首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sympathetic nerve activity (SNA) can provide critical information on cardiovascular regulation; however, in a typical laboratory setting, adequate recordings require assiduous effort, and otherwise high-quality recordings may be clouded by frequent baseline shifts, noise spikes, and muscle twitches. Visually analyzing this type of signal can be a tedious and subjective evaluation, whereas objective analysis through signal averaging is impossible. We propose a new automated technique to identify bursts through objective detection criteria, eliminating artifacts and preserving a beat-by-beat SNA signal for a variety of subsequent analyses. The technique was evaluated during both steady-state conditions (17 subjects) and dynamic changes with rapid vasoactive drug infusion (14 recordings from 5 subjects) on SNA signals of widely varied quality. Automated measures of SNA were highly correlated to visual measures of steady-state activity (r = 0.903, P < 0.001), dynamic relation measures (r = 0.987, P < 0.001), and measures of burst-by-burst variability (r = 0.929, P < 0.001). This automated sympathetic neurogram analysis provides a viable alternative to tedious and subjective visual analyses while maximizing the usability of noisy nerve tracings.  相似文献   

2.
This study compared the baroreflex control of lumbar and renal sympathetic nerve activity (SNA) in conscious rats. Arterial pressure (AP) and lumbar and renal SNA were simultaneously recorded in six freely behaving rats. Pharmacological estimates of lumbar and renal sympathetic baroreflex sensitivity (BRS) were obtained by means of the sequential intravenous administration of sodium nitroprusside and phenylephrine. Sympathetic BRS was significantly (P < 0.05) lower for lumbar [3.0 +/- 0.4 normalized units (NU)/mmHg] than for renal (7.6 +/- 0.6 NU/mmHg) SNA. During a 219-min baseline period, spontaneous lumbar and renal BRS were continuously assessed by computing the gain of the transfer function relating AP and SNA at heart rate frequency over consecutive 61.4-s periods. The transfer gain was considered only when coherence between AP and SNA significantly differed from zero, which was verified in 99 +/- 1 and 96 +/- 3% of cases for lumbar and renal SNA, respectively. When averaged over the entire baseline period, spontaneous BRS was significantly (P < 0.05) lower for lumbar (1.3 +/- 0.2 NU/mmHg) than for renal (2.3 +/- 0.3 NU/mmHg) SNA. For both SNAs, spontaneous BRS showed marked fluctuations (variation coefficients were 26 +/- 2 and 28 +/- 2% for lumbar and renal SNA, respectively). These fluctuations were positively correlated in five of six rats (R = 0.44 +/- 0.06; n = 204 +/- 8; P < 0.0001). We conclude that in conscious rats, the baroreflex control of lumbar and renal SNA shows quantitative differences but is modulated in a mostly coordinated way.  相似文献   

3.
Objectives of this study were to develop a technique for quantifying cardiac-specific norepinephrine (NE) mass transport and determine whether cardiac NE kinetic modeling parameters were related to physiological variables of left ventricular (LV) size and systolic performance in nine patients with chronic mitral regurgitation. Biplane contrast cineventriculograms were used to determine LV size and ejection fraction (EF), micromanometer LV pressures and radionuclide LV volumes from a range of loading conditions to calculate LV end-systolic elastance, and [(3)H]NE infusions with LV and coronary sinus sampling for [(3)H]NE and endogenous NE during and after termination of infusions to model NE mass transport. Total NE release rate into cardiac interstitial fluid (M(IF)(R)) averaged 859 +/- 214 and NE released de novo into cardiac interstitial fluid (M(IF)(u,r,en)) averaged 546 +/- 174 pmol/min. Both M(IF)(R) and M(IF)(u,r,en)correlated directly with LV end-systolic volume (r = 0.84, P = 0.005; r = 0.86, P = 0.003); inversely with LV EFs (r = -0.75, P = 0.02; r = -0.81, P = 0.008); and inversely with LV end-systolic elastance values, optimally fit by a nonlinear function (r = 0.89, P = 0.04; r = 0.96, P = 0.01). We conclude that total and newly released NE into interstitial fluid of the heart, determined by regional mass transport kinetic model, are specific measures of regional cardiac-specific sympathetic nervous system activity and are strongly related to measures of LV size and systolic performance. These data support the concept that this new model of organ-specific NE kinetics has physiological relevance.  相似文献   

4.
The goal of this study was to merge the methods currently used to assess beat-by-beat changes in muscle sympathetic nerve activity with a signal-averaging approach and overcome the inherent subjectivity and time-consuming nature of manual analysis of baroreflex-mediated sympathetic responses in humans. This is a retrospective study using data obtained during two prior studies [J. R. Halliwill, J. A. Taylor, and D. L. Eckberg. J. Physiol. (Lond.) 495: 279-288, 1996; C. T. Minson, J. R. Halliwill, T. Young, and M. J. Joyner. FASEB J. 13: A1044, 1999]. Beat-by-beat arterial pressure (Finapres device) and muscle sympathetic nerve activity (microneurography) were recorded in seven healthy, nonsmoking, normotensive subjects (2 men, 5 women) between the ages of 23 and 32 yr during arterial pressure changes induced by bolus injections of nitroprusside and phenylephrine. The muscle sympathetic nerve activity-diastolic pressure relationship was analyzed by both the traditional manual detection method and a novel segregated signal-averaging method. The results show the two analysis approaches are highly correlated across subjects (r = 0.914, P < 0. 05) and are in close agreement [slope for manual detection -6.17 +/- 0.91 (SE) vs. slope for segregated signal averaging -5.98 +/- 0.83 total integrated activity. beat(-1). mmHg(-1); P = 0.60]. However, a considerable time savings is seen with the new method (min vs. h). Segregated signal averaging as developed here provides a valid alternative to "by-hand" analysis of beat-by-beat changes in muscle sympathetic nerve activity that occur during dynamic baroreflex-mediated changes in sympathetic outflow. This approach provides an objective, rapid method to analyze nerve recordings.  相似文献   

5.
Sympathetic vasoconstriction of cerebral vessels has been proposed to be a protective mechanism for the brain, limiting cerebral perfusion and microcirculatory pressure during transient increases in arterial pressure. To furnish direct neural evidence for this proposition, we aimed to develop a method for recording cerebral sympathetic nerve activity (SNA) from the superior cervical ganglion (SCG). We hypothesized that SNA recorded from the SCG increases during imposed hypertension, but not during hypotension. Lambs (n = 11) were anesthetized (alpha-chloralose, 20 mg.kg(-1).h(-1)) and ventilated. SNA was measured using 25-microm tungsten microelectrodes inserted into the SCG. Arterial blood pressure (AP) was pharmacologically raised (adrenaline, phenylephrine, or ANG II, 1-50 microg/kg iv), mechanically raised (intravascular balloon in the thoracic aorta), or lowered (sodium nitroprusside, 1-50 microg/kg iv). In response to adrenaline (n = 10), mean AP increased 135 +/- 10% from baseline (mean +/- SE), and the RMS value of SNA (Square Root of the Mean of the Squares, SNA(RMS)) increased 255 +/- 120%. In response to mechanically induced hypertension, mean AP increased 43 +/- 3%, and SNA(RMS) increased 53 +/- 13%. Generally, (9 of 10 animals), SNA(RMS) did not increase, as AP was lowered with sodium nitroprusside. Using a new model for direct recording of cerebral SNA from the SCG, we have demonstrated that SNA increases in response to large induced rises, but not falls, in AP. These findings furnish direct support for the proposed protective role for sympathetic nerves in the cerebral circulation.  相似文献   

6.
GABAergic neurons in the caudal ventrolateral medulla (CVLM) are driven by baroreceptor inputs relayed via the nucleus tractus solitarius (NTS), and they inhibit neurons in rostral ventrolateral medulla to reduce sympathetic nerve activity (SNA) and arterial pressure (AP). After arterial baroreceptor denervation or lesions of the NTS, inhibition of the CVLM continues to increase AP, suggesting additional inputs also tonically activate the CVLM. This study examined whether the NTS contributes to baroreceptor-independent drive to the CVLM and whether glutamate promotes baroreceptor- and NTS-independent activation of the CVLM to tonically reduce SNA. In addition, we evaluated whether altering central respiratory drive, a baroreceptor-independent regulator of CVLM neurons, influences glutamatergic inputs to the CVLM. Splanchnic SNA and AP were measured in chloralose-anesthetized, ventilated, paralyzed rats. The infusion of nitroprusside decreased AP below threshold for baroreceptor afferent firing (<50 mmHg) and increased SNA to 209+/-22% (P<0.05), but the subsequent inhibition of the NTS by microinjection of the GABA(A) agonist muscimol did not further increase SNA. In contrast, after inhibition of the NTS, blockade of glutamatergic inputs to CVLM by microinjection of kynurenate increased SNA (274+/-54%; P<0.05; n=7). In vagotomized rats with baroreceptors unloaded, inhibition of glutamatergic inputs to CVLM evoked a larger rise in SNA when central respiratory drive was increased (219+/-16% vs. 271+/-17%; n=5; P<0.05). These data suggest that baroreceptor inputs provide the major drive for the NTS-mediated excitation of the CVLM. Furthermore, glutamate tonically activates the CVLM to reduce SNA independent of the NTS, and this excitatory input appears to be affected by the strength of central respiratory drive.  相似文献   

7.
Epidemiological studies indicate that moderate ethanol consumption reduces cardiovascular mortality. Cellular and animal data suggest that ethanol confers beneficial effects on the vascular endothelium and increases the bioavailability of nitric oxide. The purpose of this study was to assess the effect of ethanol on endothelium-dependent, nitric oxide-mediated vasodilation in healthy human subjects. Forearm blood flow (FBF) was determined by venous occlusion plethysmography in healthy human subjects during intra-arterial infusions of either methacholine (0.3, 1.0, 3.0, and 10.0 mcg/min, n = 9), nitroprusside (0.3, 1.0, 3.0, and 10.0 mcg/min, n = 9), or verapamil (10, 30, 100, and 300 mcg/min, n = 8) before and during the concomitant intra-arterial infusions of ethanol (10% ethanol in 5% dextrose). Additionally, a time control experiment was conducted, during which the methacholine dose-response curve was measured twice during vehicle infusions (n = 5). During ethanol infusion, mean forearm and systemic alcohol levels were 227 +/- 30 and 6 +/- 0 mg/dl, respectively. Ethanol infusion alone reduced FBF (2.5 +/- 0.1 to 1.9 +/- 0.1 ml.dl(-1).min(-1), P < 0.05). Despite initial vasoconstriction, ethanol augmented the FBF dose-response curves to methacholine, nitroprusside, and verapamil (P < 0.01 by ANOVA for each). To determine whether this augmented FBF response was related to shear-stress-induced release of nitric oxide, FBF was measured during the coinfusion of ethanol and N(G)-nitro-L-arginine (L-NAME; n = 8) at rest and during verapamil-induced vasodilation. The addition of L-NAME did not block the ability of ethanol to augment verapamil-induced vasodilation. Ethanol has complex direct vascular effects, which include basal vasoconstriction as well as potentiation of both endothelium-dependent and -independent vasodilation. None of these effects appear to be mediated by an increase in nitric oxide bioavailability, thus disputing findings from preclinical models.  相似文献   

8.
Quantifying sweat gland activation provides important information when explaining differences in sweat rate between populations and physiological conditions. However, no standard technique has been proposed to measure sweat gland activation, while the reliability of sweat gland activation measurements is unknown. We examined the interrater and internal reliability of the modified-iodine paper technique, as well as compared computer-aided analysis to manual counts of sweat gland activation. Iodine-impregnated paper was pressed against the skin of 35 participants in whom sweating was elicited by exercise in the heat or infusion of methylcholine. The number of active glands was subsequently determined by computer-aided analysis. In total, 382 measurements were used to evaluate: 1) agreement between computer analysis and manual counts; 2) the interrater reliability of computer analysis between independent investigators; and 3) the internal reliability of sweat gland activation measurements between duplicate samples. The number of glands identified with computer analysis did not differ from manual counts (68 ± 29 vs. 72 ± 24 glands/cm(2); P = 0.27). These measures were highly correlated (r = 0.77) with a mean bias ± limits of agreement of -4 ± 38 glands/cm(2). When comparing computer analysis measures between investigators, values were highly correlated (r = 0.95; P < 0.001) and the mean bias ± limits of agreement was 4 ± 18 glands/cm(2). Finally, duplicate measures of sweat gland activation were highly correlated (r = 0.88; P < 0.001) with a mean bias ± limits of agreement of 3 ± 29 glands/cm(2). These results favor the use of the modified-iodine paper technique with computer-aided analysis as a standard technique to reliably evaluate the number of active sweat glands.  相似文献   

9.
The infusion of sodium nitroprusside during surgical operations produced plasma levels of cyanide of up to four times the control value. Plasma thiocyanate showed little change except during prolonged infusion of the drug, but total plasma B12 tended to fall, as did methylcobalamin. Other cobalamins showed little change after nitroprusside infusion for short periods. During longer infusions the ratio of methylcobalamin to adenosyl + hydroxocobalamin fell and cyanocobalamin concentrations were high.  相似文献   

10.
Between 1984 and 1988, a study was conducted to evaluate the frequency of rabies virus neutralizing antibodies in raccoons (Procyon lotor) in two counties in Iowa. Nine hundred eighty five raccoons were trapped and tagged in Guthrie and Cerro Gordo counties during the spring, summer and fall of each year. Sex, age and weight were recorded for each animal and a blood sample was collected. Serum samples were tested for the presence of serum neutralizing antibodies (SNA) by the rapid fluorescent focus inhibition test (RFFIT), mouse serum neutralization test (MSN), and an indirect fluorescent antibody (IFA) technique for detecting immunoglobulin G. Fifty-one raccoons (5%) were found to have SNA by the RFFIT. Thirty-six serum samples (24 with RFFIT antibody titer greater than 3.0, and 12 less than 3.0) were also tested by the MSN, with results correlating well with the RFFIT results (r = 0.86, P less than 0.01, Kappa = 0.93). In 35 raccoons with SNA by the RFFIT, six individuals had immunoglobulin G binding activity by the IFA test. These results provided serologic evidence of exposure of raccoons to rabies virus in an area free of enzootic raccoon rabies.  相似文献   

11.
Neurochemical changes in the extracellular fluid of the rostral ventrolateral medulla (RVLM) were produced by changes in arterial blood pressure. Blood pressure was raised or lowered with systemic infusions of phenylephrine or nitroprusside and neurochemicals were recovered from RVLM by in vivo microdialysis. A dialysis probe 300 microns in diameter and 500 microns in length was stereotaxically implanted in the RVLM of the urethane-anesthetized rat. Sterile physiological Ringer's solution was perfused at a rate of 1.5 microliter/min. The perfusate was collected under ice-cold conditions every 15 min for the assay of epinephrine, dihydroxyphenylacetic acid (DOPAC), 5-hydroxyindoleacetic acid (5-HIAA), ascorbic acid, and uric acid. After stable baseline neurochemical concentrations were achieved, animals were infused with phenylephrine or nitroprusside intravenously to raise or lower the blood pressure. Increasing blood pressure 50 mm Hg above the baseline value by phenylephrine led to a significant reduction in heart rate and a reduction in extracellular epinephrine and DOPAC concentrations. The 5-HIAA concentration was increased during the hypertensive drug infusion. There were no changes in the concentrations of ascorbic acid or uric acid. Hypotension produced by nitroprusside (-20 mm Hg) led to neurochemical changes which were the reciprocal of those seen during hypertension. During hypotension, heart rate increased as did the extracellular fluid epinephrine concentration. The 5-HIAA concentration fell with hypotension and remained depressed following the nitroprusside infusion. Ascorbic acid and uric acid concentrations did not change during hypotension but ascorbic acid did increase after the nitroprusside infusion stopped. These data provide direct evidence that epinephrine release in RVLM is linked to changes in systemic blood pressure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Patients with primary aldosteronism (PA) were shown to have suppressed muscle sympathetic nerve activity (MSNA) in our previous study. Although baroreflex inhibition probably accounts in part for this reduced MSNA in PA, we hypothesized that the lowered activity of the renin-angiotensin system in PA may also contribute to the suppressed SNA. We recorded MSNA in 9 PA and 16 age-matched normotensive controls (NC). In PA, the resting mean blood pressure (MBP) and serum sodium concentrations were increased, and MSNA was reduced. We examined the effects of infusion of a high physiological dose of ANG II (5.0 ng.kg(-1).min(-1)) on MSNA in 6 of 9 PA and 9 of 16 NC. Infusion of ANG II caused a greater pressor response in PA than NC, but, in spite of the greater increase in pressure, MSNA increased in PA, whereas it decreased in NC. Simultaneous infusion of nitroprusside and ANG II, to maintain central venous pressure at the baseline level and reduce the elevation in MBP induced by ANG II, caused significantly greater increases in MSNA in PA than in NC. Baroreflex sensitivity of heart rate, estimated during phenylephrine infusions, was reduced in PA, but baroreflex sensitivity of MSNA was unchanged in PA compared with NC. All the abnormalities in PA were eliminated following unilateral adrenalectomy. In conclusion, the suppressed SNA in PA depends in part on the low level of ANG II in these patients.  相似文献   

13.
In open-chest pentothal-chloralose anesthetized dogs, plasma catecholamine and cyclic AMP levels were evaluated in the aortic and coronary sinus blood, during stimulations of the left ansa subclavia (1, 2, and 4 Hz). Basal aortic and coronary sinus catecholamine levels were respectively 0.373 +/- 0.090 and 0.259 +/- 0.048 ng/mL and cyclic AMP levels averaged 21.4 +/- 1.4 and 20.9 +/- 1.6 pmol/mL. Statistically significant increases in cyclic AMP levels were induced by sympathetic stimulations at 1 Hz (2.0 +/- 0.6 pmol/mL, 2 Hz (2.5 +/- 1.2 pmol/mL) and 4 Hz (6.5 +/- 1.5 pmol/mL), concomitantly with elevations of coronary sinus catecholamine levels. Sotalol (5 mg/kg) abolished the increases in coronary sinus cyclic AMP levels induced in coronary sinus cyclic AMP output averaged 282 +/- 30 pmol/min (1 Hz), 662 +/- 160 pmol/min (2 Hz), and 1679 +/- 242 pmol/min (4 Hz). Sympathetically induced cyclic AMP output (4Hz) was blunted by sotalol (-81 +/- 14 pmol/min). Aortic cyclic AMP levels were not significantly influenced by stellate stimulation. Intense correlations were found between increased in coronary sinus plasma catecholamines and cyclic AMP concentration levels (r = 0.81, slope - 1.45, ordinate = -1.42, n = 15) as well as between delta cyclic AMP output versus delta catecholamine output values in the coronary sinus (r = 0.93. slope output levels. Intracoronary infusion of phenylephrine (10 micrograms/min) or nitroprusside (200 micrograms/min) had no influence on cyclic AMP plasma levels whereas aortic and coronary sinus levels were respectively increased 5.5 +/- 1.9 and 7.3 +/- 1.4 pmol/mL during the administration of isoproterenol (5 micrograms/min). These data suggested that plasma cyclic AMP constitutes a sensitive index of cardiac beta-adrenergic activity elicited by the release of endogenous catecholamine during stellate stimulations.  相似文献   

14.
Vaginal cytology was used to monitor ovarian cycles, two pregnancies, and three pseudopregnancies. Vaginal smears were collected two or three times per week from three adult females; smears plus blood samples were collected once per week from a fourth, adolescent female. Mean cycle lengths, based on intervals between onset of leukocyte infusions, were 11.9 ± 4.9 days (n = 43 cycles), 10.8 ± 5.1 days (n = 49), and 12.3 ± 6.3 days (n = 7) for the three females. Weekly hormone data from the adolescent female revealed a correlation between serum estradiol and percent anuclear cells, suggesting that these cells may be indicative of estrus. The fourth female experienced two sustained, 6-week increases in serum progesterone, one spontaneous and the other following follicle-stimulating hormone (FSH) administration. Leukocyte infusions continued during these periods of increased progesterone secretion. However, leukocyte infusions ceased during the two pregnancies of one adult female and during two FSH-induced pseudopregnancies of another. © 1992 Wiley-Liss, Inc.  相似文献   

15.
This study was conducted to determine relationships between the uterine microflora and reproductive characteristics of dairy cows. Uterine lumina were swabbed during estrus immediately prior to artificial insemination (A I). Swabbings were cultured for bacteria and accessed for cytologic evidence of inflammation. The time of sampling averaged 104 d post partum. Bacteria in the uterus were cultured from 65% of the cows (n = 85). The number of cows with any given microbial genus ranged from 1 to 35 and the number of different genera per cow ranged from 0 to 8. There were on significant correlations between amount and type of uterine microflora, days post partum, numbers of observed estrus, conception rate and uterine inflammation. The number of observed estrus periods was not correlated with the presence of aerobic bacteria. No significant relationships were found between microbes and uterine inflammation or conception to the A.I. service at the time of sampling. A negative correlation between uterine inflammation and conception approached significance (r=-0.24, P > 0.10). Acquisition of uterine lumen samples by the technique utilized had no effect on conception to A I service.  相似文献   

16.
Although studies in anesthetized, sino-aortic denervated animals indicate that inhibition of central nitric oxide (NO) causes an excitatory influence on efferent sympathetic nerve activity (SNA) that is normally offset by baroreflex activation, studies in conscious animals have not provided clear-cut evidence for a sympathoexcitatory effect of N(omega)-nitro-l-arginine methyl ester (L-NAME) or the endogenous circulating NO synthase (NOS) inhibitor asymmetric dimethylarginine (ADMA). Thus our goals were to 1) use surgical sino-aortic denervation to test for a sympathoexcititatory effect of intravenous l-NAME in conscious rats, and 2) to determine whether SNA responses to intravenous L-NAME can be extrapolated directly to intravenous ADMA. We recorded mean arterial blood pressure and renal SNA in both intact and sino-aortic-denervated conscious rats during 3 h of continuous intravenous infusion with either L-NAME or ADMA. When we eliminated the confounding influence of the sino-aortic baroreceptors, L-NAME produced a progressive increase in SNA with the peak response exceeding the baseline level of nerve firing by 150%. The same type of frank sympathetic activation was observed with intravenous ADMA. Taken together, these data offer straightforward evidence for l-NAME, as well as ADMA-induced sympathetic activation with direct recordings of SNA in conscious animals. These data confirm and extend the concept that circulating endogenous NOS inhibitors can constitute an excitatory signal to SNA.  相似文献   

17.
Endogenous and exogenous female hormones regulate sympathetic nerve activity (SNA) in animal models, but their impact in humans is controversial. The purpose of this study is to investigate the effects of the ovarian cycle and oral contraceptive pills (OCPs) on SNA. We hypothesized that the effects of endogenous hormones were baroreflex (BR)-mediated and that these cyclical changes in BR control were blunted by OCPs. Furthermore, we hypothesized that the nocturnal fall in blood pressure (BP) ("dipping"), which is sympathetically mediated, also varied with the ovarian cycle. In 23 healthy females (13 OCP users, 10 age-matched, no OCPs), SNA was recorded (microneurography) at rest, during BR activation/deactivation, and cold pressor test (CPT) during low and high hormonal phases. Furthermore, 24-h BP monitoring was performed during low and high hormonal phases. SNA was lower during the low vs. high hormone phase in non-OCP users (17.3 ± 2.4 vs. 25.4 ± 3.2 bursts/min, P < 0.001) but was not different between phases in OCP users [15.5 ± 1.7 vs. 16.6 ± 2.0 bursts/min, P = not significant (NS)]. BR control of SNA was not different during the hormone phases in either group [SNA (total activity/min) mean slope %change from baseline, no OCP users, low vs. high hormone phase 35.4 ± 6.2 vs. 29.6 ± 3.4%, P = NS and OCP users, low vs. high hormone phase 35.7 ± 3.9 vs. 33.5 ± 3.5%, P = NS]. SNA activation during CPT was not impacted by hormonal phase or OCP use. Finally, nondipping was not different between OCP users and nonusers, although there was a trend for nondipping to occur more frequently in the OCP users. SNA varies during the ovarian cycle in women in the absence of OCPs. This modulation cannot be attributed to cyclical changes in the BR sensitivity.  相似文献   

18.
A central mechanism participates in sympathetic overdrive during insulin resistance (IR). Nitric oxide synthase (NOS) and nitric oxide (NO) modulate sympathetic nerve activity (SNA) in the paraventricular nucleus (PVN), which influences the autonomic regulation of cardiovascular responses. The aim of this study was to explore whether the NO system in the PVN is involved in the modulation of SNA in fructose-induced IR rats. Control rats received ordinary drinking water, whereas IR rats received 12.5% fructose-containing drinking water for 12 wks to induce IR. Basal SNA was assessed based on the changes in renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) in response to chemicals administered to the PVN. We found an increased plasma norepinephrine level but significantly reduced NO content and neuronal NOS (nNOS) and endothelial NOS (eNOS) protein expression levels in the PVN of IR rats compared to Control rats. No difference in inducible NOS (iNOS) protein expression was observed between the two groups. In anesthetized rats, the microinjection of sodium nitroprusside (SNP), an NO donor, or Nω-nitro-L-arginine methyl ester (L-NAME), a non-selective inhibitor of NOS, into the PVN significantly decreased and increased basal SNA, respectively, in both normal and IR rats, but these responses to SNP and L-NAME in IR rats were smaller than those in normal rats. The administration of selective inhibitors of nNOS or eNOS, but not iNOS, to the PVN significantly increased basal SNA in both groups, but these responses were also smaller in IR rats. Moreover, IR rats exhibited reduced nNOS and eNOS activity in the PVN. In conclusion, these data indicate that the decreased protein expression and activity levels of nNOS and eNOS in the PVN lead to a reduction in the NO content in the PVN, thereby contributing to a subsequent enhancement in sympathoexcitation during IR.  相似文献   

19.
Leptin plays a critical role in the control of energy homeostasis. The sympathetic cardiovascular actions of leptin have emerged as a potential link between obesity and hypertension. We previously demonstrated that in mice, modest obesity induced by 10 wk of a high-fat diet is associated with preservation of leptin ability to increase renal sympathetic nerve activity (SNA) despite the resistance to the metabolic effects of leptin. Here, we examined whether selective leptin resistance exists in mice with late-stage diet-induced obesity (DIO) produced by 20 wk of a high-fat diet. The decrease in food intake and body weight induced by intraperitoneal or intracerebroventricular injection of leptin was significantly attenuated in the DIO mice. Regional SNA responses to intravenous leptin were also attenuated in DIO mice. In contrast, intracerebroventricularly administered leptin caused contrasting effects on regional SNA in DIO mice. Renal SNA response to intracerebroventricular leptin was preserved, whereas lumbar and brown adipose tissue SNA responses were attenuated. Intact renal SNA response to leptin combined with the increased cerebrospinal fluid leptin levels in DIO mice represents a potential mechanism for the adverse cardiovascular consequences of obesity. Lastly, we examined the role of phosphoinositol-3 kinase (PI3K) and melanocortin receptors (MCR) in mediating the preserved renal SNA response to leptin in obesity. Presence of PI3K inhibitor (LY294002) or MC3/4R antagonist (SHU9119) significantly attenuated the renal SNA response to leptin in DIO and agouti obese mice. Our results demonstrate the importance of PI3K and melanocortin receptors in the transduction of leptin-induced renal sympathetic activation in obesity.  相似文献   

20.
The electric heart activity can be localised from body surface mapping data with computer algorithms. At higher heart rates the T and P waves merge. Thus, the offset can not be subtracted in the TP segment. We investigated 28 healthy volunteers with signal averaged 31-lead magnetocardiography. The offset of the baseline was determined in the TP-segment and in the PR-segment, respectively. The electrical heart activity was localised in the initial 30 ms of the QRS complex (Q), at the QRS maximum (R), and at the T wave maximum (T). The volume currents were considered by using a boundary element model with the compartments lungs and torso. The 3D positions of the dipoles, the dipole orientations, and the dipole strengths were calculated using the data preprocessed with two different offset correction intervals. The offsets of the TP and PR segments significantly differed one from another. The average deviations of the dipole localisation were within a few centimetres (Q: 20 +/- 31 mm, R: 6 +/- 13 mm, T: 14 +/- 30 mm). However, in a small number of subjects (Q: n = 5, R: n = 2, T: n = 5) we observed a deviation of more than 30 mm. These deviations were not linearly correlated to the differences in the baseline offsets. High resolution recordings continuously detect heart activity in the PR segment. The correction of the baseline in the PR segment instead of the TP segment may introduce artefacts in the source localisation and therefore should be avoided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号