首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M L Sagrista  J Bozal 《Biochimie》1987,69(3):205-214
Chicken liver crude mitochondrial fraction showed lactate dehydrogenase activity (6.5% of cytoplasmic enzyme). Most of the mitochondrial lactate dehydrogenase was solubilized by sonication of the mitochondrial fraction in 0.15 M NaCl, pH 6. Total extracted lactate deshydrogenase activity was 3-fold higher than the initial pellet activity. Different isoenzymatic compositions were observed for cytosoluble and mitochondrial extracted lactate dehydrogenase. The pI, values of the 5 lactate dehydrogenase isoenzymes were found to be independent of their origin. The cytosoluble lactate dehydrogenase and the separated H4,H3M and H2M2 isoenzymes were able to bind to the chicken liver mitochondrial fraction in 5 mM sodium phosphate buffered medium, and could be solubilized afterwards with 0.15 M NaCl, pH 6. The enzyme bound to the mitochondrial fraction was less active than the soluble one. Particle saturation by the bound enzyme occurred with all mitochondrial fractions assayed. According to the Langmuir isotherm, the non-sonicated mitochondrial fractions contain a single type of binding sites for lactate dehydrogenase; in contrast, the sonicated mitochondrial fraction should contain different binding sites. Chicken liver crude or sonicated active mitochondrial fractions showed a hyperbolic behavior with respect to NADH and a non-hyperbolic one with respect to pyruvate. This mechanism is different from the bi-bi compulsory order mechanism of the soluble enzyme. With hydroxypyruvate as the substrate, the active mitochondrial fraction fit a sequential mechanism but lost the rapid-equilibrium characteristics of the soluble enzyme.  相似文献   

2.
Evidence for Membrane-Associated Choline Kinase Activity in Rat Striatum   总被引:3,自引:3,他引:0  
The distribution of choline kinase (EC 2.7.1.32) activity was investigated in subcellular fractions of rat striatum. Enzyme activity in the crude mitochondrial fraction, determined after dissolution in Triton X-100, was 5.90 mumol/g initial wet weight/h. When a crude mitochondrial preparation was hypoosmotically shocked and fractionated, followed by the addition of Triton X-100, choline kinase activity in the soluble and particulate fractions was 4.58 and 1.40 mumol/g initial wet weight/h, respectively. Enzyme activity in the particulate fraction was not detected in the absence of Triton X-100 or in the presence of NaCl (up to 1.5 M). Subcellular enzyme markers indicated that the membrane-associated activity was not attributable to mitochondrial or microsomal contamination. Kinetic analysis of the activity of soluble and membrane-solubilized choline kinase indicated Km values of 0.74 mM and 0.68 mM, respectively. Results indicate that choline kinase activity may be measured in both the soluble and the particulate fractions of rat striatum, the latter most likely involving enzyme associated with membrane through hydrophobic or covalent interactions. The specific function of the membrane-associated enzyme has not yet been determined.  相似文献   

3.
Summary. Spinach leaves were used to extract isoforms of NAD-dependent malate dehydrogenase (NAD-MDH) (EC 1.1.1.37), either soluble or bound to microsomal, plasma, or chloroplast envelope membranes. All fractions were subjected to isoelectric focusing analysis, which showed that purified chloroplast envelopes contain an NAD-MDH isoform tightly bound to the membranes, since treatment with 0.5 or 1% Triton X-100 was not able to release the enzyme from the envelopes. In contrast, plasma membranes released an isoform with a pI of 3.5 following treatment with 0.5% Triton X-100. The most abundant soluble leaf isoform had a pI of 9, while the chloroplast stroma contained an isoform with a pI of 5.3. Kinetic analysis of oxaloacetate (OAA)-dependent NADH oxidation in different fractions gave different K m values for both substrates, the envelope- and plasma membrane-bound NAD-MDH exhibiting the highest affinities for OAA. Leaf plasma membrane-bound MDH exhibited a high capacity for both reaction directions (malate oxidation and OAA reduction), while the two chloroplast isoforms (stromal and envelope-bound) preferentially reduced OAA. Our results indicate that the chloroplast envelope contains a specifically attached NAD-MDH isoform that could provide direct coupling between chloroplast and cytosol adenylate pools. Correspondence: T. Cvetić, Institute of Botany and Botanical Garden, Faculty of Biology, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia.  相似文献   

4.
K G Bitar  M Cochran  J C Warren 《Steroids》1979,34(2):189-198
The activity of 17 beta-estradiol dehydrogenase (E.C. 1.1.1.62) was measured, and its distribution in the subcellular fractions of bovine placenta was compared. Assay of activity was based on the formation of radioactive estrone from 17 beta[4(-14)C]-estradiol. Either NAD+ or NADP+ can serve as cofactor for the enzyme. The nuclear and microsomal fractions of the placental homogenate exhibited the highest specific enzymatic activities before and after treatment with Triton X-100. Electron micrographs of these two fractions prior to treatment with Triton X-100 showed satisfactory purity. 17 beta-estradiol dehydrogenase from bovine placenta exhibits a pH optimum of about 9.5-10.5, and is activated by 5 x 10(-6)M ZnCl2; comparable concentrations of CaCl2 and MgCl2 inactivate the enzyme. The apparent Michaelis constants, Km, for 17 beta-estradiol and NAD+ are 1.4 x 10(-6)M and 5.5 x 10(-5)M respectively. No 17 alpha-estradiol dehydrogenase activity was demonstrable when using 17 alpha-estradiol as substrate.  相似文献   

5.
Malate dehydrogenase: a model for structure, evolution, and catalysis.   总被引:11,自引:0,他引:11       下载免费PDF全文
Malate dehydrogenases are widely distributed and alignment of the amino acid sequences show that the enzyme has diverged into 2 main phylogenetic groups. Multiple amino acid sequence alignments of malate dehydrogenases also show that there is a low degree of primary structural similarity, apart from in several positions crucial for nucleotide binding, catalysis, and the subunit interface. The 3-dimensional structures of several malate dehydrogenases are similar, despite their low amino acid sequence identity. The coenzyme specificity of malate dehydrogenase may be modulated by substitution of a single residue, as can the substrate specificity. The mechanism of catalysis of malate dehydrogenase is similar to that of lactate dehydrogenase, an enzyme with which it shares a similar 3-dimensional structure. Substitution of a single amino acid residue of a lactate dehydrogenase changes the enzyme specificity to that of a malate dehydrogenase, but a similar substitution in a malate dehydrogenase resulted in relaxation of the high degree of specificity for oxaloacetate. Knowledge of the 3-dimensional structures of malate and lactate dehydrogenases allows the redesign of enzymes by rational rather than random mutation and may have important commercial implications.  相似文献   

6.
Summary Plasma membranes were isolated and purified from 14-day-old maize roots (Zea mays L.) by two-phase partitioning at a 6.5% polymer concentration, and compared to isolated mitochondria, microsomes, and soluble fraction. Marker enzyme analysis demonstrated that the plasma membranes were devoid of cytoplasmic, mitochondrial, tonoplast, and endoplasmic-reticulum contaminations. Isolated plasma membranes exhibited malate dehydrogenase activity, catalyzing NADH-dependent reduction of oxaloacetate as well as NAD+-dependent malate oxidation. Malate dehydrogenase activity was resistant to osmotic shock, freeze-thaw treatment, and salt washing and stimulated by solubilization with Triton X-100, indicating that the enzyme is tightly bound to the plasma membrane. Malate dehydrogenase activity was highly specific to NAD+ and NADH. The enzyme exhibited a high degree of latency in both right-side-out (80%) and inside-out (70%) vesicle preparations. Kinetic and regulatory properties with ATP and Pi, as well as pH dependence of plasma-membrane-bound malate dehydrogenase were different from mitochondrial and soluble malate dehydrogenases. Starch gel electrophoresis revealed a characteristic isozyme form present in the plasma membrane isolate, but not present in the soluble, mitochondrial, and microsomal fractions. The results presented show that purified plasma membranes isolated from maize roots contain a tightly associated malate dehydrogenase, having properties different from mitochondrial and soluble malate dehydrogenases.Abbreviations FCR ferricyanide reductase - MDH malate dehydrogenase  相似文献   

7.
Abstract: We have previously shown that cytosine arabinoside (AraC)-induced apoptosis of cerebellar granule cells (CGCs) results in an increase of a 38-kDa band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, identified as glyceraldehyde-3-phosphate dehydrogenase (GAPDH; EC 1.2.1.12). Antisense oligonucleotides to GAPDH mRNA afford acutely plated CGCs significant protection against AraC-induced apoptosis. We used differential centrifugation to examine which subcellular components are affected. Treated and untreated cells were sonicated in 0.32 M sucrose and sequentially centrifuged at 1,000, 20,000, and 200,000 g , to obtain crude nuclear, mitochondrial, microsomal, and cytosolic fractions. Western blotting showed that the levels of GAPDH protein were markedly increased in the 1,000- and 20,000- g pellets. The levels in the cytosolic supernatant were decreased dramatically by AraC in acutely plated CGCs but not in cells 24 h after plating. It is noteworthy that although GAPDH protein in the pellet fractions increased, the dehydrogenase activity of GAPDH decreased. Two other dehydrogenases, lactate dehydrogenase (EC 1.1.1.27) and glucose-6-phosphate dehydrogenase (EC 1.1.1.49), were not similarly affected, suggesting that the effect was GAPDH specific. These observations suggest that GAPDH levels change in specific organelles during apoptosis for reasons that are separate from its function as a glycolytic enzyme. The accumulation of GAPDH protein in specific subcellular loci may play a role in neuronal apoptosis.  相似文献   

8.
Production of [3H]1,2-dipalmitoylglycerol ([3H]DAG) from 1-palmitoyl-2-[9,10-3H]palmitoyl-sn-glycero-3-phosphocholine and [3H]phosphorylcholine from 1,2-dipalmitoyl-sn-glycero-3-[Me-3H]phosphocholine was studied using sonicated rat platelets. The formation of [3H]DAG and [3H]phosphorylcholine occurred at a comparable rate. [3H]Phosphorylcholine formation was dependent on the concentration of the substrate, platelet sonicates and calcium in the incubation medium. The [3H]phosphorylcholine formation increased in presence of 0.01% deoxycholate and 0.01% Triton X-100. The phosphatidylcholine-phospholipase C (PC-PLC) in the platelet sonicates was recovered in both the supernatant and particulate fractions obtained after ultracentrifugation at 105,000 x g for 1 h. The PC-PLC activity in both fractions was inhibited by 2 mM EDTA. In the presence of 0.01% deoxycholate and 0.01% Triton X-100 the activity in the particulate fraction increased compared to the activity in the supernatant, which was inhibited by 0.01% Triton X-100. The pH optima for PC-PLC in both fractions was between pH 7.2 and 7.6. PC-PLC activity was also found in rabbit and human platelet sonicates, but the activity was significantly lower than in rat platelet sonicates. There was no evidence to suggest presence of phosphatidylcholine-specific phospholipase D activity in rat sonicated platelets. This data, therefore, provides direct evidence for the presence of PC-PLC activity in rat platelets.  相似文献   

9.
Cytidine 5'-diphospho (CDP)-1,2-diacyl-sn-glycerol (CDPdiacylglycerol):sn-glycerol-3-phosphate phosphatidyltransferase (EC 2.7.8.5, phosphatidylglycero-P synthase) and CDPdiacylglycerol:L-serine O-phosphatidyltransferase (EC 2.7.8.8, phosphatidylserine synthase) activities were identified in the cell envelope fraction of the gram-positive anaerobe Clostridium perfringens. The association of phosphatidylglycero-P synthase and phosphatidylserine synthase with the cell envelope fraction of cell-free extracts was demonstrated by sucrose density gradient centrifugation, by both activities sedimenting with the 100,000 x g pellet and solubilization of both activities from the 100,000 x g pellet with Triton X-100. The pH optimum for both enzyme activities was 8.0 with tris(hydroxy-methyl)aminomethane-hydrochloride buffer. Phosphatidylglycero-P synthase activity was dependent on magnesium ions (100 mM). Phosphatidylserine synthase activity was dependent on manganese (0.1 mM) or magnesium ions (50 mM). Both enzyme activities were dependent on the addition of the nonionic detergent Triton X-100. Maximum phosphatidylglycero-P synthase and phosphatidylserine synthase activities were obtained when the molar ratio of Triton X-100 to CDP-diacylglycerol was 50:1 and 12:1, respectively. The Km for sn-glycero-3-P in the phosphatidylglycero-P synthase reaction was 0.1 mM. The Km for L-serine in the phosphatidylserine synthase reaction was 0.15 mM. Both enzyme activities were 100% stable for at least 20 min at 60 degrees C.  相似文献   

10.
Activation and membrane binding of carboxypeptidase E   总被引:3,自引:0,他引:3  
Carboxypeptidase E (CPE) is a carboxypeptidase B-like enzyme that is thought to be involved in the processing of peptide hormones and neurotransmitters. Soluble and membrane-associated forms of CPE have been observed in purified secretory granules from various hormone-producing tissues. In this report, the influence of membrane association on CPE activity has been examined. A substantial amount of the membrane-associated CPE activity is solubilized upon extraction of bovine pituitary membranes with either 100 mM sodium acetate buffer (pH 5.6) containing 0.5% Triton X-100 and 1 M NaCl, or by extraction with high pH buffers (pH greater than 8). These treatments also lead to a two- to threefold increase in CPE activity. CPE extracted from membranes with either NaCl/Triton X-100 or high pH buffers hydrolyzes the dansyl-Phe-Ala-Arg substrate with a lower Km than the membrane-associated CPE. The Vmax of CPE present in extracts and membrane fractions after the NaCl/Triton X-100 treatment is twofold higher than in untreated membranes. Treatment of membranes with high pH buffers does not affect the Vmax of CPE in the soluble and particulate fractions. Pretreatment of membranes with bromoacetyl-D-arginine, an active site-directed irreversible inhibitor of CPE, blocks the activation by NaCl/Triton X-100 treatment. Thus the increase in CPE activity upon extraction from membranes is probably not because of the conversion of an inactive form to an active one, but is the result of changes in the conformation of the enzyme that effect the catalytic activity.  相似文献   

11.
Rabbit skeletal muscle mitochondrial fraction shows LDH activity (212 +/- 43 U/g pellet). The majority of the mitochondrial enzyme was solubilized by washing with 0.15 M NaCl, pH 6, or by ultrasonic treatment in the same medium. It was also solubilized on increasing the ionic strength and the pH of the medium. Cytosoluble LDH was observed to bind in vitro to the particulate fraction and the enzyme bound was a sigmoidal function of the amount of soluble enzyme added. The bound enzyme is less active than the soluble one. Kinetically, active mitochondrial fraction or in vitro bound enzyme showed non-hyperbolic behavior which is different from the bi-bi sequential-ordered type mechanism of the soluble enzyme.  相似文献   

12.
Binding proteins for asialoorosomucoid were prepared from rat liver previously labeled in vivo with [3H]leucine by affinity chromatography on asialoorosomucoid-Sepharose 4B. They were subjected again to the same affinity chromatography and eluted into two fractions successively with 10 mM Tris-HCl buffer, pH 7.8, containing 1.25 M NaCl, 1% Triton X-100 and 50 mM lactose and 20 mM ammonium acetate buffer, pH 6.0, containing 1.25 M NaCl and 1% Triton X-100, and designated as ABP-I and ABP-II (asialoorosomucoid binding proteins), respectively. ABP-I corresponds to the receptor protein specific for asialoglycoproteins which has been extensively investigated by Ashwell and collaborators (J. Biol. Chem. 254, 1038-1043, 1979). ABP-II is different from ABP-I in several properties such as molecular weight, antigenicity and solubility. The molecular weight of ABP-II was estimated to be 29,000 by SDS-PAGE. On gel filtration it behaved as a pentamer with an apparent molecular weight of 150,000. Unlike ABP-I, ABP-II showed no detectable binding activity when assayed according to the procedures of Hudgin et al. (J. Biol. Chem. 249, 5536-5543, 1974). The calcium ion was, however, essential for the binding of ABP-II to asialoorosomucoid-Sepharose 4B similar to ABP-I. ABP-II can be extracted from the total microsomes of rat liver in 1.0 M NaCl by sonication after freezing and thawing. This suggests that ABP-II is either a soluble protein or a peripheral membrane protein loosely attached to the intracisternal cavities of the microsomal membranes.  相似文献   

13.
The effect of SO32? on the activity of PEP-carboxylase and on subsequent malate formation has been studied in leaf extracts of Zea mays. PEP-carboxylase was assayed by incorporation of H14CO3 - into oxaloacetate dinitrophenylhydrazone and by a spectrophotometric method. In contrast to ribulose diphosphate carboxylase, PEP-carboxylase was not inhibited by 10 mM SO32? with respect to PEP. As was the case with ribulose diphosphate carboxylase, the activity of PEP-carboxylase was inhibited non-competitively with respect to Mg2+. However, the Ki value (84.5 mM) was found to be very high. With respect to HCO3?, like ribulose diphosphate carboxylase, PEP-carboxylase was inhibited competitively, but the Ki value (27 mM SO32?) increased by about the same factor (× 9) as the Km, (0·5 mM HCO3?) is decreased. This indicates that the replacement of HCO3? by SO32?, common to both enzymes, is facilitated by decreasing the affinity of the enzyme for HCO3?. At substrate saturating conditions malate formation by the combined action of PEP-carboxylase and endogenous NADH-dependent malate dehydrogenase in leaf extracts was not inhibited by 10 mM SO32?. Although the malate dehydrogenase is inhibited at this SO32? concentration to about 85%, malate formation is unaffected, as PEP-carboxylase is the rate limiting step its turnover rate being only about 8% of NADH-dependent malate dehydrogenase.  相似文献   

14.
Cytoplasmic membranes were isolated from late-exponential phase Staphylococcus aureus 6539 P and the membrane proteins examined under non-denaturing conditions by thin-layer isoelectric focusing (TLIEF) in a pH 3.5-9.5 gradient. Isolated membrane preparations retained protein integrity as judged by the demonstration of membrane bound adenosine triphosphatase (ATPase) activity in addition to four other solubilized membrane enzyme markers. Membranes were effectively solubilized with 2.5% Triton X-100 (final concentration). Examination of Triton X-100 solubilized membrane preparations established the presence of 22 membrane proteins with isoelectric points between 3.7 and 6.0. The focused proteins displayed the following enzymatic activities and isoelectric points by zymogram methods: ATPase (EC 3.6.1.3), 4.20; malate dehydrogenase (EC 1.1.1.37), 3.90; lactate dehydrogenase (EC 1.1.1.27), 3.85; two membrane proteins exhibited multiple bands upon enzymatic staining NADH dehydrogenase (EC 1.6.99.3), 4.25, 4.35; succinate dehydrogenase (EC 1.3.99.1), 4.85, 5.10, 5.35.  相似文献   

15.
吴信忠  李树华 《动物学报》1990,36(2):149-156
本文采用Disc-PAGE电泳,首次对我国独有的斯氏并殖吸虫(Paragonimus skrjabini Chen,1959)成虫、童虫、囊蚴的乳酸脱氢酶(以下简称LDH)、苹果酸脱氢酶(以下简称MDH)和酯酶(以下简称EST)同工酶进行了研究。 在成虫、童虫、囊蚴间,LDH、MDH、EST同工酶在酶带数、排列型式、Rf值、相对活性和优势酶带的位置都存在差异。 根据虫体和宿主组织同工酶谱的不同,可以认为是本虫本身所具有。 同工酶作为其分类指标时,不仅要比较不同虫种成虫稳定的同工酶谱,也要比较同工酶在个体发育型式间的差异。  相似文献   

16.
The lipolytic activities of heart tissue towards full and partial acylglycerols were characterized. Tissue lysosomal, acid lipase activity (pH 4.8) was inhibited by high salt, protamine sulfate, NaF, MgATP, Triton X-100, serum and the esterase-inhibitor diethylparanitrophenyl phosphate. The tissue neutral triacylglycerol lipase activity (pH 7.4) was recovered predominantly in the microsomal and soluble fractions and exhibited essentially identical properties towards activators (serum, apolipoprotein C-II) and reagents (NaCl, Triton X-100, NaF, MgATP and diethylparanitrophenyl phosphate) relative to vascular lipoprotein lipase, except for protamine sulfate which increased the serum-stimulated neutral triacylglycerol lipase activity. Triacylglycerol hydrolysis at acid pH was incomplete, whereas at neutral pH full hydrolysis occurred. Myocardial mono- and diacylglycerol lipase activities, with pH optima of 8.0 and 7.4, respectively, were recovered in the microsomal fraction. They differed immunologically from neutral lipase and lipoprotein lipase and did not bind to heparin-Sepharose 4B. They were kinetically different, partially inhibited by NaCl and differentially affected by protamine sulfate. NaF, Triton X-100 and diethylparanitrophenyl phosphate. Our data suggest that endogenous hydrolytic activity against full and partial acylglycerols is mediated by separate enzymes.  相似文献   

17.
Malate dehydrogenase activity in supernatant fractions prepared from the halophyte Suaeda maritima was modified by added NACl with an optimal concentration for activation of about 50 mM. At this ionic strength of 0.05 the chlorides of sodium, potassium, ammonium, rubidium, calcium and magnesium all produced a similar degree of stimulation, while the nitrates of potassium and sodium were somewhat less effective. A similar result was obtained whether the plants were grown in the presence or absence of NACl. Furthermore, malate dehydrogenase activity in preparations from the glycophyte Pisum sativum behaved in a similar manner. The enzyme activity from both Suaeda and Pisum was separable into two fractions (I and II) by gel filtration on Sephadex G200. The MW of fraction II from Suaeda was estimated to be 165000 and that from Pisum approximately 282000: fraction I from both species eluted at the void volume of Sephadex G200. Storage of lyophilised supernatant resulted in the loss of enzyme activity from fraction I and a decrease in the overall stimulation by NaCl. Treatment of the lyophilised enzyme with NACl at a concentration of 100 mM also resulted in the loss of enzyme activity from fraction I.  相似文献   

18.
γ-Aminobutyraldehyde dehydrogenase from Escherichia coli K-12 has been purified and characterized from cell mutants able to grow in putrescine as the sole carbon and nitrogen source. The enzyme has an Mr of 195 000±10 000 in its dimeric form with an Mr of 95 000±1000 for each subunit, a pH optimum at 5.4 in sodium citrate buffer, and does not require bivalent cations for its activity. Km values are 31.3±6.8 μM and 53.8±7.4 μM for Δ-1-pyrroline and NAD+, respectively. An inhibitory capacity for NADH is also shown using the purified enzyme.  相似文献   

19.
Although protein kinase C, an enzyme dependent on calcium, phospholipid and diacylglycerol, has been found in high levels in ovarian tissues, its biologic function is yet unknown. In initial studies on the role of this enzyme in regulating ovarian functions, we compared protein kinase C activity in subcellular fractions of porcine corpora lutea and medium follicles. Highest protein kinase C-specific activities were found in the cytosol, followed by microsomes and mitochondria for both follicles and luteal tissues. Solubilization of all membrane-containing fractions by 0.2% Triton X-100 was required for full expression (a 4-fold average increase) of protein kinase activity. Extraction of membrane fractions with 0.5 M NaCl or sonication in a hypotonic medium revealed that 90% of the total mitochondrial protein kinase C activity and 50% of the microsomal activity was tightly membrane-bound. Characterization of both cytosolic and Triton X-100 extracted membrane preparations of luteal tissue by diethylaminoethyl (DEAE)-cellulose chromatography revealed a single peak of protein kinase C activity eluting at 80 mM NaCl. Cytosolic fractions of corpora lutea contained 3 times more protein kinase C-specific activity than did cytosolic fractions of follicles. In contrast, mitochondria from medium follicles contained 30% more specific protein kinase C activity than did luteal mitochondria. These higher cytosolic levels of protein kinase C-specific activity in corpora lutea suggest that the enzyme may play an important role in the process of luteinization or in the regulation of luteal function.  相似文献   

20.
Responses of Ceriops roxburghiana Arn. leaves to the sodium chloride, applied at different concentrations (ranging from 100 to 600 mM), has been evaluated. Total amino acid content decreased with increasing NaCl concentration, while the protein content increased significantly up to 400 mM concentration and decreased thereafter. Total sugar content decreased at concentrations beyond 400 mM. Proline and glycine betaine were accumulated with increasing NaCl concentration. Protease and ATPase activities were increased whereas proline oxidase activity were decreased with increasing salinity. Peroxidase and malate dehydrogenase (NADH-MDH) activities did not significantly differ under various NaCl concentrations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号