首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Detailed planktonic foraminiferal zonations have been established for the Neogene (Latest Oligocene through present) in six DSDP sites in the South Pacific ranging from equatorial to subantarctic latitudes (48°S). Two basic zonal schemes are readily recognized: tropical and temperate. The tropical zonation is best developed in DSDP Site 289 and the temperate zonation in Sites 206, 207A and 284. Tropical and temperate zonations can be linked by a warm subtropical scheme in Site 208, because this sequence includes a mixture of tropical and temperate elements. A site located close to the Subantarctic Convergence (Site 281) contains a zonation largely of temperate character, but the present of cooler elements and some differences in biostratigraphic ranges have required a slightly different biostratigraphic scheme.Although two broad schemes are recognized, none of the biostratigraphic sequences are identical between any of the sites. This reflects differences in biogeography, evolution and diachronous extinction at various latitudes during the entire Neogene. Diachronism in biostratigraphic ranges continue to create difficulties in correlation across such wide latitudes.Our detailed work has required the establishment of new biostratigraphic zonations in certain parts of the Neogene sequence and modifications in some other parts. Otherwise, previously established schemes are followed as closely as possible. In the temperate region, a new zonation has been established for the Early Miocene to early Middle Miocene. For the remainder of the Neogene the zonation of Kennett (1973) has been largely used. The tropical zonation of Blow (1969) is employed in the equatorial Site 289, but with further subdivisions for Zones N4 and N17. For areas intermediate between tropical and temperate latitudes (Site 208), a modified Early Miocene zonation is established based on changes in tropical and temperate elements.The zonal schemes are established on taxa that exhibit both diachronous and isochronous ranges across the latitudes. Zones that are at least partly diachronous include the Globigerinoides trilobus and Globorotalia miozea Zones of Early Miocene age; perhaps the Globorotalia mayeri Zone (its base) of the Middle Miocene; the Globorotalia conomiozea Zone of the Late Miocene; and the Globorotalia crassaformis Zone of the Early Pliocene.A large number of datum levels are recognized based on first evolutionary appearances or extinctions. The most widely applicable datums are as follows: latest Oligocene — Globigerinoides F.A.; Early Miocene — Globoquadrina dehiscens, F.A., Globorotalia kugleri L.A., Catapsydrax dissimilis L.A. and Praeorbulina glomerosa F.A.; Middle Miocene — Orbulina suturalis F.A., Globorotalia peripheroacuta F.A., Fohsella lineage L.A., Globorotalia mayeri L.A.; Late Miocene — “Neogloboquadrina” continuosa L.A., Globoquadrina dehiscens L.A., Globorotalia cibaoensis F.A.; Early Pliocene — Globorotalia puncticulata F.A., Globorotalia margaritae F.A.; Early Pleistocene — Globorotalia truncatulinoides F.A. A number of other datums are identified which assist with correlation over more restricted latitudinal ranges.The evolution of most Neogene planktonic foraminifera is now well established for a wide range of water masses. Evolutionary lineages are primarily centered in the temperate and tropical regions. Tropical lineages have recently been reviewed by Srinivasan and Kennett (1981) and are not discussed in detail here. However, Sphaeroidinellopsis seminulina is now considered to have evolved directly into S. paenedehiscens during the Late Miocene and S. subdehiscens Blow is considered to be junior synonym of S. seminulina.A new evolutionary lineage is recognized in the warm subtropics (Site 208) whereby Globigerina woodi woodi gave rise to Globigerinoides subquadratus via Globigerina brazieri. The discovery of this lineage clearly demonstrates that Globigerinoides is a polyphyletic “genus”. Another major phylogenetic lineage is recognized within the temperate globorotaliids of Early Miocene age as follows: “N.” continuosa → Globorotalia zealandica incognita → G. zealandica zelandica → G. praescitula → G. miozea. Although parts of this lineage have been recognized earlier, the entire phylogeny has previously been underscribed.A new Early to Middle Miocene lineage is recognized in the subantarctic to temperate areas which involve a transition from Globorotalia praescitula to G. challengeri n. sp. via intermediate forms.Two major Neogene globorotaliid lineages — the Menardella of the tropics and Middle Miocene to Recent forms of Globoconella of the temperate areas — are both considered to have evolved from Globorotalia praescitula beginning in the Early Miocene. This evolution initially was restricted to temperate areas but has since separated into distinctly tropical and temperate phylogenetic elements.  相似文献   

2.
Planktonic foraminifera are one of the most abundant and diverse protists in the oceans. Their utility as paleo proxies requires rigorous taxonomy and comparison with living and genetically related counterparts. We merge genetic and fossil evidence of “Globigerinoides”, characterized by supplementary apertures on spiral side, in a new approach to trace their “total evidence phylogeny” since their first appearance in the latest Paleogene. Combined fossil and molecular genetic data indicate that this genus, as traditionally understood, is polyphyletic. Both datasets indicate the existence of two distinct lineages that evolved independently. One group includes “Globigerinoidestrilobus and its descendants, the extant “Globigerinoidessacculifer, Orbulina universa and Sphaeroidinella dehiscens. The second group includes the Globigerinoides ruber clade with the extant G. conglobatus and G. elongatus and ancestors. In molecular phylogenies, the trilobus group is not the sister taxon of the ruber group. The ruber group clusters consistently together with the modern Globoturborotalita rubescens as a sister taxon. The re-analysis of the fossil record indicates that the first “Globigerinoides” in the late Oligocene are ancestral to the trilobus group, whereas the ruber group first appeared at the base of the Miocene with representatives distinct from the trilobus group. Therefore, polyphyly of the genus "Globigerinoides" as currently defined can only be avoided either by broadening the genus concept to include G. rubescens and a large number of fossil species without supplementary apertures, or if the trilobus group is assigned to a separate genus. Since the former is not feasible due to the lack of a clear diagnosis for such a broad genus, we erect a new genus Trilobatus for the trilobus group (type species Globigerina triloba Reuss) and amend Globoturborotalita and Globigerinoides to clarify morphology and wall textures of these genera. In the new concept, Trilobatus n. gen. is paraphyletic and gave rise to the Praeorbulina / Orbulina and Sphaeroidinellopsis / Sphaeroidinella lineages.  相似文献   

3.
Three new species of Dahlstedtia, D. burkartii, D. dehiscens, and D. lewisiana, are described from South America, and their relationships with related species are discussed. Dahlstedtia burkartii, from Argentina, has pink flowers with standard straight, whereas D. dehiscens and D. lewisiana, both from Brazil, have purplish to lilac flowers with a reflexed standard petal. A new combination, Dahlstedtia peckoltii, is proposed based on Lonchocarpus peckoltii and a neotype is selected for the latter. Information about geographic distribution and phenology of the species is provided.  相似文献   

4.
The planktonic foraminifera and nannofossils of three wells in the Gulf of Suez penetrating the Early to Middle Miocene Upper Rudeis and Kareem Formations are attributed (from top to base) to the Middle Miocene Globorotalia peripheroronda Partial Range Zone (M6), the earliest Middle Miocene Praeorbulina sicana–Orbulina suturalis Interval Zone (M5), subdivided into the Praeorbulina glomerosa s. strict.–O. suturalis Interval Subzone (M5b) and the P. sicana–P. glomerosa s. str. Interval Subzone (M5a) and the Early Miocene Globigerinoides bisphericus Partial Range Subzone (M4b). The appearance of O. suturalis at the base of Subzone M5b represents the final stage of evolution of the Globigerinoides trilobus–Praeorbulina–Orbulina Lineage. In addition, the calcareous nannoplankton assemblages indicate the Sphenolithus heteromorphus Zone (NN5) and the Helicosphaera ampliaperta Zone (NN4). These biozones are well correlatable with those established by El-Heiny and Martini (1981, Geol Mediterr. Tome, VIII(2): 101–108) from the southwestern flank of the Gulf of Suez.  相似文献   

5.
Honeybee acarapiosis and vorrosis were designated as Notifiable Infectious Diseases in the Act on Domestic Animal Infectious Diseases Control by the Minister of Agriculture, Forestry and Fisheries of Japan in 1997. However, the prevalences of A. woodi and V. destructor in Japan, especially in the Tohoku region, have not been sufficiently elucidated. This study was designed to clarify the prevalence of A. woodi and V. destructor mites in Apis cerana japonica and Apis mellifera in the Tohoku region and the characteristics of their mitochondrial cytochrome c oxidase I (COI) DNA. Acarapis woodi mites were detected from 13.5% of A. c. japonica and 0% of A. mellifera. Aomori prefecture, Japan is a new distribution locality for A. woodi. None of the honeybees examined showed infection by V. destructor mites. The COI sequences (1638 bp) of A. woodi were identical and phylogenetically closely related to those of A. woodi from Japan and the UK, suggesting that the mite would have been introduced into Japan with A. mellifera during the last 150 years and spread throughout the country.  相似文献   

6.
The temperature influence on foraminifera growth rate was analysed using a mechanistic formulation that take into account enzyme inactivation at extreme temperatures. Growth rates are calculated using available published and unpublished laboratory culture experiments for eight species, including Neogloboquadrina pachyderma (sinistral and dextral forms), Neogloboquadrina dutertrei, Globigerina bulloides, Globigerinoides ruber, Globigerinoides sacculifer, Globigerinella siphonifera and Orbulina universa. Modeled growth formulas readily reproduce the observed growth patterns for all species. Similar growth patterns are observed for the species that have the same symbiotic algae G. ruber, G. sacculifer, and O. universa. However, different growth patterns are observed for herbivorous species (Neogloboquadrina genus) compared to carnivorous species with or without symbionts. Our growth estimates correspond well to in situ observations from both plankton tows and sediment traps. These estimates will help to improve the quantification of the effects of environmental parameters on foraminifera species distribution and abundance.  相似文献   

7.
Sediment trap samples collected over a seven-year period (February 1991–October 1997) from Guaymas Basin in the Gulf of California were used to study the oxygen isotope composition of five species of planktonic foraminifera, Globigerinoides ruber (white), Globigerina bulloides, Neogloboquadrina dutertrei, Pulleniatina obliquiloculata, and Globorotalia menardii. The δ18O data were analyzed for temporal and interspecies variability and were compared to local hydrography to evaluate the use of each species in reconstructing past oceanographic applications. The two surface dwelling species, G. ruber and G. bulloides displayed the lowest δ18O values (~ 0.0 to ? 5.0‰), while δ18O values for the thermocline dwelling N. dutertrei, P. obliquiloculata, and G. menardii were higher (~ 0.0 to ? 2.0‰). The δ18O of G. ruber most accurately records measured sea surface temperatures (SSTs) throughout the year. G. bulloides δ18O tracks SSTs during the winter–spring upwelling period but for the remainder of the year records slightly colder, subsurface temperatures. The difference between the δ18O of the surface dwelling species, G. ruber and G. bulloides, and that of the thermocline dwelling species, N. dutertrei, P. obliquiloculata, and G. menardii, was used to estimate the surface to thermocline temperature gradient. During the winter these δ18O differences are small (~ 0.50‰) reflecting a well-mixed water column. These interspecies δ18O differences increase during the summer (~ 1.90‰) in response to the strong thermal stratification that exists at this time of year.  相似文献   

8.
The oxygen- and carbon-isotope compositions of planktic and benthic foraminifera and calcareous nannofossils from Middle Oligocene-Early Miocene Equatorial Atlantic sediments (DSDP Site 354) indicate two important paleoceanographic changes, in the Late Oligocene (foraminiferal Zone P.21) and in the Early Miocene (foraminiferal Zone N.5). The first change, reflected by a δ18O increase of 1.45‰ inGlobigerina venezuelana, affected only intermediate pelagic and not surface, deep or bottom waters. The second change affected surface and intermediate waters, whereas deep and bottom waters showed only minor fluctuations. In the case of the former the isotope effect of the moderate ice accumulation on the Antarctic continent is amplified in the Equatorial Atlantic by changes in the circulation pattern. The latter paleoceanographic change, reflected by a significant increase in18O in both planktic and benthic forms (about 1.0‰ and 0.5‰, respectively), may have been caused by ice volume increase and temperature decrease. Both oxygen- and carbon-isotope compositions indicate a marked depth-habitat stratification for planktic foraminifera and calcareous nannofossils. Three different dwelling groups are recognized: shallowGlobigerinoides, Globoquadrina dehiscens, Globorotalia mayeri and nannofossils; intermediateGlobigerina venezuelana; and deepCatapsydrax dissimilis. The comparison of foraminifera and calcareous nannofossils suggests that the isotopic compositions of nannofossils are generally controlled by the same parameters which control the isotopic composition of shallow-dwelling foraminifera, but the former are more enriched in18O.  相似文献   

9.
We present a high-resolution ( 60–110 yr) multi-proxy record spanning Marine Isotope Stage 3 from IMAGES Core MD01-2378 (13°04.95′ S and 121°47.27′ E, 1783 m water depth), located in the Timor Sea, off NW Australia. Today, this area is influenced by the Intertropical Convergence Zone, which drives monsoonal winds during austral summer and by the main outflow of the Indonesian Throughflow, which represents a key component of the global thermohaline circulation system. Thus, this core is ideally situated to monitor the linkages between tropical and high latitude climate variability. Benthic δ18O data (Planulina wuellerstorfi) clearly reflect Antarctic warm events (A1–A4) as recorded by the EPICA Byrd and Dronning Maud Land ice cores. This southern high latitude signal is transferred by deep and intermediate water masses flowing northward from the Southern Ocean into the Indian Ocean. Planktonic δ18O shows closer affinity to northern high latitudes planktonic and ice core records, although only the longer-lasting Dansgaard–Oeschger warm events, 8, 12, 14, and 16–17 are clearly expressed in our record. This northern high latitude signal in the surface water is probably transmitted through atmospheric teleconnections and coupling of the Asian–Australian monsoon systems. Benthic foraminiferal census counts suggest a coupling of Antarctic cooling with carbon flux patterns in the Timor Sea. We relate increasing abundances of carbon-flux sensitive species at 38–45 ka to the northeastward migration of the West Australian Current frontal area. This water mass reorganization is also supported by concurrent decreases in Mg/Ca and planktonic δ18O values (Globigerinoides ruber white).  相似文献   

10.
Variations in the fluxes of planktonic foraminifera were analyzed based on sediment trap data collected over a period of 10 months, from October 1994 to August 1995, at stations JAST01 and JAST02, located on both sides of the Ryukyu Islands, Japan. Station JAST01 (latitude 27°23′N, longitude 126°44′E) was deployed at a depth of 1000 m in the Okinawa Trough, East China Sea, along the flow axis of the Kuroshio Current, west of the islands, whereas station JAST02 (latitude 25°4′N, longitude 127°34′E) was deployed at a depth of 3000 m in the Ryukyu Trench, along the western margin of the northwest Pacific, east of the Islands. The total planktonic foraminiferal fluxes (TFFs) in the eastern station were high in winter, when the surface-water column was vertically well mixed. In contrast, the TFF peaks did not show significant seasonality in the western station, but values fluctuated with the northwest–southeast oscillation of the Kuroshio axis. Among the 36 planktonic foraminiferal species identified in the trap samples, Globigerina bulloides, Globigerinita glutinata, Neogloboquadrina dutertrei, Pulleniatina obliquiloculata, Globigerinoides ruber, Globigerinoides sacculifer and Globigerina falconensis exhibited a greater shell flux. On both sides of the Ryukyu Island Arc, the fluxes of G. ruber and G. sacculifer increased synchronously with the seasonal warming of surface waters, whereas that of G. falconensis increased during winter, when the water column was vertically well mixed as a result of the NW monsoon. In contrast to these species, which exhibited similar seasonal flux variation patterns at both stations, the species G. bulloides, G. glutinata, N. dutertrei, and P. obliquiloculata displayed different flux variations on both sides of the islands. These fluxes seem to be regulated by phytoplankton productivity, which is controlled by the vertical structure of the water column on the eastern Ryukyu Trench side and by the oscillation of the Kuroshio axis on the western Okinawa Trough side. Lateral transport of suspended planktonic foraminiferal shells to the Okinawa Trough might exist, but is not prominent enough to wipe out the original features of the planktonic foraminiferal flux. The species G. falconensis is an indicator of winter mixing on both sides of the Ryukyu Islands, and may possibly be used as a proxy to trace the intensity of the paleo-winter monsoon.  相似文献   

11.
Using shells collected from a sediment trap series in the Madeira Basin, we investigate the effects of seasonal variation of temperature, productivity, and optimum growth conditions on calcification in three species of planktonic Foraminifera. The series covers an entire seasonal cycle and reflects conditions at the edge of the distribution of the studied species, manifesting more suitable growth conditions during different parts of the year. The seasonal variation in seawater carbonate saturation at the studied site is negligible compared to other oceanic regions, allowing us to assess the effect of parameters other than carbonate saturation. Shell calcification is quantified using weight and size of individual shells. The size–weight scaling within each species is robust against changes in environmental parameters, but differs among species. An analysis of the variation in calcification intensity (size-normalized weight) reveals species-specific response patterns. In Globigerinoides ruber (white) and Globigerinoides elongatus, calcification intensity is correlated with temperature (positive) and productivity (negative), whilst in Globigerina bulloides no environmental forcing is observed. The size–weight scaling, calcification intensity, and response of calcification intensity to environmental change differed between G. ruber (white) and G. elongatus, implying that patterns extracted from pooled analyses of these species may reflect their changing proportions in the samples. Using shell flux as a measure of optimum growth conditions, we observe significant positive correlation with calcification intensity in G. elongatus, but negative correlation in G. bulloides. The lack of a consistent response of calcification intensity to optimum growth conditions is mirrored by the results of shell size analyses. We conclude that calcification intensity in planktonic Foraminifera is affected by factors other than carbonate saturation. These factors include temperature, productivity, and optimum growth conditions, but the strength and sign of the relationships differ among species, potentially complicating interpretations of calcification data from the fossil record.  相似文献   

12.
《Marine Micropaleontology》2009,70(3-4):282-296
An assemblage of planktonic foraminifera is described from 125 samples taken from the Cercado, Gurabo, and Mao Formations in the Cibao Valley, northern Dominican Republic. The primary objectives of this study are to establish a biochronologic model for the late Neogene of the Dominican Republic and to examine sea surface conditions within the Cibao Basin during this interval. The Cercado Formation is loosely confined to Zones N17 and N18 (∼ 7.0–5.9 Ma). The Gurabo Formation spans Zones N18 and N19 (∼ 5.9–4.5 Ma). The Mao Formation is placed in Zone N19 (∼ 4.5–3.6 Ma). Changes in the relative abundances of indicator species are used to reconstruct sea surface conditions within the basin. Increasing relative abundances of Globigerinoides sacculifer and Globigerinoides ruber, in conjunction with a decreasing relative abundance of Globigerina bulloides, suggests the onset of increasing sea surface temperature and salinity in conjunction with diminishing primary productivity at ∼ 6.0 Ma. Abrupt increases in the relative abundances of G. sacculifer and G. ruber at ∼ 4.8 Ma suggest a major increase in sea surface temperature and salinity in the early Pliocene. The most likely mechanism for these changes is isolation of the Caribbean Ocean through progressive restriction of Pacific–Caribbean transfer via the Central American Seaway. Periods of high productivity associated with upwelling events are recorded in the upper Cercado Formation (∼ 6.1 Ma) and in the middle Mao Formation (∼ 4.2 Ma) by spikes in G. bulloides and Neogloboquadrina spp. respectively. The timing of major increases in sea surface salinity and temperature as well as decreasing productivity (∼ 4.8 Ma) and periods of upwelling (∼ 6.1and 4.2 Ma) in the Cibao Basin generally corroborate previously suggested Caribbean oceanographic changes related to the uplift of Panama. Changes in sea surface conditions depicted by paleobiogeographic distributions in the Cibao Basin suggest that shoaling along the Isthmus of Panama had implications in a shallow Caribbean basin as early as 6.0 Ma. Major paleobiologic changes between ∼ 4.8 and 4.2 Ma likely represent the period of final closure of the CAS and a nearly complete disconnection between Pacific and Caribbean water masses. This study illustrates the use of planktonic foraminifera in establishing some paleoceanographic conditions (salinity, temperature, productivity, and upwelling) within a shallow water basin, outlining the connection between regional and localized oceanographic changes.  相似文献   

13.
Material collected during a three-year sediment trapping experiment in the Cariaco Basin, Venezuela (January 1997 to December 1999) is used to examine both temporal and inter-species variability in the oxygen isotope composition of planktonic foraminifera. Specifically, this study compares the oxygen isotope composition of six species of planktonic foraminifera (Globigerinoides ruber (pink), Globigerina bulloides, Neogloboquadrina dutertrei, Orbulina universa, Globorotalia menardii and Globorotalia crassaformis) with the climatology and hydrography of the region, and evaluates the application of each species for use in paleoceanographic reconstructions. The isotope results are consistent with known depth habitats for all six species. The lowest δ18O values (− 1 to − 2‰) were measured on G. ruber (pink) and G. bulloides, two species that live in the surface mixed layer. Values for deeper-dwelling species such as N. dutertrei, G. menardii and G. crassaformis are higher, predominantly ranging from 0 to − 0.5‰. Temperature estimates derived using species-specific paleotemperature equations indicate that G. ruber (pink) accurately estimates sea surface temperatures (SSTs) throughout the year, while G. bulloides temperature estimates are similar to measured surface temperatures only during the upwelling season (January–April). For the remainder of the year, the δ18O-derived temperatures for G. bulloides typically are lower than the measured SST. Although the maximum flux of all species occurs during upwelling, the flux-weighted annual mean isotopic composition of the six species indicates that only G. bulloides is biased towards this season. Therefore, we conclude that the sediment δ18O record of G. ruber (pink) is most suitable for estimating past values of mean annual SST, while G. bulloides provides information on conditions during spring upwelling. The depth of calcification of N. dutertrei varies seasonally in response to changes in the depths of the thermocline and chlorophyll maximum. As a result, the δ18O difference between G. ruber (pink) and N. dutertrei provides an estimate of the annual surface to thermocline temperature gradient in the basin.  相似文献   

14.
Planktonic foraminifera provide a record of the upper ocean environment in the chemical and isotopic composition of individual shells. Globigerinoides ruber is a common tropical–subtropical planktonic foraminifer, and this species is used extensively for reconstruction of the paleo-environment. The different stable isotopic compositions of two morphotypes, G. ruber sensu stricto (s.s.) and G. ruber sensu lato (s.l.), first identified in sediments, suggested that G. ruber s.s. was dwelling in the upper 30 m of the water column and G. ruber s.l. at greater depths. Plankton tows and sediment trap experiments provided additional evidence distinguishing the two morphotypes and their habitats and invited the question as to whether the two morphotypes could be distinguished genetically. In this study, using phylogenetic analysis of nuclear partial small subunit ribosomal DNA (SSU rDNA) gene sequences representing 12 new and 16 known sequences, we identified four genotypes within G. ruber white variation; one of which is a sister group of Globigerinoides conglobatus, whereas the three others were sister groups of the G. ruber pink variation. Moreover, these two major groups corresponded to morphological differences described as G. ruber s.l. and s.s., respectively. This genetic evidence corroborates differences between the two morphotypes in the isotope record, and it will contribute to a more precise reconstruction of the thermal structure of the water column.  相似文献   

15.
A correlation between foraminiferal community dynamics and environmental conditions may provide a basis for establishing paleoclimatic proxies. We studied planktic foraminiferal shell fluxes and assemblages in samples collected in three time-series sediment trap deployments in the western equatorial Pacific under La Niña conditions from January to November 1999. Eleven species contributed about 90% of the total flux in all traps. Two sites (MT1, MT3) in the Western Pacific Warm Pool region (WPWP) were characterized by common occurrences of the species Globigerinoides ruber, Globigerinoides sacculifer, Globigerinoides tenellus, and Neogloboquadrina dutertrei. Site MT5 farther to the east in the equatorial upwelling region had common occurrences of Globigerina bulloides, Globigerinita glutinata, and Pulleniatina obliquiloculata. Very high abundances of G. bulloides and G. glutinata at MT5 indicate that equatorial upwelling (EU) occurred during the 1999 La Niña. The two western sites have similar assemblage compositions, but MT1 ( 135°E) has the highest fluxes (up to  3800 tests m− 2 day− 1), whereas MT3 ( 145° E) has fluxes below  2200 tests m− 2 day− 1. Relatively high fluxes (up to  3000 tests m− 2 day− 1) occur at site MT5 ( 176° E), where upwelling occurred.The differences in faunal composition in the WPWP and EU might be attributable to differences in the way in which nutrients are supplied to the phytoplankton: large amounts of suspended material are supplied to the WPWP by advection of waters passing through the coastal region of an archipelago, whereas upwelling of nutrient-rich waters enhances primary production in the EU. At the westernmost site in the WPWP, a peak in the G. bulloides flux coincided with southward flow of the New Guinea Coastal Current (NGCC) in late February, but the highest G. ruber flux coincided with northward flow of this current in late May. Thus, the differences in species dominance at this location may be caused by monsoon-driven variability in the flow direction of the NGGC.  相似文献   

16.
The effects of the tracheal mite Acarapis woodi on the health of honey bees have been neglected since the prevalence of Varroa mites to Apis mellifera colonies. However, tracheal mite infestation of honey bee colonies still occurs worldwide and could impose negative impact on apiculture. The detection of A. woodi requires the dissection of honey bees followed by microscopic observation of the tracheal sacs. We thus developed PCR methods to detect A. woodi. These methods facilitate rapid and sensitive detection of A. woodi in many honey bee samples for epidemiologic surveys.  相似文献   

17.
We have measured stable isotopic compositions of Miocene pelagic fine-fraction (<63 μm) carbonates from oligotrophic deep-sea sites in the Pacific and Atlantic oceans and compared them with those of coexisting foraminifers to test their utility as near sea-surface indicators. Fine-fraction carbonates (primarily polyspecific nannofossils) and surface-dwelling planktic foraminiferal (Globigerinoides) stable isotopes both have been considered to reflect surface-water hydrographic conditions. However, our results indicate that fine-fraction stable isotopes are offset from and do not correlate well with those of Globigerinoides. In contrast, stable isotopic records of the deep-dwelling planktic foraminifer Globoquadrina are in good correspondence with the fine-fraction records in terms of long-term (ca. >1 m.y.) trends and temporal variability. On the basis of a time-series hydrography and flux study site in the oligotrophic subtropical North Atlantic, we interpret the isotopic discrepancies between fine-fraction and Globigerinoides as resulting primarily from season of calcification, as well as possible vital effects. We suggest that fine-fraction stable isotope values from oligotrophic waters reflect late winter–early spring relatively cool, nutrient-rich shallow mixed-layer conditions during the time of deep mixing (i.e., spring bloom), whereas Globigerinoides stable isotope values record conditions that prevailed in the stratified surface waters in the warmer late spring–fall. This implies that paired analyses of fine-fraction and surface-dwelling planktic foraminiferal δ18O could be applied to reconstruct paleoseasonality of the open oceans. However, because the fine-fraction δ13C values are not representative of the annual mean surface-water δ13C, we recommend use of near surface-dwelling planktic foraminiferal δ13C as a proxy for δ13C of stratified surface waters that are more or less in equilibrium with the atmosphere with respect to pCO2.  相似文献   

18.
《Marine Micropaleontology》2002,44(3-4):125-140
A global dataset of coretop planktic foraminiferal δ18Oc is combined with a global database of seawater δ18Ow observations and ocean climatologies to determine robust optimum parameters for an ecological model for six commonly measured species and varieties. These parameters consist of the temperature ranges, optimum temperatures, depth habitat, and the amount of secondary calcification for Globigerinoides ruber (white), G. ruber (pink), Neogloboquadrina pachyderma (l), N. pachyderma (r), Globigerinoides sacculifer, and Globigerina bulloides. This approach produces ecological models and temperature ranges consistent with previous work, and manages to reproduce the coretop oxygen-18 carbonate values remarkably well. The standard error of modelled values of coretop calcite globally and for all species is 0.53‰, compared to an error of 1.2‰ when assuming annual average mixed layer equilibrium calcite.  相似文献   

19.
We determined the faunal composition and total number of tests (#/g) of planktic foraminifera (> 125 μm) in core KH00-05 GOA 6 near Oman in order to decipher monsoon-induced variability of oceanographic productivity in the open-ocean upwelling area in the northwest Arabian Sea. The core contains a continuous record of sedimentation over the last 230 kyr, with the age model based on oxygen isotope and accelerator mass spectrometry 14C dates. We focused on species (Globigerina bulloides and Globigerinita glutinata) typical for SW monsoonal upwelling and species typical for NE monsoon conditions (Neogloboquadrina incompta, Neogloboquadrina dutertrei, Globigerinoides ruber, and Globigerinoides sacculifer). The changes in relative abundance of these monsoonal indicators suggest that the open-ocean upwelling area was dominated by the SW monsoon during interglacial periods, but by the NE monsoon during glacial periods.Increases in total test abundance during glacial periods confirmed that the NE monsoon rather than SW monsoon contributes largely to planktic foraminiferal productivity in this area. We argue that three types of circumstances resulted in high productivity, with nine high productivity events occurring at a 23-kyr frequency. The first type caused high productivity events at 102 and 199 ka (interglacial periods), characterized by the dominance of upwelling species, indicating high productivity during strong SW monsoons, correlated with high July insolation at 45° N. An exceptional high productivity event occurred at 37 ka during interglacial marine isotope stage (MIS) 3, with contributions from both SW and NE monsoons. The second type of high productivity event occurred at 61, 147, and 175 ka, during glacial periods, characterized by dominance of NE monsoon species, and correlated with low January insolation at 45° N. In addition, a high productivity event at 85 ka (interglacial period) also was induced by enhanced NE monsoons. The last two high productivity events occurred during transitional periods from glacial to interglacial (MIS 6/5.5 and 2/1), were characterized by the replacement of NE monsoon species with upwelling species, and corresponded to abrupt climate warming, suggesting that they are related to both accelerated SW monsoon systems and reduced NE monsoon systems.  相似文献   

20.
Temporal changes in biological and isotopic tracers have successfully been used to monitor monsoon variability in the Arabian Sea. Convincing evidence that fertility indicators, such as the relative abundance of the planktic foraminifer Globigerina bulloides, and SiO2 and Ba fluxes, can monitor monsoon changes, has also been published. Time series of the 13C content of the thermocline foraminifer Neogloboquadrina dutertrei, and of an Upwelling Radiolarian Index (URI), have been used to reconstruct upwelling changes in the Somali Basin at 5 °N for the last 160 kyr. In order to establish a reference site for comparison with other upwelling and/or fertility records from the same area, a time series of 8 climatic and fertility proxies (13C content of N. dutertrei and Globorotalia menardii, percentages of G. bulloides and of a thermocline foraminiferal group, minimal δ18 values of Globigerinoides sacculifer, N. dutertrei and G. menardii) are investigated in the spectral domain for the last 360 kyr, at a site located at the equator and outside the Somali upwelling centers (Core MD 85668).Chronostratigraphies for these records are developed by correlation of oxygen isotope record of G. sacculifer to the Martinson standard stacked benthic oxygen isotope record. The temporal resolution of the data, is between 2 and 5 kyr.Cross spectral comparisons with ETP (Eccentricity + Tilt + Precession-composite signal) were used to estimate coherences in conjunction with phase relationships and to quantify relationships between fertility and climatic indicators. The timing of fertility indicator cycles at the equator shows little (obliquity band) or no (other orbital bands) coincidence with monsoon proxies of the Arabian Sea. At the equator, fertility responses are dissociated, and present important leads or lags with ETP signal at the three orbital bands (with the exception of the thermocline foraminifera, in phase with maximum eccentricity). Due to significant leads with ETP in the timing of 13C minima and URI cycles, no relationships with the Northern Hemisphere radiation can be deduced. At the obliquity and precessional frequency bands, thermocline foraminifera cycles display significant lag with ETP and ice volume minima, which suggests that radiation is not the sole forcing mechanism. Global climatic and ice volume changes may be an important forcing mechanism for these fertility proxies. The G. bulloides record is more complicated with cycles in phase with Arabian Sea monsoon proxies at the obliquity band, and 18O minima at the precession frequency.It appears that, at the equator, the southwest monsoon winds are not the main force driving radiolarian and foraminiferal productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号