP3R, suggesting an important role for Ca2+ in the process of apoptosis.  相似文献   

4.
Tumor cells strategically down-regulate Fas receptor expression to evade immune attack and up-regulate expression of Fas ligand to promote apoptosis of infiltrating T lymphocytes. Many pathways leading to apoptotic cell death require calcium release from inositol 1,4,5-trisphosphate receptors (IP3Rs). Here, we show that Fas-dependent killing of Jurkat T lymphoma cells by SW620 colon cancer cells requires calcium release from IP3R. General suppression of IP3R signaling significantly reduced SW620-mediated Jurkat cell apoptosis. Significantly, a specific inhibitor of apoptotic calcium release from IP3R strongly blocked lymphocyte apoptosis. Thus, selective pharmacological targeting of apoptotic calcium release from IP3R may enhance tumor cell immunogenicity.  相似文献   

5.
The inositol 1,4,5-trisphosphate receptor (IP3R) is a ubiquitously expressed intracellular calcium (Ca(2+)) release channel on the endoplasmic reticulum. IP3Rs play key roles in controlling Ca(2+) signals that activate numerous cellular functions including T cell activation, neurotransmitter release, oocyte fertilization and apoptosis. There are three forms of IP3R, all of which are ligand-gated channels activated by the second messenger inositol 1,4,5-trisphosphate. Channel function is modulated via cross-talk with other signaling pathways including those mediated by kinases and phosphatases. In particular IP3Rs are known to be regulated by cAMP-dependent protein kinase (PKA) phosphorylation. In the present study we show that PKA and the protein phosphatases PP1 and PP2A are components of the IP3R1 macromolecular signaling complex. PKA phosphorylation of IP3R1 increases channel activity in planar lipid bilayers. These studies indicate that regulation of IP3R1 function via PKA phosphorylation involves components of a macromolecular signaling complex.  相似文献   

6.
The release of calcium ions (Ca(2+)) from their intracellular stores is essential for the fertilization of oocytes of various species. The calcium pools can be induced to release Ca(2+) via two main types of calcium channel receptor: the inositol 1,4,5-trisphosphate receptor (IP(3)R) and the ryanodine receptor. Starfish oocytes have often been used to study intracellular calcium mobilization during oocyte maturation and fertilization, but how the intracellular calcium channels contribute to intracellular calcium mobilization has never been understood fully, because these molecules have not been identified and no specific inhibitors of these channels have ever been found. In this study, we utilized a novel IP(3)R antagonist, the "IP(3) sponge," to investigate the role of IP(3) during fertilization of the starfish oocyte. The IP(3) sponge strongly and specifically competed with endogenous IP(3)R for binding to IP(3). By injecting IP(3) sponge into starfish oocyte, the increase in intracellular calcium and formation of the fertilization envelope were both dramatically blocked, although oocyte maturation was not blocked. To investigate the role of IP(3)R in the starfish oocyte more precisely, we cloned IP(3)R from the ovary of starfish, and the predicted amino acid sequence indicated that the starfish IP(3)R has 58-68% identity to mammalian IP(3)R types 1, 2, and 3. We then raised antibodies that recognize starfish IP(3)R, and use of the antibodies to perform immunoblot analysis revealed that the level of expression of IP(3)R remained unchanged throughout oocyte maturation. An immunocytochemical study, however, revealed that the distribution of starfish IP(3)R changes during oocyte maturation.  相似文献   

7.
Activation of TRPC3 channels is concurrent with inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R)-mediated intracellular Ca(2+) release and associated with phosphatidylinositol 4,5-bisphosphate hydrolysis and recruitment to the plasma membrane. Here we report that interaction of TRPC3 with receptor for activated C-kinase-1 (RACK1) not only determines plasma membrane localization of the channel but also the interaction of IP(3)R with RACK1 and IP(3)-dependent intracellular Ca(2+) release. We show that TRPC3 interacts with RACK1 via N-terminal residues Glu-232, Asp-233, Glu-240, and Glu-244. Carbachol (CCh) stimulation of HEK293 cells expressing wild type TRPC3 induced recruitment of a ternary TRPC3-RACK1-IP(3)R complex and increased surface expression of TRPC3 and Ca(2+) entry. Mutation of the putative RACK1 binding sequence in TRPC3 disrupted plasma membrane localization of the channel. CCh-stimulated recruitment of TRPC3-RACK1-IP(3)R complex as well as increased surface expression of TRPC3 and receptor-operated Ca(2+) entry were also attenuated. Importantly, CCh-induced intracellular Ca(2+) release was significantly reduced as was RACK1-IP(3)R association without any change in thapsigargin-stimulated Ca(2+) release and entry. Knockdown of endogenous TRPC3 also decreased RACK1-IP(3)R association and decreased CCh-stimulated Ca(2+) entry. Furthermore, an oscillatory pattern of CCh-stimulated intracellular Ca(2+) release was seen in these cells compared with the more sustained pattern seen in control cells. Similar oscillatory pattern of Ca(2+) release was seen after CCh stimulation of cells expressing the TRPC3 mutant. Together these data demonstrate a novel role for TRPC3 in regulation of IP(3)R function. We suggest TRPC3 controls agonist-stimulated intracellular Ca(2+) release by mediating interaction between IP(3)R and RACK1.  相似文献   

8.
Death-associated protein 3 (DAP3) is crucial for promoting apoptosis induced by various stimulations. This report demonstrates that DAP3 is also important for T cell receptor (TCR)-mediated apoptosis induction in immature thymocytes. Enforced expression of DAP3 accelerated the negative selection in developing thymocytes, using the reaggregate thymus organ culture system. In addition, expression of DAP3 accelerated TCR-mediated apoptosis induction in DO11.10 cells. We also demonstrated that DAP3 translocates into the nucleus during TCR-mediated apoptosis in a Nur77 dependent manner. It is concluded that DAP3 is critical for TCR-mediated induction of apoptosis at the downstream of Nur77.  相似文献   

9.
Mounting evidence suggests that calcium released from internal stores plays a critical role in the progression of apoptosis. The primary calcium release channel on endoplasmic reticulum membranes is the inositol 1,4,5-trisphosphate receptor (IP3R). Deletion of the gene for IP3R results in defects in apoptosis in response to multiple stimuli. Conversely, augmented IP3R levels are associated with increased cell death. A mechanistic basis for altered IP3R function during apoptosis was revealed with the discovery that cytochrome c binds to IP3R early in apoptosis. This interaction blocks the calcium-dependent inhibition of IP3R function, resulting in increased calcium release from internal stores. The resultant cytoplasmic and mitochondrial calcium overload culminates in cell-wide cytochrome c release and maximal caspase activation. These findings highlight the importance of intracellular calcium stores in apoptosis, and the multi-functional role of cytochrome c released from mitochondria in cell death.  相似文献   

10.
We used three anti-human anti-CD3 mAb each recognizing different surface CD3 epitopes to differentially perturb the CD3/TCR complex on the surface of Jurkat T cells. In the presence of phorbol ester, these anti-CD3 mAb triggered differential IL-2 production in Jurkat T cells, which could not be explained by differences in kinetics of IL-2 production, by differences in IL-2 adsorption caused by differential surface expression of p55 or p75 IL-2R, by effects on IL-2 secretion rather than actual synthesis, or by differential toxicities of the anti-CD3 mAb to Jurkat cells. In addition, this differential anti-CD3-induced IL-2 production could not be explained by differences in mAb isotype or in avidities of the anti-CD3 mAb for the Jurkat cells. Moreover, anti-CD3 mAb covalently immobilized onto beads also differentially induced IL-2 production in Jurkat cells, suggesting that the differential IL-2 response is not based on differential rates of anti-CD3-induced modulation of Jurkat cell surface CD3. Although differences among the anti-CD3 mAb in the initial rates of binding to Jurkat cell were observed, this was also believed unlikely to explain the differential IL-2 response. Regardless of the anti-CD3 mAb used, anti-CD3-induced total inositol phosphate (IP) production did not necessarily correlate with anti-CD3-induced IL-2 production. Nevertheless, despite the differences among the anti-CD3 mAb in inducing IL-2 production, the calcium responses were grossly similar. Taken together, these observations indicate that CD3/TCR-mediated IL-2 production in Jurkat cells can be dissociated from total IP generation, and the basis of differential CD3/TCR-mediated IL-2 production in these cells does not appear to be at the level of the initial activation-induced calcium response. These studies suggest that the nature of the CD3/TCR ligand (its physical form and/or the specific epitope it perturbs) can either directly influence intracellular events distal to the generation of IP and increase in intracellular free calcium leading to differential IL-2 production or can trigger IP-independent pathways that affect IL-2 production.  相似文献   

11.
The inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R), an IP(3)-gated Ca(2+) channel located on intracellular Ca(2+) stores, modulates intracellular Ca(2+) signaling. During apoptosis of the human T-cell line, Jurkat cells, as induced by staurosporine or Fas ligation, IP(3)R type 1 (IP(3)R1) was found to be cleaved. IP(3)R1 degradation during apoptosis was inhibited by pretreatment of Jurkat cells with the caspase-3 (-like protease) inhibitor, Ac-DEVD-CHO, and the caspases inhibitor, z-VAD-CH(2)DCB but not by the caspase-1 (-like protease) inhibitor, Ac-YVAD-CHO, suggesting that IP(3)R1 was cleaved by a caspase-3 (-like) protease. The recombinant caspase-3 cleaved IP(3)R1 in vitro to produce a fragmentation pattern consistent with that seen in Jurkat cells undergoing apoptosis. N-terminal amino acid sequencing revealed that the major cleavage site is (1888)DEVD*(1892)R (mouse IP(3)R1), which involves consensus sequence for caspase-3 cleavage (DEVD). To determine whether IP(3)R1 is cleaved by caspase-3 or is proteolyzed in its absence by other caspases, we examined the cleavage of IP(3)R1 during apoptosis in the MCF-7 breast carcinoma cell line, which has genetically lost caspase-3. Tumor necrosis factor-alpha- or staurosporine-induced apoptosis in caspase-3-deficient MCF-7 cells failed to demonstrate cleavage of IP(3)R1. In contrast, MCF-7/Casp-3 cells stably expressing caspase-3 showed IP(3)R1 degradation upon apoptotic stimuli. Therefore IP(3)R1 is a newly identified caspase-3 substrate, and caspase-3 is essential for the cleavage of IP(3)R1 during apoptosis. This cleavage resulted in a decrease in the channel activity as IP(3)R1 was digested, indicating that caspase-3 inactivates IP(3)R1 channel functions.  相似文献   

12.
Intracellular calcium release is required for caspase-3 and -9 activation   总被引:8,自引:0,他引:8  
Increase in intracellular Ca2+ [Ca2+]i regulates many biological functions including apoptosis, but the protein(s) linking [Ca2+]i and apoptosis are not completely understood. We have previously shown that IP3R-deficient cells are resistant to T-cell receptor (TCR)-induced apoptosis due to lack of Ca2+ release from endoplasmic reticulum (ER) and calcineurin activation. Here we show that caspase-9 and -3 are not activated in IP3R-deficient cells after TCR stimulation, consistent with the resistance of these cells to apoptosis. However, we also demonstrate that Bcl-2 expression in IP3R-deficient cells is comparable to control cells. Taken together, these results strongly suggest that IP3R-mediated Ca2+ release plays a critical role in regulating the activity of caspases-3 and -9 independent of Bcl-2.  相似文献   

13.
Flagellin, the structural component of bacterial flagella, is secreted by pathogenic and commensal bacteria, and is recognized by Toll-like receptor (TLR) 5. Flagellin is a common bacterial antigen present on most motile bacteria and is speculated to contribute to the activation of CD4+ T cells in the intestine. However, molecular mechanisms by which flagellin regulate T cell activation remains to be determined. Using Jurkat T cells or human primary T cell, we showed that flagellin stimulation induced tyrosine phosphorylation of TLR5 and activation of both mitogen-activated protein kinases and nuclear factor kappaB. In addition, stimulation by flagellin did not induce nuclear factor of activated T cells (NFAT) activation, while stimulation via the T cell receptor (TCR) leads to activation of NFAT. However, TCR-mediated NFAT activation and tyrosine phosphorylation of zeta-associated protein 70 (Zap-70) were inhibited in cells pre-stimulated by flagellin. Furthermore, flagellin stimulation induced suppressor of cytokine signalling-1 (SOCS-1), which formed a complex with Zap-70 after stimulation via TCR, and inhibition of SOCS-1 expression by SOCS-1-specific small interfering RNA reinstated TCR-mediated activation of NFAT in cells pre-stimulated with flagellin. These results collectively indicate that bacterial flagellin inhibits TCR-mediated activation of T cells by inducing SOCS-1.  相似文献   

14.
Jak3 is responsible for growth signals by various cytokines such as interleukin (IL)-2, IL-4, and IL-7 through association with the common gamma chain (gammac) in lymphocytes. We found that T cells from Jak3-deficient mice exhibit impairment of not only cytokine signaling but also early activation signals and that Jak3 is phosphorylated upon T cell receptor (TCR) stimulation. TCR-mediated phosphorylation of Jak3 is independent of IL-2 receptor/gammac but is dependent on Lck and ZAP-70. Jak3 was found to be assembled with the TCR complex, particularly through direct association with CD3zeta via its JH4 region, which is a different region from that for gammac association. These results suggest that Jak3 plays a role not only in cell growth but also in T cell activation and represents cross-talk of a signaling molecule between TCR and growth signals.  相似文献   

15.
The inositol 1,4,5-trisphosphate receptor (IP(3)R) is a calcium (Ca(2+)) release channel found on the endoplasmic reticulum of virtually all types of cells. Human T lymphocytes (Jurkat) that are made deficient in IP(3)R do not generate Ca(2+) signals in response to T cell receptor stimulation, fail to translocate the nuclear factor for activated T cells to the nucleus, and are remarkably resistant to induction of apoptosis with CD95 (Fas), dexamethasone, gamma irradiation, and T cell receptor stimulation using anti-CD3 antibody. Expression of constitutively active calcineurin A in IP(3)R-deficient T cells restored nuclear factor for activated T cells translocation to the nucleus and dephosphorylation of Bad and rendered the cells sensitive to apoptotic inducers. Induction of apoptosis required both active calcineurin A (DeltaCnA) and activation-dependent colocalization of CnA with its substrate. Thus, the Ca(2+)-dependent phosphatase calcineurin (CnA) is downstream of the IP(3)R in both the cell growth and apoptotic signaling pathways.  相似文献   

16.
Glucocorticosteroid hormones, including dexamethasone, have diverse effects on immature lymphocyte function that ultimately lead to cell death. Previous studies established that glucocorticoid-induced alterations in intracellular calcium homeostasis promote apoptosis, but the mechanism by which glucocorticoids disrupt calcium homeostasis is unknown. Through gene expression array analysis, we found that dexamethasone induces a striking elevation of inositol 1,4,5-trisphosphate receptor (IP(3)R) levels in two murine lymphoma cell lines, WEHI7.2 and S49.A2. IP(3)R elevation was confirmed at both mRNA and protein levels. However, there was not a strong correlation between IP(3)R elevation and altered calcium homeostasis in terms of either kinetics or dose response. Moreover, IP(3)R knockdown, by either antisense or small interfering RNA, did not prevent either calcium disruption or apoptosis. Finally, DT40 lymphoma cells lacking all three IP(3)R isoforms were just as sensitive to dexamethasone-induced apoptosis as wild-type DT40 cells expressing all three IP(3)R isoforms. Thus, although alterations in intracellular calcium homeostasis contribute to glucocorticoid-induced apoptosis, these calcium alterations are not directly attributable to IP(3)R elevation.  相似文献   

17.
Stimulation of T cells via the CD3--T-cell receptor (TCR) complex results in rapid increases in beta 1 integrin-mediated adhesion via poorly defined intracellular signaling events. We demonstrate that TCR-mediated activation of beta 1 integrins requires activation of the Tec family tyrosine kinase Itk and phosphatidylinositol 3-kinase (PI 3-K)-dependent recruitment of Itk to detergent-insoluble glycosphingolipid-enriched microdomains (DIGs) via binding of the pleckstrin homology domain of Itk to the PI 3-K product PI(3,4,5)-P(3). Activation of PI 3-K and the src family kinase Lck, via stimulation of the CD4 co-receptor, can initiate beta 1 integrin activation that is dependent on Itk function. Targeting of Itk specifically to DIGs, coupled with CD4 stimulation, can also activate beta 1 integrin function independently of TCR stimulation. Changes in beta 1 integrin function mediated by TCR activation of Itk are also accompanied by Itk-dependent modulation of the actin cytoskeleton. Thus, TCR-mediated activation of beta 1 integrins involves membrane relocalization and activation of Itk via coordinate action of PI 3-K and a src family tyrosine kinase.  相似文献   

18.
Endoplasmic reticulum (ER) stress–induced apoptosis is involved in many diseases, but the mechanisms linking ER stress to apoptosis are incompletely understood. Based on roles for C/EPB homologous protein (CHOP) and ER calcium release in apoptosis, we hypothesized that apoptosis involves the activation of inositol 1,4,5-triphosphate (IP3) receptor (IP3R) via CHOP-induced ERO1-α (ER oxidase 1 α). In ER-stressed cells, ERO1-α is induced by CHOP, and small interfering RNA (siRNA) knockdown of ERO1-α suppresses apoptosis. IP3-induced calcium release (IICR) is increased during ER stress, and this response is blocked by siRNA-mediated silencing of ERO1-α or IP3R1 and by loss-of-function mutations in Ero1a or Chop. Reconstitution of ERO1-α in Chop−/− macrophages restores ER stress–induced IICR and apoptosis. In vivo, macrophages from wild-type mice but not Chop−/− mice have elevated IICR when the animals are challenged with the ER stressor tunicamycin. Macrophages from insulin-resistant ob/ob mice, another model of ER stress, also have elevated IICR. These data shed new light on how the CHOP pathway of apoptosis triggers calcium-dependent apoptosis through an ERO1-α–IP3R pathway.  相似文献   

19.
In CD45-deficient animals, there is a severe defect in thymocyte-positive selection, resulting in an absence of mature T cells and the accumulation of thymocytes at the DP stage of development. However, the signaling defect(s) responsible for the block in development of mature single-positive T cells is not well characterized. Previous studies have found that early signal transduction events in CD45-deficient cell lines and thymocytes are markedly diminished following stimulation with anti-CD3. Nevertheless, there are also situations in which T cell activation and TCR signaling events can be induced in the absence of CD45. For example, CD45-independent TCR signaling can be recovered upon simultaneous Ab cross-linking of CD3 and CD4 compared with cross-linking of CD3 alone. These data suggest that CD45 may differentially regulate TCR signaling events depending on the nature of the signal and/or on the differentiation state of the cell. In the current study, we have assessed the role of CD45 in regulating primary thymocyte activation following physiologic stimulation with peptide. Unlike CD3-mediated stimulation, peptide stimulation of CD45-deficient thymocytes induces diminished, but readily detectable TCR-mediated signaling events, such as phosphorylation of TCR-associated zeta, ZAP70, linker for activation of T cells, and Akt, and increased intracellular calcium concentration. In contrast, phosphorylation of ERK, which is essential for positive selection, is more severely affected in the absence of CD45. These data suggest that CD45 has a selective role in regulating different aspects of T cell activation.  相似文献   

20.
One of the earliest functional responses of T lymphocytes to extracellular signals that activate the Ag-specific CD3/TCR complex is a rapid, but reversible, increase in the functional activity of integrin adhesion receptors. Previous studies have implicated the tyrosine kinase zeta-associated protein of 70 kDa (ZAP-70) and the lipid kinase phosphatidylinositol 3-kinase, in the activation of beta(1) integrins by the CD3/TCR complex. In this report, we use human ZAP-70-deficient Jurkat T cells to demonstrate that the kinase activity of ZAP-70 is required for CD3/TCR-mediated increases in beta(1) integrin-mediated adhesion and activation of phosphatidylinositol 3-kinase. A tyrosine to phenylalanine substitution at position 315 in the interdomain B of ZAP-70 inhibits these responses, whereas a similar substitution at position 292 enhances these downstream signals. These mutations in the ZAP-70 interdomain B region also specifically affect CD3/TCR-mediated tyrosine phosphorylation of residues 171 and 191 in the cytoplasmic domain of the linker for activation of T cells (LAT) adapter protein. CD3/TCR signaling to beta(1) integrins is defective in LAT-deficient Jurkat T cells, and can be restored with expression of wild-type LAT. Mutant LAT constructs with tyrosine to phenylalanine substitutions at position 171 and/or position 191 do not restore CD3/TCR-mediated activation of beta(1) integrins in LAT-deficient T cells. Thus, these studies demonstrate that the interdomain B region of ZAP-70 regulates beta(1) integrin activation by the CD3/TCR via control of tyrosine phosphorylation of tyrosine residues 171 and 191 in the LAT cytoplasmic domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号