首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ihling C  Sinz A 《Proteomics》2005,5(8):2029-2042
The basic problem of complexity poses a significant challenge for proteomic studies. To date two-dimensional gel electrophoresis (2-DE) followed by enzymatic in-gel digestion of the peptides, and subsequent identification by mass spectrometry (MS) is the most commonly used method to analyze complex protein mixtures. However, 2-DE is a slow and labor-intensive technique, which is not able to resolve all proteins of a proteome. To overcome these limitations gel-free approaches are developed based on high performance liquid chromatography (HPLC) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The high resolution and excellent mass accuracy of FT-ICR MS provides a basis for simultaneous analysis of numerous compounds. In the present study, a small protein subfraction of an Escherichia coli cell lysate was prepared by size-exclusion chromatography and proteins were analyzed using C4 reversed phase (RP)-HPLC for pre-separation followed by C18 RP nanoHPLC/nanoESI FT-ICR MS for analysis of the peptide mixtures after tryptic digestion of the protein fractions. We identified 231 proteins and thus demonstrated that a combination of two RP separation steps - one on the protein and one on the peptide level - in combination with high-resolution FT-ICR MS has the potential to become a powerful method for global proteomics studies.  相似文献   

2.
The primary structures of human pulmonary surfactant-associated proteins SP-A, SP-B and SP-C isolated from lung lavage of patients with alveolar proteinosis exhibit significant differences from lung surfactant proteins isolated from lungs of healthy individuals. In contrast to SP-A from normal lungs, proteinosis SP-A was shown by SDS gel electrophoresis to contain large amounts of unreducibly cross-linked beta chains. Specific primary structure modifications of SP-C and SP-B proteins were established by direct molecular weight and structural analysis, using [252Cf]plasma desorption mass spectrometry (PD/MS) as the principal method. In comparison to normal lung surfactant SP-B, proteinosis SP-B showed a significantly increased molecular weight by approx. 500 Da for the unreduced protein dimer. SP-C proteins from normal lungs were identified to possess a bis-cysteinyl-5,6-(thioester)palmitoylated structure, and to contain a frayed N-terminus resulting in two sequences of 34 and 35 amino acid residues. In contrast, SP-C from proteinosis patients was modified by (i) partial or even complete removal of palmitate residues and (ii) additional N-terminal proteolytic degradation. These results indicate the presence of pathophysiological structure modifications, which are likely to occur in the alveolar space, and may lead to a reduced surfactant function.  相似文献   

3.
The proteome of Haemophilus influenzae strain Rd KW20 was analyzed by liquid chromatography (LC) coupled with ion trap tandem mass spectrometry (MS/MS). This approach does not require a gel electrophoresis step and provides a rapidly developed snapshot of the proteome. In order to gain insight into the central metabolism of H. influenzae, cells were grown microaerobically and anaerobically in a rich medium and soluble and membrane proteins of strain Rd KW20 were proteolyzed with trypsin and directly examined by LC-MS/MS. Several different experimental and computational approaches were utilized to optimize the proteome coverage and to ensure statistically valid protein identification. Approximately 25% of all predicted proteins (open reading frames) of H. influenzae strain Rd KW20 were identified with high confidence, as their component peptides were unambiguously assigned to tandem mass spectra. Approximately 80% of the predicted ribosomal proteins were identified with high confidence, compared to the 33% of the predicted ribosomal proteins detected by previous two-dimensional gel electrophoresis studies. The results obtained in this study are generally consistent with those obtained from computational genome analysis, two-dimensional gel electrophoresis, and whole-genome transposon mutagenesis studies. At least 15 genes originally annotated as conserved hypothetical were found to encode expressed proteins. Two more proteins, previously annotated as predicted coding regions, were detected with high confidence; these proteins also have close homologs in related bacteria. The direct proteomics approach to studying protein expression in vivo reported here is a powerful method that is applicable to proteome analysis of any (micro)organism.  相似文献   

4.
The presence of surfactant proteins was investigated in the human organ of Corti, Eustachian tube and kidney tissues. It has previously been shown that lamellar bodies are present in hairy cells of organ of Corti, in the cytoplasm of secretory and lumen of tubal glands of Eustachian tube and kidney renal basement membrane. No evidence for the presence of surfactant proteins in the organ of Corti and kidney has been presented until now. The aim of this study was to find out if surfactant proteins were expressed in other epithelia such as organ of Corti, Eustachian tube and kidney. Surfactant proteins were identified using one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting. On one-dimensional Western blots, bands for surfactant protein A in human Eustachian tube (SP-A, 34 kDa) and in kidney extracts, and for surfactant protein D (SP-D, 43 kDa) in Eustachian tube and in kidney extracts (SP-D, 86 kDa), and for surfactant protein B (SP-B, 8 kDa) in human Eustachian tube and organ of Corti extracts were detected. Bands corresponded to monomeric forms of lung surfactant proteins. These results indicate the presence of SP-A and SP-D in kidney epithelium, SP-A, SP-B and SP-D in Eustachian tube and SP-B in the organ of Corti.  相似文献   

5.
We propose two-dimensional gel electrophoresis (2-DE) and mass spectrometry to define the protein components of regulons and stimulons in bacteria, including those organisms where genome sequencing is still in progress. The basic 2-DE protocol allows high resolution and reproducibility and enables the direct comparison of hundreds or even thousands of proteins simultaneously. To identify proteins that comprise stimulons and regulons, peptide mass fingerprint (PMF) with matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI-TOF-MS) analysis is the first option and, if results from this tool are insufficient, complementary data obtained with electrospray ionization tandem-MS (ESI-MS/MS) may permit successful protein identification. ESI-MS/MS and MALDI-TOF-MS provide complementary data sets, and so a more comprehensive coverage of a proteome can be obtained using both techniques with the same sample, especially when few sequenced proteins of a particular organism exist or genome sequencing is still in progress.  相似文献   

6.
Roe MR  Griffin TJ 《Proteomics》2006,6(17):4678-4687
Revolutionary advances in biological mass spectrometry (MS) have provided a basic tool to make possible comprehensive proteomic analysis. Traditionally, two-dimensional gel electrophoresis has been used as a separation method coupled with MS to facilitate analysis of complex protein mixtures. Despite the utility of this method, the many challenges of comprehensive proteomic analysis has motivated the development of gel-free MS-based strategies to obtain information not accessible using two-dimensional gel separations. These advanced strategies have enabled researchers to dig deeper into complex proteomes, gaining insights into the composition, quantitative response, covalent modifications and macromolecular interactions of proteins that collectively drive cellular function. This review describes the current state of gel-free, high throughput proteomic strategies using MS, including (i) the separation approaches commonly used for complex mixture analysis; (ii) strategies for large-scale quantitative analysis; (iii) analysis of post-translational modifications; and (iv) recent advances and future directions. The use of these strategies to make new discoveries at the proteome level into the effects of disease or other cellular perturbations is discussed in a variety of contexts, providing information on the potential of these tools in electromagnetic field research.  相似文献   

7.
Effective proteome analyses are based on interplay between resolution and detection. It had been claimed that resolution was the main factor limiting the use of two-dimensional gel electrophoresis. Improved protein detection now indicates that this is unlikely to be the case. Using a highly refined protocol, the rat brain proteome was extracted, resolved, and detected. In order to overcome the stain saturation threshold, high abundance protein species were excised from the gel following standard imaging. Gels were then imaged again using longer exposure times, enabling detection of lower abundance, less intensely stained protein species. This resulted in a significant enhancement in the detection of resolved proteins, and a slightly modified digestion protocol enabled effective identification by standard mass spectrometric methods. The data indicate that the resolution required for comprehensive proteome analyses is already available, can assess multiple samples in parallel, and preserve critical information concerning post-translational modifications. Further optimization of staining and detection methods promises additional improvements to this economical, widely accessible and effective top-down approach to proteome analysis.  相似文献   

8.
Surfactant-associated proteins: functions and structural variation   总被引:7,自引:0,他引:7  
Pulmonary surfactant is a barrier material of the lungs and has a dual role: firstly, as a true surfactant, lowering the surface tension; and secondly, participating in innate immune defence of the lung and possibly other mucosal surfaces. Surfactant is composed of approximately 90% lipids and 10% proteins. There are four surfactant-specific proteins, designated surfactant protein A (SP-A), SP-B, SP-C and SP-D. Although the sequences and post-translational modifications of SP-B and SP-C are quite conserved between mammalian species, variations exist. The hydrophilic surfactant proteins SP-A and SP-D are members of a family of collagenous carbohydrate binding proteins, known as collectins, consisting of oligomers of trimeric subunits. In view of the different roles of surfactant proteins, studies determining the structure-function relationships of surfactant proteins across the animal kingdom will be very interesting. Such studies may reveal structural elements of the proteins required for surface film dynamics as well as those required for innate immune defence. Since SP-A and SP-D are also present in extrapulmonary tissues, the hydrophobic surfactant proteins SP-B and SP-C may be the most appropriate indicators for the evolutionary origin of surfactant. SP-B is essential for air-breathing in mammals and is therefore largely conserved. Yet, because of its unique structure and its localization in the lung but not in extrapulmonary tissues, SP-C may be the most important indicator for the evolutionary origin of surfactant.  相似文献   

9.
The most imperative organ, kidney has been widely studied in zebrafish for its simplified structures and development. Understanding the proteomic component of kidney might lead to a better insight for understanding the structural and functional complexity of kidney. In this study we have analyzed the proteome profile of the zebrafish kidney based on gel based proteome mapping techniques involving single dimension gel electrophoresis nanoflow liquid chromatography mass spectrophotometer, single dimension gel electrophoresis microflow ESI liquid chromatography mass spectrophotometer and two dimensional gel electrophoresis matrix assisted laser desorption/ionization assay mass spectrophotometer analysis. A total of 385 proteins were identified consensually from the analysis as zebrafish kidney specific protein which includes 313, 55, and 87 proteins identified based on 1-DE FTMS/ITMSMS, 1-DE ESI-LCMS/MS and 2-DE MALDI MS/MS approaches respectively. The identified kidney proteome dataset was found to be representatives of diverse pI, mass, localization, process and functions. The kidney proteome dataset was found to be significantly associated with various metabolic, catabolic, cytoskeleton remodeling and rectal disease pathways. The engendered kidney protein catalog will serve as a template for understanding kidney functions and biomarker identification related to different kidney disorders.  相似文献   

10.
Mass spectrometry (MS) is an important tool in modern protein chemistry. In proteome analyses the expression of hundreds or thousands of proteins can be monitored at the same time. First, complex protein mixtures are separated by two-dimensional gel electrophoresis (2-DE) and then individual proteins are identified by using MS followed by database searches. Recent developments in this field have made it possible to do automated, high-throughput protein identification that is needed in proteome analyses. MS can also be used to characterize post-translational modifications in proteins and to study protein complexes. This review will introduce the current MS methods used in proteome studies, and discuss their advantages and disadvantages. New instrumental MS developments are also presented that are useful in these analyses.  相似文献   

11.
A proteomic analysis of the synaptic vesicle was undertaken to obtain a better understanding of vesicle regulation. Synaptic vesicles primarily consist of integral membrane proteins that are not well resolved on traditional isoelectric focusing/two-dimensional gel electrophoresis (IEF/2-DE) gels and are resistant to in-gel digestion with trypsin thereby reducing the number of peptides available for mass spectrometric analysis. To address these limitations, two complementary 2-DE methods were investigated in the proteome analysis: (a) IEF/sodium dodecyl sulfate-polyacrylamide gel electrophoresis (IEF/SDS-PAGE) for resolution of soluble proteins and, (b) Benzyl hexadecyl ammonium chloride/SDS-PAGE (16-BAC/SDS-PAGE) for resolution of integral membrane proteins. The IEF/SDS-PAGE method provided superior resolution of soluble proteins, but could only resolve membrane proteins with a single transmembrane domain. The 16-BAC/SDS-PAGE method improved separation, resolution and identification of integral membrane proteins with up to 12 transmembrane domains. Trypsin digestion of the integral membrane proteins was poor and fewer peptides were identified from these proteins. Analysis of both the peptide mass fingerprint and the tandem mass spectra using electrospray ionization quadrupole-time of flight mass spectrometry led to the positive identification of integral membrane proteins. Using both 2-DE separation methods, a total of 36 proteins were identified including seven integral membrane proteins, 17 vesicle regulatory proteins and four proteins whose function in vesicles is not yet known.  相似文献   

12.
A proteome map of Ralstonia metallidurans strain CH34 was constructed using two-dimensional (2-D) gel electrophoresis in combination with automated Edman degradation and mass spectrometry (MS). R. metallidurans CH34 is the type-strain of a family of highly related strains characterized by their multiple resistance to millimolar amounts of heavy metals, conferred by two large plasmids. The protein content of this bacterium grown in minimal medium was separated by 2-D gel electrophoresis using various pH gradients. Protein identification was carried out via N-terminal amino acid sequencing, matrix assisted laser desorption/ionisation-time of flight-mass spectrometry (MALDI-TOF-MS) and tandem MS. So far, 224 different proteins were characterized from 352 protein spots. Although the proteome map is still not complete, one could appraise the importance of proteomics for genome analyses through (i). the identification of previously undetected open reading frames, (ii). the identification of proteins not encoded by the already sequenced genome fragments, (iii). the characterization of protein-encoding genes spanning two different contigs, enabling their merging, and (iv). the precise delineation of the N-terminus of several proteins. Finally, this map will prove a useful tool in the identification of proteins differentially expressed in the presence of different heavy metals.  相似文献   

13.
Cryoglobulins are cold-precipitable serum immunoglobulins associated with a number of infectious, autoimmune and neoplastic disorders such as hepatitis C, Waldenstr?m's macroglobulinemia, multiple myeloma, chronic lymphocytic leukemia, and rheumatoid arthritis. The mechanism(s) of cryoprecipitation has remained obscure hitherto, which has prompted recent intensive efforts on the identification of cryoglobulin components. In the present study, two-dimensional gel electrophoresis (2-DE) combined with high resolution Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometry has been applied as a powerful approach for the analysis of cryoglobulins. While FT-ICR mass spectrometry has been shown to enable the high resolution identification and structure analysis of biopolymers using both electrospray (ESI) and matrix-assisted laser desorption ionization (MALDI), the recently developed MALDI-FT-ICR source is shown here to provide high (sub-ppm) mass determination accuracy and isotopic fine structure as particular advantages in the identification of proteins. The main protein components in a serum cryoprecipitate from a patient with hepatitis C virus (HCV) infection and presenting type II cryogobulinemia are immunoglobulin (Ig)M and IgG which were identified by MALDI-FT-ICR MS analysis after separation by 2-DE as mu- and gamma-heavy chains, kappa- and lambda-light chains, and J-chains. Furthermore, complementarity determining regions CDR1 and CDR2 from monoclonal IgM-RF variable region (V)L were directly identified using accurate mass determinations by FT-ICR-MS. The presence of Spalpha was ascertained as an IgM-associated protein in the serum cryoprecipitate from a patient with HCV infection.  相似文献   

14.
BackgroundSurfactant proteins (SP) A and D belong to collectin family proteins, which play important roles in innate immune response in the lung. We previously demonstrated that cigarette smoke (CS) increases the acrolein modification of SP-A, thereby impairing the innate immune abilities of this protein. In this study, we focused on the effects of CS and its component, acrolein, on the innate immunity role of another collectin, SP-D.MethodsTo determine whether aldehyde directly affects SP-D, we examined the lungs of mice exposed to CS for 1 week and detected aldehyde-modified SP-D using an aldehyde reactive probe. The structural changes in CS extract (CSE) or acrolein-exposed recombinant human (h)SP-D were determined by western blot, liquid chromatography-electrospray ionization tandem mass spectrometry, and blue native-polyacrylamide gel electrophoresis analyses. Innate immune functions of SP-D were determined by bacteria growth and macrophage phagocytosis.ResultsAldehyde-modified SP-D as well as SP-A was detected in the lungs of mice exposed to CS for 1 week. Exposure of hSP-D to CSE or acrolein induced an increased higher-molecular -weight of hSP-D and acrolein induced modification of five lysine residues in hSP-D. These modifications led to disruption of the multimer structure of SP-D and attenuated its ability to inhibit bacterial growth and activate macrophage phagocytosis.ConclusionCS induced acrolein modification in SP-D, which in turn induced structural and functional defects in SP-D.General SignificanceThese results suggest that CS-induced structural and functional defects in SP-D contribute to the dysfunction of innate immune responses in the lung following CS exposure.  相似文献   

15.
By the development of soft ionization such as matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI), mass spectrometry (MS) has become an indispensable technique to analyze proteins. The combination of protein separation and identification such as two-dimensional gel electrophoresis and MS, surface-enhanced laser desorption/ionization-MS, liquid chromatography/MS, and capillary electrophoresis/MS has been successfully applied for proteome analysis of urine and plasma to discover biomarkers of kidney diseases. Some urinary proteins and their proteolytic fragments have been identified as biomarker candidates for kidney diseases. This article reviews recent advances in the application of proteomics using MS to discover biomarkers for kidney diseases.  相似文献   

16.
Peptide mass fingerprinting   总被引:10,自引:0,他引:10  
Peptide mass fingerprinting by MALDI-MS and sequencing by tandem mass spectrometry have evolved into the major methods for identification of proteins following separation by two-dimensional gel electrophoresis, SDS-PAGE or liquid chromatography. One main technological goal of proteome analyses beside high sensitivity and automation was the comprehensive analysis of proteins. Therefore, the protein species level with the essential information on co- and post-translational modifications must be achieved. The power of peptide mass fingerprinting for protein identification was described here, as exemplified by the identification of protein species with high molecular masses (spectrin alpha and beta), low molecular masses (elongation factor EF-TU fragments), splice variants (alpha A crystallin), aggregates with disulfide bridges (alkylhydroperoxide reductase), and phosphorylated proteins (heat shock protein 27). Helpful tools for these analyses were the use of the minimal protein identifier concept and the software program MS-Screener to remove mass peaks assignable to contaminants and neighbor spots.  相似文献   

17.
A proteome of a model organism, Caenorhabditis elegans, was analyzed by an integrated liquid chromatography (LC)-based protein identification system, which was constructed by microscale two-dimensional liquid chromatography (2DLC) coupled with electrospray ionization (ESI) tandem mass spectrometry (MS/MS) on a high-resolution hybrid mass spectrometer with an automated data analysis system. Soluble and insoluble protein fractions were prepared from a mixed growth phase culture of the worm C. elegans, digested with trypsin, and fractionated separately on the 2DLC system. The separated peptides were directly analyzed by on-line ESI-MS/MS in a data-dependent mode, and the resultant spectral data were automatically processed to search a genome sequence database, wormpep 66, for protein identification. The total number of proteins of the composite proteome identified in this method was 1,616, including 110 secreted/targeted proteins and 242 transmembrane proteins. The codon adaptation indices of the identified proteins suggested that the system could identify proteins of relatively low abundance, which are difficult to identify by conventional 2D-gel electrophoresis (GE) followed by an offline mass spectrometric analysis such as peptide mass fingerprinting. Among the approximately 5,400 peptides assigned in this study, many peptides with post-translational modifications, such as N-terminal acetylation and phosphorylation, were detected. This expression profile of C. elegans, containing 571 hypothetical gene products, will serve as the basic data of a major proteome set expressed in the worm.  相似文献   

18.
Complete coverage of protein primary structure is demonstrated for 37 yeast protein forms between 6 and 30 kDa in an improved platform for Top Down mass spectrometry (MS). Tandem mass spectrometry (MS/MS) for protein identification with 100% sequence coverage is achieved in a highly automated fashion with 15-300-fold less sample amounts than an initial report of a proteome fractionation approach employing preparative gel electrophoresis with an acid-labile surfactant to facilitate reversed phase separation in a second dimension. Using a quadrupole-enhanced Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FTICRMS) improves the dynamic range for protein detection by approximately 50-fold and MS/MS by approximately 30-fold. The technology development illustrated here typifies an accelerating effort to detect whole proteins in a more general and higher throughput fashion for improved biomarker identification and detection of diverse post-translational modifications. Capillary RPLC is used in both off-line and on-line modes, with one on-line LC/FTMS sample providing 25 observed protein forms from 11 to 22 kDa.  相似文献   

19.
An efficient protocol for in-gel digestion of Coomassie-stained protein spots has been established for mass analysis by matrix-assisted laser desorption/ionization-mass spectrometry (MS) and for tandem mass spectrometry (MS/MS). Identification of Vigna mungo leaf proteome from two-dimensional gel electrophoresis was done employing the protocol. About 300 proteins spots were consistently detected in three replicate gels. Optimization of the destaining process, digestion using 25 ng/μl trypsin in 20 μl trypsin buffer, and omission of peptide extraction step significantly increased the number of matched peptides and sequence coverage. Reliable characterization of 109 proteins by MS as well as tandem sequencing by MS/MS (PRIDE Accession no. 15318) suggests the potential application of the modified protocol for high throughput proteome analysis to unravel disputes in characterization of plant proteins in fundamental or applied research.  相似文献   

20.
Separation of proteins by two-dimensional electrophoresis and following mass spectrometry (MS) is now a conventional technique for proteomic analysis. For proteomic analysis of a certain tissue with a limited information of primary structures of proteins, we have developed an analytical system for peptide mass fingerprinting in gene products in the testis of the ascidian Ciona intestinalis. Ciona sperm proteins were separated by two-dimensional gel electrophoresis and the tryptic fragments were subjected to MALDI-TOF/MS. The mass pattern was searched against on-line databases but resulted in less identification of these proteins. We have constructed a MS database from Ciona testis ESTs and the genome draft sequence, along with a newly devised, perl-based search program PerMS for peptide mass fingerprinting. This system could identify more than 80% of Ciona sperm proteins, suggesting that it could be widely applied for proteomic analysis for a limited tissue with less genomic information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号