首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
NK cell effector functions are controlled by a combination of inhibitory receptors, which modulate NK cell activation initiated by stimulatory receptors. Most of the canonical NK cell inhibitory receptors recognize allelic forms of classical and non-classical MHC class I molecules. Furthermore, high expression of MHC-I molecules on effector immune cells is also associated with reverse signaling, giving rise to several immune-regulatory functions. Consequently, the inhibitory function of MHC class I expressed on a human NKL cell line and activated primary NK and T cells on different activating receptors are analyzed in this paper. Our results reveal that MHC-I molecules display specific patterns of “selective” inhibition over cytotoxicity and cytokine production induced by ITAM-dependent receptors and 2B4, but not on NKG2D. This contrasts with the best known “canonical” inhibitory receptors, which constitutively inhibit both functions, regardless of the activating receptor involved. Our results support the existence of a new fine-tuner inhibitory function for MHC-I molecules expressed on cytotoxic effector cells that could be involved in establishing self-tolerance in mature activated NK cells, and could also be important in tumor and infected cell recognition.  相似文献   

2.
NK cell receptors: emerging roles in host defense against infectious agents   总被引:1,自引:0,他引:1  
Natural killer (NK) cells have the ability to become activated under the appropriate conditions by utilizing one or more cell surface receptors that are capable of inducing NK cell cytokine production and/or cytotoxicity. The expression of a variable array of inhibitory receptors on the surface of NK cells acts to counterbalance the positive signals initiated through activating receptors. Increasing evidence suggests an important role for both activating and inhibitory NK cell receptors in an appropriate and controlled NK response to infectious agents.  相似文献   

3.
Natural killer (NK) cells are a key component of the innate immune system, as they are able to detect microbe-infected cells, tumors as well as allogeneic cells, without specific sensitization. NK cell effector functions (cytotoxicity, cytokine secretion) are regulated by a wide array of inhibitory and activating receptors. MHC class I molecules are the ligands of most inhibitory receptors, while activating receptors recognize either pathogen-encoded molecules, or self-proteins whose expression is up-regulated upon microbial infection or tumor development. Upon integration of these negative and positive signals, Natural Killer cells can discriminate between healthy "self" (tolerance) and autologous cells undergoing different types of cellular stress or allogeneic cells (immunosurveillance). The knowledge of the different mechanisms of target cell recognition is thus crucial to dissect NK cell involvement in homeostatic and disease conditions as well as to develop novel alternative therapeutic approaches based on NK cell manipulation.  相似文献   

4.
5.
NK cells express receptors that allow them to recognize pathogens and activate effector functions such as cytotoxicity and cytokine production. Among these receptors are the recently identified TLRs that recognize conserved pathogen structures and initiate innate immune responses. We demonstrate that human NK cells express TLR3, TLR7, and TLR8 and that these receptors are functional. TLR3 is expressed at the cell surface where it functions as a receptor for polyinosinic acid:cytidylic acid (poly(I:C)) in a lysosomal-independent manner. TLR7/8 signaling is sensitive to chloroquine inhibition, indicating a requirement for lysosomal signaling as for other cell types. Both R848, an agonist of human TLR7 and TLR8, and poly(I:C) activate NK cell cytotoxicity against Daudi target cells. However, IFN-gamma production is differentially regulated by these TLR agonists. In contrast to poly(I:C), R848 stimulates significant IFN-gamma production by NK cells. This is accessory cell dependent and is inhibited by addition of a neutralizing anti-IL-12 Ab. Moreover, stimulation of purified monocyte populations with R848 results in IL-12 production, and reconstitution of purified NK cells with monocytes results in increased IFN-gamma production in response to R848. In addition, we demonstrate that while resting NK cells do not transduce signals directly in response to R848, they can be primed to do so by prior exposure to either IL-2 or IFN-alpha. Therefore, although NK cells can be directly activated by TLRs, accessory cells play an important and sometimes essential role in the activation of effector functions such as IFN-gamma production and cytotoxicity.  相似文献   

6.
Inhibitory MHC receptors determine the reactivity and specificity of NK cells. These receptors can also regulate T cells by modulating TCR-induced effector functions such as cytotoxicity, cytokine production, and proliferation. Here we have assessed the capacity of mouse T cells expressing the inhibitory MHC class I receptor Ly49A to respond to a well-defined tumor Ag in vivo using Ly49A transgenic mice. We find that the presence of Ly49A on the vast majority of lymphocytes prevents the development of a significant Ag-specific CD8+ T cell response and, consequently, the rejection of the tumor. Despite minor alterations in the TCR repertoire of CD8+ T cells in the transgenic lines, precursors of functional tumor-specific CD8+ T cells exist but could not be activated most likely due to a lack of appropriate CD4+ T cell help. Surprisingly, all of these effects are observed in the absence of a known ligand for the Ly49A receptor as defined by its ability to regulate NK cell function. Indeed, we found that the above effects on T cells may be based on a weak interaction of Ly49A with Kb or Db class I molecules. Thus, our data demonstrate that enforced expression of a Ly49A receptor on conventional T cells prevents a specific immune response in vivo and suggest that the functions of T and NK cells are differentially sensitive to the presence of inhibitory MHC class I receptors.  相似文献   

7.
NK cells play critical roles in immune responses against tumors or virus infections by generating type 1 cytokine and cytotoxicity responses. In contrast, during type 2 dominant immune responses, such as allergic diseases, activities of NK cells are often impaired. These type 2 immune-mediated diseases have been reported to be closely associated with local production of PGD(2). PGD(2) is an eicosanoid primarily synthesized by mast cells and alveolar macrophages, and it functions through two major receptors, D prostanoid receptor (DP) and chemoattractant receptor-like molecule on the Th2 cell. Within the immune system, PGD(2) binding to DP generally leads to suppression of cellular functions. In the current study, we show that: 1) DP is expressed in human NK cells as detected by mRNA analysis and Western blot; 2) PGD(2) inhibits cytotoxicity, chemotaxis, and type 1 cytokine production of human NK cells via signaling through DP; 3) PGD(2) signaling via DP elevates intracellular cAMP levels and the inhibitory effects on NK cells are cAMP dependent; 4) PGD(2) binding to DP suppresses Ca(2+) mobilization triggered by the cross-linking of the activating receptor, CD16. Together, these data uncover a novel mechanism by which PGD(2) functions through DP to suppress type 1 and cytolytic functions of human NK cells, thus contributing to the promotion of a type 2 immune response.  相似文献   

8.
NK cell function is closely regulated by numerous inhibitory and activating receptors binding corresponding ligands on the surface of target cells, providing vital first line defenses against infections and cancer. NKp44, originally discovered as an activating NK cell receptor, was recently found to elicit inhibitory effects on NK cell effector function through recognition of cell surface PCNA. Other reports have pointed to potential associations between NKp44 and HLA I molecules, as well as HLA I and Damage Associated Molecular Pattern molecules (DAMPs) on the surface of tumor cells. In this report, we have identified novel interaction between HLA I and PCNA on the surface of human tumor cells by confocal microscopy and immunoprecipitation. In addition to previous reports, we show PCNA on the cell surface where novel association with HLA I does not require the presence of NKp44 expressing NK cells and occurs with endogenous PCNA. The association of HLA I and PCNA forms the inhibitory ligand for NKp44, resulting in inhibition of NK cell cytotoxicity. We further postulate NCR ligands are composed of DAMP molecules localized to the cell surface, colocalizing with HLA I, and potentially heparin sulfate proteoglycans.  相似文献   

9.
Peritumoral injection of human IL-2-activated natural killer cells into nude mice consistently induced regression of xenografts of human squamous cell carcinoma of the head and neck (SCCHN). To determine the mechanisms responsible for the tumor regression, the lymphoid cells infiltrating the tumor stroma at 24 to 48 h after adoptive immunotherapy were examined by in situ hybridization for the presence of mRNA for cytokines or IL-2R. Numerous lymphoid cells expressing cytokine or IL-2R genes were observed in these tumors, whereas the cultured IL-2-activated NK cells used for therapy were negative. Thus, it appeared that the transferred NK cells became activated in situ after coming into proximity with the tumor cells. To analyze this phenomenon, fresh or cultured human NK cells were coincubated in vitro with irradiated human SCCHN cell line, PCI-1, with or without the presence of IL-2. Expression of mRNA for IL-2R, perforin, and various cytokines was observed within 5 h. Contact with the tumor cells stimulated NK cells to proliferate, secrete IFN-gamma, TNF-alpha, and soluble IL-2R, up-regulate cell surface expression of IL2R p55 and p75 as well as CD16 Ag, and mediate higher levels of antitumor activity in 51Cr-release assays. In addition, supernatants of in vitro-activated NK cells significantly inhibited proliferation of SCCHN cell lines. By examining the effects of neutralizing mAb to various cytokines, this inhibitory activity was shown to be partially attributable to IFN-gamma. To determine the possible in vivo role of soluble factors produced by activated human NK cells, the supernatants (0.2 ml) or rIFN-gamma (10(5) U) were injected perilesionally each day for 2 wk into 3-day SCCHN established in immunosuppressed nude mice. These treatments caused significant (p less than 0.02) inhibition of tumor growth. The results of our studies indicate that human NK cells are strongly activated by SCCHN cells and that the consequent release of cytokines contribute to the regression of SCCHN growing in nude mice.  相似文献   

10.
Human embryonic stem cells (hESCs) provide a unique resource to analyze early stages of human hematopoiesis. However, little is known about the ability to use hESCs to evaluate lymphocyte development. In the present study, we use a two-step culture method to demonstrate efficient generation of functional NK cells from hESCs. The CD56(+)CD45(+) hESC-derived lymphocytes express inhibitory and activating receptors typical of mature NK cells, including killer cell Ig-like receptors, natural cytotoxicity receptors, and CD16. Limiting dilution analysis suggests that these cells can be produced from hESC-derived hemopoietic progenitors at a clonal frequency similar to CD34(+) cells isolated from cord blood. The hESC-derived NK cells acquire the ability to lyse human tumor cells by both direct cell-mediated cytotoxicity and Ab-dependent cellular cytotoxicity. Additionally, activated hESC-derived NK cells up-regulate cytokine production. hESC-derived lymphoid progenitors provide a novel means to characterize specific cellular and molecular mechanisms that lead to development of specific human lymphocyte populations. These cells may also provide a source for innovative cellular immune therapies.  相似文献   

11.
Cutting edge: NTB-A activates NK cells via homophilic interaction   总被引:2,自引:0,他引:2  
NK cells are an important component of the innate immune system. Their activity is tightly regulated by activating and inhibitory surface receptors. However, the exact functions of many activating surface receptors, as well as their ligands, still remain to be elucidated. NTB-A is a receptor on the surfaces of human NK, T, and B cells, mediating a signal whose malfunction may be involved in X-linked lymphoproliferative disease. However, the ligand of NTB-A has remained elusive so far. Using trimeric recombinant proteins, we now show that NTB-A is its own ligand. Homophilic interaction of NTB-A enhances NK cell cytotoxicity and influences NK cell proliferation and IFN-gamma secretion. We suggest that NTB-A is an interlymphocyte signaling molecule, which serves to orchestrate the activities of immune cells.  相似文献   

12.
Natural killer (NK) cells belong to the innate immune system and protect against cancers and a variety of viruses including retroviruses by killing transformed or infected cells. They express activating and inhibitory receptors on their cell surface and often become activated after recognizing virus-infected cells. They have diverse antiviral effector functions like the release of cytotoxic granules, cytokine production and antibody dependent cellular cytotoxicity. The importance of NK cell activity in retroviral infections became evident due to the discovery of several viral strategies to escape recognition and elimination by NK cells. Mutational sequence polymorphisms as well as modulation of surface receptors and their ligands are mechanisms of the human immunodeficiency virus-1 to evade NK cell-mediated immune pressure. In Friend retrovirus infected mice the virus can manipulate molecular or cellular immune factors that in turn suppress the NK cell response. In this model NK cells lack cytokines for optimal activation and can be functionally suppressed by regulatory T cells. However, these inhibitory pathways can be overcome therapeutically to achieve full activation of NK cell responses and ultimately control dissemination of retroviral infection. One effective approach is to modulate the crosstalk between NK cells and dendritic cells, which produce NK cell-stimulating cytokines like type I interferons (IFN), IL-12, IL-15, and IL-18 upon retrovirus sensing or infection. Therapeutic administration of IFNα directly increases NK cell killing of retrovirus-infected cells. In addition, IL-2/anti-IL-2 complexes that direct IL-2 to NK cells have been shown to significantly improve control of retroviral infection by NK cells in vivo. In this review, we describe novel approaches to improve NK cell effector functions in retroviral infections. Immunotherapies that target NK cells of patients suffering from viral infections might be a promising treatment option for the future.  相似文献   

13.
Syk and ZAP-70 subserve nonredundant functions in B and T lymphopoiesis. In the absence of Syk, B cell development is blocked, while T cell development is arrested in the absence of ZAP-70. The receptors and the signaling molecules required for differentiation of NK cells are poorly characterized. Here we investigate the role of the Syk protein tyrosine kinase in NK cell differentiation. Hemopoietic chimeras were generated by reconstituting alymphoid (B-, T-, NK-) recombinase-activating gene-2 x common cytokine receptor gamma-chain double-mutant mice with Syk-/- fetal liver cells. The phenotypically mature Syk-/- NK cells that developed in this context were fully competent in natural cytotoxicity and in calibrating functional inhibitory receptors for MHC molecules. Syk-deficient NK cells demonstrated reduced levels of Ab-dependent cellular cytotoxicity. Nevertheless, Syk-/- NK cells could signal through NK1. 1 and 2B4 activating receptors and expressed ZAP-70 protein. We conclude that the Syk protein tyrosine kinase is not essential for murine NK cell development, and that compensatory signaling pathways (including those mediated through ZAP-70) may sustain most NK cell functions in the absence of Syk.  相似文献   

14.
Human NK cells can be activated by a variety of different cell surface receptors. Members of the SLAM-related receptors (SRR) are important modulators of NK cell activity. One interesting feature of the SRR is their homophilic interaction, combining receptor and ligand in the same molecule. Therefore, SRR cannot only function as activating NK cell receptors, but also as activating NK cell ligands. 2B4 (CD244) is the only SRR that does not show homophilic interaction. Instead, 2B4 is activated by binding to CD48, a GPI-anchored surface molecule that is widely expressed in the hemopoietic system. In this study, we show that 2B4 also can function as an activating NK cell ligand. 2B4-expressing target cells can efficiently stimulate NK cell cytotoxicity and IFN-gamma production. Using soluble receptor fusion proteins and SRR-transfected cells, we show that 2B4 does not bind to any other SRR expressed on NK cells, but only interacts with CD48. Lysis of 2B4-expressing target cells can be blocked by anti-CD48 Abs and triggering of CD48 in a redirected lysis assay can stimulate NK cell cytotoxicity. This demonstrates that 2B4 can stimulate NK cell cytotoxicity and cytokine production by interacting with NK cell expressed CD48 and adds CD48 to the growing number of activating NK cell receptors.  相似文献   

15.
The NK cell receptor protein 1 (NKR-P1) (CD161) molecules represent a family of type II transmembrane C-type lectin-like receptors expressed predominantly by NK cells. Despite sharing a common NK1.1 epitope, the mouse NKR-P1B and NKR-P1C receptors possess opposing functions in NK cell signaling. Engagement of NKR-P1C stimulates cytotoxicity of target cells, Ca2+ flux, phosphatidylinositol turnover, kinase activity, and cytokine production. In contrast, NKR-P1B engagement inhibits NK cell cytotoxicity. Nonetheless, it remains unclear how different signaling outcomes are mediated at the molecular level. Here, we demonstrate that both NKR-P1B and NKR-P1C associate with the tyrosine kinase, p56(lck). The interaction is mediated through the di-cysteine CxCP motif in the cytoplasmic domains of NKR-P1B/C. Disrupting this motif leads to abrogation of both stimulatory and inhibitory NKR-P1 signals. In addition, mutation of the consensus ITIM (LxYxxL) in NKR-P1B abolishes both its Src homology 2-containing protein tyrosine phosphatase-1 recruitment and inhibitory function. Strikingly, engagement of NKR-P1C on NK cells obtained from Lck-deficient mice failed to induce NK cytotoxicity. These results reveal a role for Lck in the initiation of NKR-P1 signals, and demonstrate a requirement for the ITIM in NKR-P1-mediated inhibition.  相似文献   

16.
NK cells can express both activating and inhibitory Ly49 receptors on their cell surface. When cells expressing both receptors are presented with a ligand, inhibition dominates the functional outcome. In this report we demonstrate that costimulation of the activating Ly49D murine NK cell receptor with IL-12 or IL-18 is capable of over-riding the inhibitory Ly49G2 receptor blockade for cytokine production both in vitro and in vivo. This synergy is mediated by and dependent upon Ly49D-expressing NK cells and results in significant systemic expression of IFN-gamma. This would place NK cells and their activating Ly-49 receptors as important initiators of microbial, antiviral, and antitumor immunity and provide a mechanism for the release of activating Ly49 receptors from inhibitory receptor blockade.  相似文献   

17.
Although NK cells can kill both malignant cells and virus-infected cells without prior sensitization, it has remained unclear whether the mechanism by which an NK cell is activated in the presence of a tumor cell is similar to that induced by the presence of a virus-infected cell. In our experimental system using homogeneous populations of cloned human CD16+ NK cells, we found that HSV-infected target cells do not induce in the NK cells the same pharmacologically-active second messengers elicited by NK-sensitive tumor cells. Although phosphoinositide turnover and calcium signaling were generated in NK cells exposed to NK-sensitive tumor cells, the recognition of HSV-infected cells by NK cells did not result in similar transmembrane signaling. Furthermore, depending on the cell type infected by HSV, alternative mechanisms of cytotoxicity were employed. HSV-infected foreskin fibroblasts were rapidly and selectively killed by cloned NK cells without a requirement for IFN or accessory cells. In contrast to this direct cytotoxicity against HSV-infected foreskin fibroblasts, NK cell-mediated cytotoxicity against an HSV-infected fibrosarcoma cell line (1591) was dependent on IFN-alpha production by accessory cells. Importantly, in both systems of cytotoxicity, IFN-alpha activation of NK cells resulted in augmented killing against both infected and uninfected targets. These results suggest that NK cell activation induced during antiviral immunity is distinct from activation elicited during an antitumor response. These differences include the utilization of alternative forms of signal transduction and alternative mechanisms of cytotoxicity.  相似文献   

18.
A novel costimulatory molecule expressed on activated T cells, inducible costimulator (ICOS), and its ligand, B7-related protein-1 (B7RP-1), were recently identified. ICOS costimulation leads to the induction of Th2 cytokines without augmentation of IL-2 production, suggesting a role for ICOS in Th2 cell differentiation and expansion. In the present study, a soluble form of murine ICOS, ICOS-Ig, was used to block ICOS/B7RP-1 interactions in a Th2 model of allergic airway disease. In this model, mice are sensitized with inactivated Schistosoma mansoni eggs and are subsequently challenged with soluble S. mansoni egg Ag directly in the airways. Treatment of C57BL/6 mice with ICOS-Ig during sensitization and challenge attenuated airway inflammation, as demonstrated by a decrease in cellular infiltration into the lung tissue and airways, as well as by a decrease in local IL-5 production. These inhibitory effects were not due to a lack of T cell priming nor to a defect in Th2 differentiation. In addition, blockade of ICOS/B7RP-1 interactions during ex vivo restimulation of lung Th2 effector cells prevented cytokine production. Thus, blockade of ICOS signaling can significantly reduce airway inflammation without affecting Th2 differentiation in this model of allergic airway disease.  相似文献   

19.
The ability of adherent peritoneal cells (APC) to inhibit murine natural killer (NK) cell activity was examined. Nylon wool-nonadherent splenic effector cells were incubated overnight with or without different numbers of APC. NK activity was then measured against YAC-1 in a 4-hr 51Cr-release cytotoxicity assay. Proteose peptone-elicited or unstimulated resident APC from normal mice markedly suppressed NK activity of splenic effector cells in the presence or absence of exogenously added interferon. The suppression was dependent on the number of APC added with 10% APC, relative to the number of effector cells, resulting in a greater than 65% inhibition of cytotoxicity. The effector phase of cytotoxicity was not the target of the suppressor cells, because APC did not suppress NK activity when they were present only during the cytotoxicity assay. The addition of APC to alloimmune cytotoxic T cells under similar conditions resulted in no inhibition of cytotoxicity. Both syngeneic and allogeneic APC suppressed NK activity, but several murine macrophage-like cell lines lacked this property. In contrast to APC, incubation of effector cells with adherent spleen cells from normal mice resulted in no inhibition of NK activity. APC from mice injected with C. parvum were less inhibitory for NK activity than normal resident APC. In contrast, C. parvum APC suppressed concanavalin A-induced lymphoproliferation and were directly cytotoxic to tumor target cells in vitro, whereas normal APC lacked these properties. The results indicate that the peritoneum of untreated mice contains suppressor cells that can inhibit the in vitro maintenance and IFN-mediated augmentation of NK activity. In addition, these results indicate a broader spectrum of immune reactivities regulated by APC and suggest that, depending on their level of activation, APC can preferentially inhibit different immune functions.  相似文献   

20.
Hedgehog (Hh) signaling is activated in various types of cancer and contributes to the progression, proliferation, and invasiveness of cancer cells. Many Hh inhibitors are undergoing clinical trial and show promise as anticancer drugs. Hh signaling is also induced in the activated T and NK (TNK) lymphocytes that are used in immunotherapy. Activated TNK lymphocyte therapy is anticipated to work well within a tumor’s hypoxic environment. However, most studies on the immunobiological functions of activated TNK lymphocytes have been conducted on healthy donor samples, under normoxic conditions. In the present study, we evaluated the effects of Hh inhibition and oxygen concentrations on the function of activated TNK lymphocytes derived from patients with advanced cancer. Proliferation, migration, surface NKG2D expression, and cytotoxicity were all significantly inhibited, and IFN-γ secretion was significantly increased upon Hh inhibitor treatment of activated TNK lymphocytes under hypoxic conditions in vitro. Tumors from mice injected with cyclopamine-treated activated TNK lymphocytes showed a significant increase in tumor size and had fewer apoptotic cells compared with the tumors in mice injected with control activated TNK lymphocytes. These results suggest that Hh signaling plays a pivotal role in activated TNK lymphocyte cell function. Combination therapy using Hh inhibitors and activated TNK lymphocytes derived from patients with advanced cancer may not be advantageous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号