首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Advances in the field of proteomics depend upon the development of high-throughput separation methods. Ion mobility-mass spectrometry is a fast separation method (separations on the millisecond time-scale), which has potential for peptide complex mixture analysis. Possible disadvantages of this technique center around the lack of orthogonality between separation based on ion mobility and separation based on mass. In order to examine the utility of ion mobility-mass spectrometry, the peak capacity (phi) of the technique was estimated by subjecting a large dataset of peptides to linear regression analysis to determine an average trend for tryptic peptides. This trend-line, along with the deviation from a linear relationship observed for this dataset, was used to define the separation space for ion mobility-mass spectrometry. Using the maximum deviation found in the dataset (+/-11%) the peak capacity of ion mobility-mass spectrometry is approximately 2600 peptides. These results are discussed in light of other factors that may increase the peak capacity of ion mobility-mass spectrometry (i.e. multiple trends in the data resulting from multiple classes of compounds present in a sample) and current liquid chromatography approaches to complex peptide mixture analysis.  相似文献   

2.
Nanoelectrospray ionization-mass spectrometry and ion mobility-mass spectrometry have been used to study the interactions of the large, multidomain, and conformationally flexible deubiquitinating enzyme ubiquitin specific protease 5 (USP5) with mono- and poly-ubiquitin (Ub) substrates. Employing a C335A active site mutant, mass spectrometry was able to detect the stable and cooperative binding of two mono-Ub molecules at the Zinc-finger ubiquitin binding protein (ZnF-UBP) and catalytic site domains of USP5. Tetra-ubiquitin, in contrast, bound to USP5 with a stoichiometry of 1 : 1, and formed additional interactions with USP5''s two ubiquitin associated domains (UBAs). Charge-state distribution and ion mobility analysis revealed that both mono- and tetra-ubiquitin bound to the compact conformation of USP5 only, and that tetra-ubiquitin binding was able to shift the conformational distribution of USP5 from a mixture of extended and compact forms to a completely compact conformation.  相似文献   

3.
Mass spectrometry-based methods have become increasingly important in structural biology — in particular for large and dynamic, even heterogeneous assemblies of biomolecules. Native electrospray ionization coupled to ion mobility-mass spectrometry provides access to stoichiometry, size and architecture of noncovalent assemblies; while non-native approaches such as covalent labeling and H/D exchange can highlight dynamic details of protein structures and capture intermediate states. In this overview article we will describe these methods and highlight some recent applications for proteins and protein complexes, with particular emphasis on native MS analysis. This article is part of a Special Issue entitled: Mass spectrometry in structural biology.  相似文献   

4.
Mass spectrometry has become an indispensable tool in identifying post-translationally modified proteins, but multiple peptide mass-mapping/peptide-sequencing experiments are required to answer questions involving the site and type of modification present. Here, we apply ion mobility-mass spectrometry (IM-MS), a high-throughput analysis method having high selectivity and sensitivity, to the challenge of identifying phosphorylated peptides. Ion mobility separation is based on the collision cross-section of the ion. Phosphorylation can result in a conformational change in gas-phase peptide ions, which can be detected by IM. To demonstrate this point, a peptide mixture containing a variety of peptide sequences is examined with IM-MS and molecular dynamics calculations. During the course of these studies, two classes of phosphopeptide were identified: (i) phosphorylated peptide ions that have conformers that differ from the nonphosphorylated ion and (ii) phosphorylated peptide ions that have conformations that are very similar to the nonphosphorylated peptide. The utility of IM-MS peptide mass mapping for identifying both types of phosphorylated peptides is discussed.  相似文献   

5.

The development of additional analytical instruments is of great interest to expand metabolome coverage. Differential mobility analyzers (DMAs) are a type of ion mobility spectrometers that can be straightforwardly interfaced with commercial mass spectrometers. In this pilot study, we explored the capabilities of an ion mobility-mass spectrometry platform, based on interfacing a Differential Mobility Analyzer with a commercial quadrupole time of-flight mass spectrometer (DMA-QTOF), to phenotype the metabolic urinary fingerprint of a cohort of prostate cancer patients (n = 8) and a group of healthy counterparts (n = 20). The resolving power of the DMA and the QTOF was ∼55 and ∼6,500, respectively. The transmission efficiency of the DMA was 50%. We illustrate the benefits of incorporating the DMA through the separation of isobaric species according to their electrical mobility, which were not fully resolved by the high resolution QTOF. In addition, we show that the bidimensional electrical mobility-mass spectra obtained can be successfully processed with the XCMS routine, extending its potential to ion mobility-mass spectrometry-based platforms. Data mining with XCMS revealed seven features significantly down-regulated in cancer patients (P < 0.05). These peaks were the input of principal component analysis, showing a clear separation tendency from prostate cancer patients and healthy controls. NIST MS search algorithm was used to classify the samples according to their class, with a resulting 75% sensitivity and 80% specificity. We pursued further fragmentation experiments for structural elucidation of the most discriminant metabolites, thereby illustrating the full potential of this analytical platform for the task. In summary, DMA-MS/MS provides an additional level of separation as compared to traditional mass spectrometry-based methods, thereby increasing the array of multi-analytical platforms available to global metabolite profiling and metabolite identification.

  相似文献   

6.
Mass spectrometry is now established as a powerful tool for the study of the stoichiometry, interactions, dynamics, and subunit architecture of large protein assemblies and their subcomplexes. Recent evidence has suggested that the 3D structure of protein complexes can be maintained intact in the gas phase, highlighting the potential of ion mobility to contribute to structural biology. A key challenge is to integrate the compositional and structural information from ion mobility mass spectrometry with molecular modelling approaches to produce 3D models of intact protein complexes. In this review, we focus on the mass spectrometry of protein-nucleic acid assemblies with particular attention to the application of ion mobility, an emerging technique in structural studies. We also discuss the challenges that lie ahead for the full integration of ion mobility mass spectrometry with structural biology.  相似文献   

7.
Mass spectrometry is now established as a powerful tool for the study of the stoichiometry, interactions, dynamics, and subunit architecture of large protein assemblies and their subcomplexes. Recent evidence has suggested that the 3D structure of protein complexes can be maintained intact in the gas phase, highlighting the potential of ion mobility to contribute to structural biology. A key challenge is to integrate the compositional and structural information from ion mobility mass spectrometry with molecular modelling approaches to produce 3D models of intact protein complexes. In this review, we focus on the mass spectrometry of protein-nucleic acid assemblies with particular attention to the application of ion mobility, an emerging technique in structural studies. We also discuss the challenges that lie ahead for the full integration of ion mobility mass spectrometry with structural biology.  相似文献   

8.
The development of additional analytical instruments is of great interest to expand metabolome coverage. Differential mobility analyzers (DMAs) are a type of ion mobility spectrometers that can be straightforwardly interfaced with commercial mass spectrometers. In this pilot study, we explored the capabilities of an ion mobility-mass spectrometry platform, based on interfacing a Differential Mobility Analyzer with a commercial quadrupole time of-flight mass spectrometer (DMA-QTOF), to phenotype the metabolic urinary fingerprint of a cohort of prostate cancer patients (n = 8) and a group of healthy counterparts (n = 20). The resolving power of the DMA and the QTOF was ~55 and ~6,500, respectively. The transmission efficiency of the DMA was 50%. We illustrate the benefits of incorporating the DMA through the separation of isobaric species according to their electrical mobility, which were not fully resolved by the high resolution QTOF. In addition, we show that the bidimensional electrical mobility-mass spectra obtained can be successfully processed with the XCMS routine, extending its potential to ion mobility-mass spectrometry-based platforms. Data mining with XCMS revealed seven features significantly down-regulated in cancer patients (P < 0.05). These peaks were the input of principal component analysis, showing a clear separation tendency from prostate cancer patients and healthy controls. NIST MS search algorithm was used to classify the samples according to their class, with a resulting 75% sensitivity and 80% specificity. We pursued further fragmentation experiments for structural elucidation of the most discriminant metabolites, thereby illustrating the full potential of this analytical platform for the task. In summary, DMA-MS/MS provides an additional level of separation as compared to traditional mass spectrometry-based methods, thereby increasing the array of multi-analytical platforms available to global metabolite profiling and metabolite identification.  相似文献   

9.
10.
A method has been developed for metabolite profiling of the salivary metabolome based on protein precipitation and ultra-high performance liquid chromatography coupled with ion mobility-mass spectrometry (UHPLC–IM–MS). The developed method requires 0.5 mL of human saliva, which is easily obtainable by passive drool. Standard protocols have been established for the collection, storage and pre-treatment of saliva. The use of UHPLC allows rapid global metabolic profiling for biomarker discovery with a cycle time of 15 min. Mass spectrometry imparts the ability to analyse a diverse number of species reproducibly over a wide dynamic range, which is essential for profiling of biofluids. The combination of UHPLC with IM–MS provides an added dimension enabling complex metabolic samples to be separated on the basis of retention time, ion mobility and mass-to-charge ratio in a single chromatographic run. The developed method has been applied to targeted metabolite identification and untargeted metabolite profiling of saliva samples collected before and after exercise-induced physiological stress. δ-Valerolactam has been identified as a potential biomarker on the basis of retention time, MS/MS spectrum and ion mobility drift time.  相似文献   

11.
Ion mobility coupled to mass spectrometry has been an important tool in the fields of chemical physics and analytical chemistry for decades, but its potential for interrogating the structure of proteins and multiprotein complexes has only recently begun to be realized. Today, ion mobility–mass spectrometry is often applied to the structural elucidation of protein assemblies that have failed high-throughput crystallization or NMR spectroscopy screens. Here, we highlight the technology, approaches and data that have led to this dramatic shift in use, including emerging trends such as the integration of ion mobility–mass spectrometry data with more classical (e.g., ‘bottom-up’) proteomics approaches for the rapid structural characterization of protein networks.  相似文献   

12.
Differential, functional, and mapping proteomic analyses of complex biological mixtures suffer from a lack of component resolution. Here we describe the application of ion mobility-mass spectrometry (IMS-MS) to this problem. With this approach, components that are separated by liquid chromatography are dispersed based on differences in their mobilities through a buffer gas prior to being analyzed by MS. The inclusion of the gas-phase dispersion provides more than an order of magnitude enhancement in component resolution at no cost to data acquisition time. Additionally, the mobility separation often removes high-abundance species from spectral regions containing low-abundance species, effectively increasing measurement sensitivity and dynamic range. Finally, collision-induced dissociation of all ions can be recorded in a single experimental sequence while conventional MS methods sequentially select precursors. The approach is demonstrated in a single, rapid (3.3 h) analysis of a plasma digest sample where abundant proteins have not been removed. Protein database searches have yielded 731 high confidence peptide assignments corresponding to 438 unique proteins. Results have been compiled into an initial analytical map to be used -after further augmentation and refinement- for comparative plasma profiling studies.  相似文献   

13.
Structure determination of macromolecular protein assemblies remains a challenge for well-established methods. Here, we provide an assessment of an emerging structural technique, ion mobility-mass spectrometry (IM-MS), and examine the use of collision cross-sections (CCSs), derived from IM-MS, as restraints for structure characterization of heteromeric protein assemblies. Using 15 complexes selected from the Protein Data Bank, we validate the use of low-resolution models by comparing their CCSs with those calculated for all-atom structures. We then select six heteromeric complexes, disrupting them in solution to form subcomplexes. Experimental and calculated CCSs reveal close similarity for 18 of the 21 (sub)complexes. Exploring the use of CCS as a restraint, we incorporate it into a scoring function and show good correlation between the score and similarity to the native structure for heteromers, especially when an additional symmetry restraint was introduced.  相似文献   

14.
15.
We survey here state of the art mass spectrometry methodologies for investigating G-quadruplexes, and will illustrate them with a new study on a simple model system: the dimeric G-quadruplex of the 12-mer telomeric DNA sequence d(TAGGGTTAGGGT), which can adopt either a parallel or an antiparallel structure. We will discuss the solution conditions compatible with electrospray ionisation, the quantification of complexes using ESI-MS, the interpretation of ammonium ion preservation in the complexes in the gas phase, and the use of ion mobility spectrometry to resolve ambiguities regarding the strand stoichiometry, or separate and characterise different structural isomers. We also describe that adding electrospray-compatible organic co-solvents (methanol, ethanol, isopropanol or acetonitrile) to aqueous ammonium acetate increases the stability and rate of formation of dimeric G-quadruplexes, and causes structural transitions to parallel structures. Structural changes were probed by circular dichroism and ion mobility spectrometry, and the excellent correlation between the two techniques validates the use of ion mobility to investigate G-quadruplex folding. We also demonstrate that parallel G-quadruplex structures are easier to preserve in the gas phase than antiparallel structures.  相似文献   

16.
The regulatory (R) subunit of protein kinase A serves to modulate the activity of protein kinase A in a cAMP-dependent manner and exists in two distinct and structurally dissimilar, end point cAMP-bound "B" and C-subunit-bound "H"-conformations. Here we report mechanistic details of cAMP action as yet unknown through a unique approach combining x-ray crystallography with structural proteomics approaches, amide hydrogen/deuterium exchange and ion mobility mass spectrometry, applied to the study of a stereospecific cAMP phosphorothioate analog and antagonist((Rp)-cAMPS). X-ray crystallography shows cAMP-bound R-subunit in the B form but surprisingly the antagonist Rp-cAMPS-bound R-subunit crystallized in the H conformation, which was previously assumed to be induced only by C-subunit-binding. Apo R-subunit crystallized in the B form as well but amide exchange mass spectrometry showed large differences between apo, agonist and antagonist-bound states of the R-subunit. Further ion mobility reveals the apo R-subunit as an ensemble of multiple conformations with collisional cross-sectional areas spanning both the agonist and antagonist-bound states. Thus contrary to earlier studies that explained the basis for cAMP action through "induced fit" alone, we report evidence for conformational selection, where the ligand-free apo form of the R-subunit exists as an ensemble of both B and H conformations. Although cAMP preferentially binds the B conformation, Rp-cAMPS interestingly binds the H conformation. This reveals the unique importance of the equatorial oxygen of the cyclic phosphate in mediating conformational transitions from H to B forms highlighting a novel approach for rational structure-based drug design. Ideal inhibitors such as Rp-cAMPS are those that preferentially "select" inactive conformations of target proteins by satisfying all "binding" constraints alone without inducing conformational changes necessary for activation.  相似文献   

17.
《MABS-AUSTIN》2013,5(5):930-941
ABSTRACT

Protein therapeutic higher order structure (HOS) is a quality attribute that can be assessed to help predict shelf life. To model product shelf-life values, possible sample-dependent pathways of degradation that may affect drug efficacy or safety need to be evaluated. As changes in drug thermal stability over time can be correlated with an increased risk of HOS perturbations, the effect of long-term storage on the product should be measured as a function of temperature. Here, complementary high-resolution mass spectrometry methods for HOS analysis were used to identify storage-dependent changes of biotherapeutics (bevacizumab (Avastin), trastuzumab (Herceptin), rituximab (Rituxan), and the NIST reference material 8671 (NISTmAb)) under accelerated or manufacturer-recommended storage conditions. Collision-induced unfolding ion mobility-mass spectrometry data showed changes in monoclonal antibody folded stability profiles that were consistent with the appearance of a characteristic unfolded population. Orthogonal hydrogen-deuterium exchange-mass spectrometry data revealed that the observed changes in unfolding occurred in parallel to changes in HOS localized to the periphery of the hinge region. Using intact reverse-phase liquid chromatography-mass spectrometry, we identified several mass species indicative of peptide backbone hydrolysis, located between the variable and constant domains of the heavy chain of bevacizumab. Taken together, our data highlighted the capability of these approaches to identify age- or temperature-dependent changes in biotherapeutic HOS.  相似文献   

18.
Quantitative proteomics combined with immuno-affinity purification, SILAC immunoprecipitation, represent a powerful means for the discovery of novel protein:protein interactions. By allowing the accurate relative quantification of protein abundance in both control and test samples, true interactions may be easily distinguished from experimental contaminants. Low affinity interactions can be preserved through the use of less-stringent buffer conditions and remain readily identifiable. This protocol discusses the labeling of tissue culture cells with stable isotope labeled amino acids, transfection and immunoprecipitation of an affinity tagged protein of interest, followed by the preparation for submission to a mass spectrometry facility. This protocol then discusses how to analyze and interpret the data returned from the mass spectrometer in order to identify cellular partners interacting with a protein of interest. As an example this technique is applied to identify proteins binding to the eukaryotic translation initiation factors: eIF4AI and eIF4AII.  相似文献   

19.
Electrophoretic mobility shift assays (EMSAs) are commonly used to analyze nucleic acid-protein interactions. When nucleic acid is bound by protein, its mobility during gel electrophoresis is reduced. Similarly, the final position of protein within a complex is shifted when compared to its free state. Here we provide a protocol for a simple approach that uses these mobility differences to identify nucleic acid-binding proteins. Following EMSA, denaturing gel electrophoresis is implemented to provide a second dimension of separation. Protein that binds a specific nucleic acid is identified as a spot(s) whose presence at a particular position(s) is dependent on nucleic acid within the initial binding reaction. The polypeptide in a spot can be subsequently identified by mass spectrometry. As EMSAs can be performed using partially purified or cell extracts, this approach substantially reduces the need for protein purification. It should facilitate the identification of a nucleic acid-binding protein within approximately 4 d.  相似文献   

20.
Current challenges in the field of structural genomics point to the need for new tools and technologies for obtaining structures of macromolecular protein complexes. Here, we present an integrative computational method that uses molecular modelling, ion mobility-mass spectrometry (IM-MS) and incomplete atomic structures, usually from X-ray crystallography, to generate models of the subunit architecture of protein complexes. We begin by analyzing protein complexes using IM-MS, and by taking measurements of both intact complexes and sub-complexes that are generated in solution. We then examine available high resolution structural data and use a suite of computational methods to account for missing residues at the subunit and/or domain level. High-order complexes and sub-complexes are then constructed that conform to distance and connectivity constraints imposed by IM-MS data. We illustrate our method by applying it to multimeric protein complexes within the Escherichia coli replisome: the sliding clamp, (β2), the γ complex (γ3δδ′), the DnaB helicase (DnaB6) and the Single-Stranded Binding Protein (SSB4).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号