首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A variety of different devices has been described recently for conditioning the X-ray beam incident on the sample for structural studies on proteins and other macromolecular crystals.  相似文献   

2.
3.
Macromolecular crystallography has been, for the last few decades, the main source of structural information of biological macromolecular systems and it is one of the most powerful techniques for the analysis of enzyme mechanisms and macromolecular interactions at the atomic level. In addition, it is also an extremely powerful tool for drug design. Recent technological and methodological developments in macromolecular X-ray crystallography have allowed solving structures that until recently were considered difficult or even impossible, such as structures at atomic or subatomic resolution or large macromolecular complexes and assemblies at low resolution. These developments have also helped to solve the 3D-structure of macromolecules from twin crystals. Recently, this technique complemented with cryo-electron microscopy and neutron crystallography has provided the structure of large macromolecular machines with great precision allowing understanding of the mechanisms of their function.  相似文献   

4.
A device for the rapid and accurate measurement of model molecular co-ordinates, to be used in conjunction with a Richards optical comparator, is described. The device may be operated in either a manual or automatic mode. The manual mode allows an operator to find the co-ordinates of a desired atom by optical superposition of the transmitted image of a small marker light upon the reflected image of the atom to be measured. The automatic mode allows the operator to position the marker light automatically by entering preselected co-ordinates from an electronic console. This mode of operation facilitates the rapid construction and comparison of structures the atomic co-ordinates of which are already known. The device utilizes pulsed stepping motors to position the marker light and incorporates modularized solid-state circuitry throughout. Several applications of the device are described.  相似文献   

5.
Using known substructures in protein model building and crystallography.   总被引:45,自引:11,他引:45       下载免费PDF全文
Retinol binding protein can be constructed from a small number of large substructures taken from three unrelated proteins. The known structures are treated as a knowledge base from which one extracts information to be used in molecular modelling when lacking true atomic resolution. This includes the interpretation of electron density maps and modelling homologous proteins. Models can be built into maps more accurately and more quickly. This requires the use of a skeleton representation for the electron density which improves the determination of the initial chain tracing. Fragment-matching can be used to bridge gaps for inserted residues when modelling homologous proteins.  相似文献   

6.
In recent years, significant progress in high pressure macromolecular crystallography has been observed. It can be attributed both to the developments in experimental techniques, as well as to recognition of importance of high pressure protein studies in biochemistry and biophysics. The number of protein structures determined at pressure up to 1 GPa is growing. The unique advantages of this method can greatly improve the investigation of higher energy conformers of functional significance and our understanding of functionally important conformers, protein folding processes and the structural base of conformational diseases.  相似文献   

7.
8.
MOTIVATION: Individual research groups now analyze thousands of samples per year at synchrotron macromolecular crystallography (MX) resources. The efficient management of experimental data is thus essential if the best possible experiments are to be performed and the best possible data used in downstream processes in structure determination pipelines. Information System for Protein crystallography Beamlines (ISPyB), a Laboratory Information Management System (LIMS) with an underlying data model allowing for the integration of analyses down-stream of the data collection experiment was developed to facilitate such data management. RESULTS: ISPyB is now a multisite, generic LIMS for synchrotron-based MX experiments. Its initial functionality has been enhanced to include improved sample tracking and reporting of experimental protocols, the direct ranking of the diffraction characteristics of individual samples and the archiving of raw data and results from ancillary experiments and post-experiment data processing protocols. This latter feature paves the way for ISPyB to play a central role in future macromolecular structure solution pipelines and validates the application of the approach used in ISPyB to other experimental techniques, such as biological solution Small Angle X-ray Scattering and spectroscopy, which have similar sample tracking and data handling requirements.  相似文献   

9.
To increase the efficiency of diffraction data collection for protein crystallographic studies, an automated system designed to store frozen protein crystals, mount them sequentially, align them to the X-ray beam, collect complete data sets, and return the crystals to storage has been developed. Advances in X-ray data collection technology including more brilliant X-ray sources, improved focusing optics, and faster-readout detectors have reduced diffraction data acquisition times from days to hours at a typical protein crystallography laboratory [1,2]. In addition, the number of high-brilliance synchrotron X-ray beam lines dedicated to macromolecular crystallography has increased significantly, and data collection times at these facilities can be routinely less than an hour per crystal. Because the number of protein crystals that may be collected in a 24 hr period has substantially increased, unattended X-ray data acquisition, including automated crystal mounting and alignment, is a desirable goal for protein crystallography. The ability to complete X-ray data collection more efficiently should impact a number of fields, including the emerging structural genomics field [3], structure-directed drug design, and the newly developed screening by X-ray crystallography [4], as well as small molecule applications.  相似文献   

10.
Fragment-based screening has typically relied on X-ray or nuclear magnetic resonance methods to identify low-affinity ligands that bind to therapeutic targets. These techniques are expensive in terms of material and time, so it useful to have a higher throughput method to reliably prescreen a fragment library to identify a subset of compounds for structural analysis. Calorimetry provides a label-free method to assay binding and enzymatic activity that is unaffected by the spectroscopic properties of the sample. Conventional microcalorimetry is hampered by requiring large quantities of reagents and long measurement times. Nanocalorimeters can overcome these limitations of conventional isothermal titration calorimetry. Here we have used enthalpy arrays, which are arrays of nanocalorimeters, to perform an enzyme activity-based fragment screen for competitive inhibitors of phosphodiesterase 4A (PDE4A). Several inhibitors with K ( I ) <2 mM were identified and moved to X-ray crystallization trials. Although the co-crystals did not yield high-resolution data, evidence of binding was observed, and the chemical structures of the hits were consistent with motifs of known PDE4 inhibitors. This study shows how array calorimetry can be used as a prescreening method for fragment-based lead discovery with enzyme targets and provides a list of candidate fragments for inhibition of PDE4A.  相似文献   

11.
We report here the synthesis of nucleoside and oligonucleotide analogs containing selenium, which serves as an anomalous scattering center to enable MAD phase determination in nucleotide X-ray crystallography. We have developed a phase transfer approach to introduce the selenium functionality in A, C, G, T, and U nucleosides at 5'-positions. In the incorporation of the selenium functionality, the leaving groups (bromide, mesyl, and tosyl) were readily displaced by sodium selenide, sodium diselenide, and sodium methyl selenide with yields higher than 90%. Selenium-derivatized oligonucleotides have been synthesized via phosphoramidite chemistry.  相似文献   

12.
The X-ray crystal structure of the vanadium bromoperoxidase from the red algae Corallina pilulifera has been solved in the presence of the known substrates, phenol red and phloroglucinol. A putative substrate binding site has been observed in the active site channel of the enzyme. In addition bromide has been soaked into the crystals and it has been shown to bind unambiguously within the enzyme active site by using the technique of single anomalous dispersion. A specific leucine amino acid is seen to move towards the bromide ion in the wild-type enzyme to produce a hydrophobic environment within the active site. A mutant of the enzyme where arginine 397 has been changed to tryptophan, shows a different behaviour on bromide binding. These results have increased our understanding of the mechanism of the vanadium bromoperoxidases and have demonstrated that the substrate and bromide are specifically bound to the enzyme active site.  相似文献   

13.
We present X-ray crystallographic and molecular modeling studies of estrogen receptors-alpha and -beta complexed with the estrogen receptor-beta-selective phytoestrogen genistein, and coactivator-derived NR box peptides containing an LXXLL motif. We demonstrate that the ligand binding mode is essentially identical when genistein is bound to both isoforms, despite the considerably weaker affinity of this ligand for estrogen receptor-alpha. In addition, we examine subtle differences between binding site residues, providing an explanation for why genistein is modestly selective for the beta isoform. To this end, we also present the results of quantum chemical studies and thermodynamic arguments that yield insight to the nature of the interactions leading to estrogen receptor-beta selectivity. The importance of our analysis to structure-based drug design is discussed.  相似文献   

14.
In protein crystallography, much time and effort are often required to trace an initial model from an interpretable electron density map and to refine it until it best agrees with the crystallographic data. Here, we present a method to build and refine a protein model automatically and without user intervention, starting from diffraction data extending to resolution higher than 2.3 A and reasonable estimates of crystallographic phases. The method is based on an iterative procedure that describes the electron density map as a set of unconnected atoms and then searches for protein-like patterns. Automatic pattern recognition (model building) combined with refinement, allows a structural model to be obtained reliably within a few CPU hours. We demonstrate the power of the method with examples of a few recently solved structures.  相似文献   

15.
The sequence infrastructure that has arisen through large-scale genomic projects dedicated to protein analysis, has provided a wealth of information and brought together scientists and institutions from all over the world. As a consequence, the development of novel technologies and methodologies in proteomics research is helping to unravel the biochemical and physiological mechanisms of complex multivariate diseases at both a functional and molecular level. In the late sixties, when X-ray crystallography had just been established, the idea of determining protein structure on an almost universal basis was akin to an impossible dream or a miracle. Yet only forty years after, automated protein structure determination platforms have been established. The widespread use of robotics in protein crystallography has had a huge impact at every stage of the pipeline from protein cloning, over-expression, purification, crystallization, data collection, structure solution, refinement, validation and data management- all of which have become more or less automated with minimal human intervention necessary. Here, recent advances in protein crystal structure analysis in the context of structural genomics will be discussed. In addition, this review aims to give an overview of recent developments in high throughput instrumentation, and technologies and strategies to accelerate protein structure/function analysis.  相似文献   

16.
Methods for X-ray diffraction analysis of macromolecular structures.   总被引:2,自引:0,他引:2  
A modern approach to protein crystallography relies as much on molecular biology as on the 'core' crystallographic disciplines. Some recent, biologically significant structure determinations have demonstrated this and show the importance of new third generation synchrotron sources. Novel uses of well known phasing techniques have also been valuable in these structure determinations. For the majority of structures, advances in phasing techniques, data collection and processing and the associated computer programs have led to more effective structure determinations.  相似文献   

17.
High-throughput data collection for macromolecular crystallography requires an automated sample mounting and alignment system for cryo-protected crystals that functions reliably when integrated into protein-crystallography beamlines at synchrotrons. Rapid mounting and dismounting of the samples increases the efficiency of the crystal screening and data collection processes, where many crystals can be tested for the quality of diffraction. The sample-mounting subsystem has random access to 112 samples, stored under liquid nitrogen. Results of extensive tests regarding the performance and reliability of the system are presented. To further increase throughput, we have also developed a sample transport/storage system based on "puck-shaped" cassettes, which can hold sixteen samples each. Seven cassettes fit into a standard dry shipping Dewar. The capabilities of a robotic crystal mounting and alignment system with instrumentation control software and a relational database allows for automated screening and data collection to be developed.  相似文献   

18.
19.
Crystallography supplies unparalleled detail on structural information critical for mechanistic analyses; however, it is restricted to describing low energy conformations of macromolecules within crystal lattices. Small angle X-ray scattering (SAXS) offers complementary information about macromolecular folding, unfolding, aggregation, extended conformations, flexibly linked domains, shape, conformation, and assembly state in solution, albeit at the lower resolution range of about 50 A to 10 A resolution, but without the size limitations inherent in NMR and electron microscopy studies. Together these techniques can allow multi-scale modeling to create complete and accurate images of macromolecules for modeling allosteric mechanisms, supramolecular complexes, and dynamic molecular machines acting in diverse processes ranging from eukaryotic DNA replication, recombination and repair to microbial membrane secretion and assembly systems. This review addresses both theoretical and practical concepts, concerns and considerations for using these techniques in conjunction with computational methods to productively combine solution scattering data with high-resolution structures. Detailed aspects of SAXS experimental results are considered with a focus on data interpretation tools suitable to model protein and nucleic acid macromolecular structures, including membrane protein, RNA, DNA, and protein-nucleic acid complexes. The methods discussed provide the basis to examine molecular interactions in solution and to study macromolecular flexibility and conformational changes that have become increasingly relevant for accurate understanding, simulation, and prediction of mechanisms in structural cell biology and nanotechnology.  相似文献   

20.
The structure of photosystem II and the catalytic intermediate states of the Mn4CaO5 cluster involved in water oxidation have been studied intensively over the past several years. An understanding of the sequential chemistry of light absorption and the mechanism of water oxidation, however, requires a new approach beyond the conventional steady-state crystallography and X-ray spectroscopy at cryogenic temperatures. In this report, we present the preliminary progress using an X-ray free-electron laser to determine simultaneously the light-induced protein dynamics via crystallography and the local chemistry that occurs at the catalytic centre using X-ray spectroscopy under functional conditions at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号