首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Objectives

The objectives of the present study were to investigate ovariectomy on autophagy level in the bone and to examine whether autophagy level is associated with bone loss and oxidative stress status.

Methods

36 female Sprague–Dawley rats were randomly divided into sham-operated (Sham), and ovariectomized (OVX) rats treated either with vehicle or 17-β-estradiol. At the end of the six-week treatment, bone mineral density (BMD) and bone micro-architecture in proximal tibias were assessed by micro-CT. Serum 17β-estradiol (E2) level were measured. Total antioxidant capacity (T-AOC), superoxide dismutase (SOD) activity, catalase (CAT) activity in proximal tibia was also determined. The osteocyte autophagy in proximal tibias was detected respectively by Transmission Electron Microscopy (TEM), immunofluorescent histochemistry (IH), realtime-PCR and Western blot. In addition, the spearman correlation between bone mass, oxidative stress status, serum E2 and autophagy were analyzed.

Results

Ovariectomy increased Atg5, LC3, and Beclin1 mRNA and proteins expressions while decreased p62 expression. Ovariectomy also declined the activities of T-AOC, CAT, and SOD. Treatment with E2 prevented the reduction in bone mass as well as restored the autophagy level. Furthermore, LC3-II expression was inversely correlated with T-AOC, CAT, and SOD activities. A significant inverse correlation between LC3-II expression and BV/TV, Tb.N, BMD in proximal tibias was found.

Conclusions

Ovariectomy induced oxidative stress, autophagy and bone loss. Autophagy of osteocyte was inversely correlated with oxidative stress status and bone loss.  相似文献   

2.
Osteocyte apoptosis has been reported to play a central role in bone remodeling. In addition to apoptosis, other mechanisms may be involved in osteocyte loss. This study aimed to investigate the effect of necroptosis on osteocytes in ovariectomized (OVX) rats. Ninety-six female Sprague-Dawley rats were randomly divided into an OVX group and a sham group. At 0, 4, 8 and 12 weeks after surgery, specimens from each group (n = 12 each) were harvested. Bone mineral density (BMD) and body weight were measured. Transmission electron microscopy (TEM) and micro-CT were used to observe the changes in cellular morphology and bone microarchitecture induced by estrogen deficiency. Osteocyte apoptosis and necroptosis were evaluated via TUNEL and immunofluorescence staining for active caspase-3. At 8 weeks after ovariectomy, a greater number of osteocytes with typical necrotic morphological features were TUNEL positive but negative for active caspase-3. Western blotting, quantitative real-time PCR and immunofluorescence assessments demonstrated that the levels of receptor-interacting serine/threonine protein kinase 1 (RIP1) and RIP3 in osteocytes were significantly increased at 8 weeks after ovariectomy. These data are the first to suggest that necroptosis accelerates osteocyte loss under conditions of estrogen deficiency-induced osteoporosis in OVX rats. These findings provide evidence of a potential mechanism through which osteocyte necroptosis is associated with postmenopausal osteoporosis.  相似文献   

3.
Age-related skeletal changes is closely associated with imbalanced bone remodeling characterized by elevated osteocyte apoptosis and osteoclast activation. Since osteocytes are the commander of bone remodeling, attenuating increased osteocyte apoptosis may improve age-related bone loss. Exosomes, derived from mesenchymal stem cells, hold promising potential for cell-free therapy due to multiple abilities, such as promoting proliferation and suppressing apoptosis. We aimed to explore the effect of exosomes derived from adipose mesenchymal stem cell (ADSCs-exo) on osteocyte apoptosis and osteocyte-mediated osteoclastogenesis in vitro. The osteocyte-like cell line MLO-Y4 was used as a model, and apoptosis was induced by hypoxia and serum deprivation (H/SD). Our results showed that ADSCs-exo noticeably reduced H/SD-induced apoptosis in MLO-Y4 cells via upregulating the radio of Bcl-2/Bax, diminishing the production of reactive oxygen species and cytochrome c, and subsequent activation of caspase-9 and caspase-3. Additionally, ADSCs-exo lowered the expression of RANKL both at the mRNA and protein levels, as well as the ratio of RANKL/OPG at the gene level. As determined by tartrate-resistant acid phosphatase staining, reduced osteoclastogenesis was further validated in bone marrow monocytes cultured under conditioned medium from exosome-treated MLO-Y4. Together, ADSCs-exo could antagonize H/SD induced osteocyte apoptosis and osteocyte-mediated osteoclastogenesis, indicating the therapeutic potential of ADSCs-exo in age-related bone disease.  相似文献   

4.
Loading-induced interstitial fluid flow in the microporosities of bone is critical for osteocyte mechanotransduction and for the maintenance of tissue health, enhancing convective transport in the lacunar-canalicular system. In recent studies, our group has reported alterations of bone’s vascular porosity and lacunar-canalicular system microarchitecture in a rat model of postmenopausal osteoporosis. In this work, poroelastic finite element analysis was used to investigate whether these microstructural changes can affect interstitial fluid flow around osteocytes. Animal-specific finite element models were developed combining micro-CT reconstructions of bone microstructure and measures of the poroelastic material properties. These models were used to quantify and compare loading-induced fluid flow in the lacunar-canalicular system of ovariectomized and sham-operated rats. A parametric analysis was also used to quantify the influence of the lacunar-canalicular permeability and vascular porosity on the fluid velocity magnitude. Results show that mechanically-induced interstitial fluid velocity can be significantly reduced in the lacunar-canalicular system of ovariectomized rats. Interestingly, the vascular porosity is shown to have a major influence on interstitial fluid flow, while the lacunar-canalicular permeability influence is limited when larger than 10-20m2. Altogether our results suggest that microstructural changes associated with the osteoporotic condition can negatively affect interstitial fluid flow around osteocytes in the lacunar-canalicular system of cortical bone. This fluid flow reduction could impair mechanosensation of the osteocytic network, possibly playing a role in the initiation and progression of age-related bone loss and postmenopausal osteoporosis.  相似文献   

5.
Glucocorticoid-induced osteoporosis may be at least in part due to the increased apoptosis of osteocytes. To study the role of osteocyte apoptosis in glucocorticoid-induced osteoporosis, we isolated primary osteocytes from murine calvaria for the analysis of the effects of dexamethasone in in vitro culture. The cells were identified by morphology, cytochemical staining, immunocytochemical staining and mRNA expression of phosphate-regulating gene with homology to endopeptidases on the X chromosome (PHEX) and sclerosteosis/van Buchem disease gene (SOST). We found that dexamethasone induced osteocyte apoptosis in a dose-dependent manner. A glucocorticoid receptor antagonist, mifepristone (RU486), suppressed dexamethasone-induced osteocyte apoptosis, suggesting that it was mediated by glucocorticoid receptor. Immunocytochemical stainings showed that glucocorticoid receptors are present in primary osteocytes, and they were translocated to nuclei after the exposure to dexamethasone. Addition of estrogen prevented glucocorticoid receptor translocation into nuclei. Corresponding antiapoptotic effects in primary osteocytes were also seen after the pretreatment of primary osteocytes with a picomolar concentration of estrogen. The pure antiestrogen ICI 182,780 inhibited estrogen effect on apoptosis induced by dexamethasone. These data suggest that glucocorticoid receptors play an important role in glucocorticoid-induced osteocyte apoptosis. Most importantly, estrogen has a protective effect {against osteocyte}{ }{apoptosis}. To conclude, the mechanism of glucocorticoid-induced osteoporosis may be due to the apoptosis of osteocytes, which can be opposed by estrogen.  相似文献   

6.
Bone isremoved or replaced in defined locations by targeting osteoclasts andosteoblasts in response to its local history of mechanical loading.There is increasing evidence that osteocytes modulate this targeting bytheir apoptosis, which is associated with locally increasedbone resorption. To investigate the role of osteocytes in the controlof loading-related modeling or remodeling, we studied the effects onosteocyte viability of short periods of mechanical loading applied tothe ulnae of rats. Loading, which produced peak compressive strains of0.003 or 0.004, was associated with a 78% reduction in theresorption surface at the midshaft. The same loading regimen resultedin a 40% relative reduction in osteocyte apoptosis at the samesite 3 days after loading compared with the contralateral side(P = 0.01). The proportion of osteocytes that wereapoptotic was inversely related to the estimated local strain(P < 0.02). In contrast, a single short period ofloading resulting in strains of 0.008 engendered both tissuemicrodamage and subsequent bone remodeling and was associated with aneightfold increase in the proportion of apoptotic osteocytes(P = 0.02) at 7 days. This increase in osteocyteapoptosis was transient and preceded both intracorticalremodeling and death of half of the osteocytes (P < 0.01). The data suggest that osteocytes might use their U-shapedsurvival response to strain as a mechanism to influence boneremodeling. We hypothesize that this relationship reflects a causalmechanism by which osteocyte apoptosis regulates bone'sstructural architecture.

  相似文献   

7.
8.
Osteocyte viability may play a significant role in the maintenance and integrity of bone. Bone loss due to osteoporosis may be due in part to osteocyte cell death. We have identified a factor that will protect both osteoblasts and osteocytes from cell death due to agents known to be responsible for various forms of osteoporosis. Not only does estrogen preserve osteoblast and osteocyte viability, but so does a molecule called CD40Ligand. This molecule is expressed on activated T lymphocytes, human dendritic cells, and human vascular endothelial cells, whereas its receptor CD40 is expressed on normal epithelium, B cells, and dendritic cells. CD40Ligand protects osteoblasts and the MLO-Y4 osteocyte-like cells against apoptosis induced by glucocorticoids, tumor necrosis factor alpha or etoposide. As tumor necrosis factor a has been shown to be responsible for post-menopausal bone loss and glucocorticoids induce dramatic bone loss, this finding has important implications with regards to potential therapy for both post-menopausal and steroid-induced osteoporosis.  相似文献   

9.
Alcohol induced osteoporosis is characterized by a bone mass decrease and microarchitecture alterations. Having observed an excess in osteocyte apoptosis, we aimed to assess the bone tissue biochemistry, particularly in the osteocyte and its environment. For this purpose, we used a model of alcohol induced osteoporosis in rats. Bone sections of cortical bone were investigated using synchrotron UV-microspectrofluorescence at subcellular resolution. We show that bone present three fluorescence peaks at 305, 333 and 385 nm, respectively corresponding to tyrosine, tryptophan and collagen. We have determined that tyrosine/collagen and tryptophan/collagen ratios were higher in the strong alcohol consumption group. Tryptophan is related to the serotonin metabolism involved in bone formation, while tyrosine is involved in the activity of tyrosine kinases and phosphatases in osteocytes. Our experiment represents the first combined synchrotron UV microspectroscopy analysis of bone tissue with a quantitative biochemical characterization in the osteocyte and surrounding matrix performed separately.  相似文献   

10.

Introduction

The purpose of this study was to evaluate the effects of risedronate (Ris) in the modulation of bone formation in rats with glucocorticoid (GC)-induced osteoporosis by histomorphometric, immunohistochemical and gene expression analyses.

Methods

We analyzed structure, turnover and microarchitecture, cyclooxygenase 2 (COX-2) levels and osteocyte apoptosis in 40 female rats divided as follows: 1) vehicle of methylprednisolone (vGC) + vehicle of risedronate (vRis); 2) Ris 5 μg/Kg + vGC; 3) methylprednisolone (GC) 7 mg/Kg + vRis; 4) GC 7 mg/Kg +Ris 5 μg/Kg. In addition, we evaluated cell proliferation and expression of COX-2 and bone alkaline phosphatase (b-ALP) genes in bone marrow cells and MLO-y4 osteocytes treated with Ris alone or in co-treatment with the selective COX-2 inhibitor NS-398 or with dexametasone.

Results

Ris reduced apoptosis induced by GC of osteocytes (41% vs 86%, P < 0.0001) and increased COX-2 expression with respect to controls (Immuno-Hystochemical Score (IHS): 8.75 vs 1.00, P < 0.0001). These positive effects of Ris in bone formation were confirmed by in vitro data as the viability and expression of b-ALP gene in bone marrow cells resulted increased in a dose dependent manner.

Conclusions

These findings suggest a positive effect of Ris in bone formation and support the hypothesis that the up-regulation of COX-2 could be an additional mechanism of anabolic effect of Ris.  相似文献   

11.
Bcl2 subfamily proteins, including Bcl2 and Bcl-X(L), inhibit apoptosis. As osteoblast apoptosis is in part responsible for osteoporosis in sex steroid deficiency, glucocorticoid excess, and aging, bone loss might be inhibited by the upregulation of Bcl2; however, the effects of Bcl2 overexpression on osteoblast differentiation and bone development and maintenance have not been fully investigated. To investigate these issues, we established two lines of osteoblast-specific BCL2 transgenic mice. In BCL2 transgenic mice, bone volume was increased at 6 weeks of age but not at 10 weeks of age compared with wild-type mice. The numbers of osteoblasts and osteocytes increased, but osteoid thickness and the bone formation rate were reduced in BCL2 transgenic mice with high expression at 10 weeks of age. The number of BrdU-positive cells was increased but that of TUNEL-positive cells was unaltered at 2 and 6 weeks of age. Osteoblast differentiation was inhibited, as shown by reduced Col1a1 and osteocalcin expression. Osteoblast differentiation of calvarial cells from BCL2 transgenic mice also fell in vitro. Overexpression of BCL2 in primary osteoblasts had no effect on osteoclastogenesis in co-culture with bone marrow cells. Unexpectedly, overexpression of BCL2 in osteoblasts eventually caused osteocyte apoptosis. Osteocytes, which had a reduced number of processes, gradually died with apoptotic structural alterations and the expression of apoptosis-related molecules, and dead osteocytes accumulated in cortical bone. These findings indicate that overexpression of BCL2 in osteoblasts inhibits osteoblast differentiation, reduces osteocyte processes, and causes osteocyte apoptosis.  相似文献   

12.
Icariin is the major active ingredient in Herba epimedii which is a commonly used Chinese herbal medicine for the treatment of osteoporosis. The present study aims to evaluate the osteoprotective effect of Icariin in glucocorticoid-induced osteoporosis in vivo and investigate the effect of Icariin on glucocorticoid-induced osteocyte apoptosis in vitro. A total of 48 female Sprague–Dawley rats were used. Glucocorticoid-induced osteoporosis was induced by daily injections of dexamethasone (0.1 mg/kg, daily, s.c.) for 60 days, whereas sham animals were injected daily with vehicle. At the end of the osteoporosis development period, osteoporotic rats were randomized to receive: vehicle (n = 8), Icariin (5,125 mg/kg, i.g.; n = 8), or alendronate (0.03 mg/kg, s.c.; n = 8) for 12 weeks. Sham animals were treated with vehicle for 12 weeks. At the beginning and at the end of treatments, animals were examined for bone mineral density. Serum bone-alkaline phosphatase and carboxy-terminal collagen cross links were measured. Primary osteocytes were isolated, and apoptosis was determined by trypan-blue assay. Interaction between Icariin and estrogen receptor and prosurvival signaling pathways activated by Icariin were also investigated. Icariin showed a comparable efficacy with alendronate in increasing bone mass. Icariin significantly increased bone-alkaline phosphatase (bone formation marker) and reduced carboxy-terminal collagen cross links (bone resorption marker). In vitro studies demonstrated that Icariin significantly prevented GC-induced apoptosis in osteocytes by activating ERK signaling via estrogen receptor. Our results suggest that Icariin might exert osteoprotective effect by maintaining osteocyte viability, thereby, regulating bone remodeling. Furthermore, our study provides preclinical evidence for the efficacy of Icariin for management of Glucocorticoid-induced osteoporosis.  相似文献   

13.
Bone unloading results in osteocyte apoptosis, which attracts osteoclasts leading to bone loss. Loading of bone drives fluid flow over osteocytes which respond by releasing signaling molecules, like nitric oxide (NO), that inhibit osteocyte apoptosis and alter osteoblast and osteoclast activity thereby preventing bone loss. However, which apoptosis-related genes are modulated by loading is unknown. We studied apoptosis-related gene expression in response to pulsating fluid flow (PFF) in osteocytes, osteoblasts, and fibroblasts, and whether this is mediated by loading-induced NO production. PFF (0.7 ± 0.3 Pa, 5 Hz, 1 h) upregulated Bcl-2 and downregulated caspase-3 expression in osteocytes. l-NAME attenuated this effect. In osteocytes PFF did not affect p53 and c-Jun, but l-NAME upregulated c-Jun expression. In osteoblasts and fibroblasts PFF upregulated c-Jun, but not Bcl-2, caspase-3, and p53 expression. This suggests that PFF inhibits osteocyte apoptosis via alterations in Bcl-2 and caspase-3 gene expression, which is at least partially regulated by NO.  相似文献   

14.
Subchondral bone sclerosis is a well-recognised manifestation of osteoarthritis (OA). The osteocyte cell network is now considered to be central to the regulation of bone homeostasis; however, it is not known whether the integrity of the osteocyte cell network is altered in OA patients. The aim of this study was to investigate OA osteocyte phenotypic changes and its potential role in OA subchondral bone pathogenesis. The morphological and phenotypic changes of osteocytes in OA samples were investigated by micro-CT, SEM, histology, immunohistochemistry, TRAP staining, apoptosis assay and real-time PCR studies. We demonstrated that in OA subchondral bone, the osteocyte morphology was altered showing rough and rounded cell body with fewer and disorganized dendrites compared with the osteocytes in control samples. OA osteocyte also showed dysregulated expression of osteocyte markers, apoptosis, and degradative enzymes, indicating that the phenotypical changes in OA osteocytes were accompanied with OA subchondral bone remodelling (increased osteoblast and osteoclast activity) and increased bone volume with altered mineral content. Significant alteration of osteocytes identified in OA samples indicates a potential regulatory role of osteocytes in subchondral bone remodelling and mineral metabolism during OA pathogenesis.  相似文献   

15.
The mechanisms underlying the altered osteoblastogenesis and bone loss in response to disuse are incompletely understood. Using the rat tail suspension model, we studied the effect of skeletal unloading on osteoblast and osteocyte apoptosis. Tail suspension for 2 to 7 days decreased tibial bone mass and induced early apoptotic loss of osteoblasts and delayed apoptotic loss of osteocytes. Surrenal gland weight and plasma corticosterone levels did not differ in loaded and unloaded rats at any time point, indicating that osteoblast/osteocyte apoptosis occurred independently of endogenous glucocorticoids. The mechanistic basis for the disuse-induced osteoblast/osteocyte apoptosis was examined. We found that alpha5beta1 integrin and phosphorylated phosphatidyl-inositol-3 kinase (p-PI3K) protein levels were transiently decreased in unloaded metaphyseal long bone compared to loaded bones. In contrast, p-FAK and p-ERK p42/44 levels were not significantly altered. Interestingly, the reduced p-PI3K levels in unloaded long bone was associated with decreased levels of the survival protein Bcl-2 with unaltered Bax levels, causing increased Bax/Bcl-2 levels. The results indicate that skeletal unloading in rats induces a glucocorticoid-independent, immediate increase in osteoblast apoptosis associated with decreased alpha5beta1-PI3K-Bcl-2 survival pathway in rat bone, which may contribute to the altered osteoblastogenesis and osteopenia induced by unloading.  相似文献   

16.
The morphology of the osteocyte changes during the cell's lifetime. Shortly after becoming buried in the matrix, an osteocyte is plump with a rich rough endoplasmic reticulum and a well-developed Golgi complex. This "immature" osteocyte reduces its number of organelles to become a "mature" osteocyte when it comes to reside deeper in the bone matrix. We hypothesized that mineralization of the surrounding matrix is the trigger for osteocyte maturation. To verify this, we prevented mineralization of newly formed matrix by administration of 1-hydroxyethylidene-1,1-bisphosphonate (HEBP) and then examined the morphological changes in the osteocytes in rats. In the HEBP group, matrix mineralization was disturbed, but matrix formation was not affected. The osteocytes found in the unmineralized matrix were immature. Mature osteocytes were seen in the corresponding mineralized matrix in the control group. The immature osteocytes in the unmineralized matrix failed to show immunoreactivity with anti-sclerostin antibody, whereas mature osteocytes in the mineralized matrix showed immunoreactivity in both control and HEBP groups. These findings suggest that mineralization of the matrix surrounding the osteocyte is the trigger for cytodifferentiation from a plump immature form to a mature osteocyte. The osteocyte appears to start secreting sclerostin only after it matures in the mineralized bone matrix.  相似文献   

17.
Apoptosis of osteocytes and osteoblasts precedes bone resorption and bone loss with reduced mechanical stimulation, and receptor activator of NF-κB ligand (RANKL) expression is increased with unloading in mice. Because osteocytes are major RANKL producers, we hypothesized that apoptotic osteocytes signal to neighboring osteocytes to increase RANKL expression, which, in turn, increases osteoclastogenesis and bone resorption. The traditional bisphosphonate (BP) alendronate (Aln) or IG9402, a BP analog that does not inhibit resorption, prevented the increase in osteocyte apoptosis and osteocytic RANKL expression. The BPs also inhibited osteoblast apoptosis but did not prevent the increase in osteoblastic RANKL. Unloaded mice exhibited high serum levels of the bone resorption marker C-telopeptide fragments of type I collagen (CTX), elevated osteoclastogenesis, and increased osteoclasts in bone. Aln, but not IG9402, prevented all of these effects. In addition, Aln prevented the reduction in spinal and femoral bone mineral density, spinal bone volume/tissue volume, trabecular thickness, mechanical strength, and material strength induced by unloading. Although IG9402 did not prevent the loss of bone mass, it partially prevented the loss of strength, suggesting a contribution of osteocyte viability to strength independent of bone mass. These results demonstrate that osteocyte apoptosis leads to increased osteocytic RANKL. However, blockade of these events is not sufficient to restrain osteoclast formation, inhibit resorption, or stop bone loss induced by skeletal unloading.  相似文献   

18.
Reduced mechanical stress is a major cause of osteoporosis in the elderly, and the osteocyte network, which comprises a communication system through processes and canaliculi throughout bone, is thought to be a mechanosensor and mechanotransduction system; however, the functions of osteocytes are still controversial and remain to be clarified. Unexpectedly, we found that overexpression of BCL2 in osteoblasts eventually caused osteocyte apoptosis. Osteoblast and osteoclast differentiation were unaffected by BCL2 transgene in vitro. However, the cortical bone mass increased due to enhanced osteoblast function and suppressed osteoclastogenesis at 4 months of age, when the frequency of TUNEL-positive lacunae reached 75%. In the unloaded condition, the trabecular bone mass decreased in both wild-type and BCL2 transgenic mice at 6 weeks of age, while it decreased due to impaired osteoblast function and enhanced osteoclastogenesis in wild-type mice but not in BCL2 transgenic mice at 4 months of age. Rankl and Opg were highly expressed in osteocytes, but Rankl expression in osteoblasts but not in osteocytes was increased at unloading in wild-type mice but not in BCL2 transgenic mice at 4 months of age. Sost was locally induced at unloading in wild-type mice but not in BCL2 transgenic mice, and the dissemination of Sost was severely interrupted in BCL2 transgenic mice, showing the severely impaired osteocyte network. These findings indicate that the osteocyte network is required for the upregulation of Rankl in osteoblasts and Sost in osteocytes in the unloaded condition. These findings suggest that the osteocyte network negatively regulate bone mass by inhibiting osteoblast function and activating osteoclastogenesis, and these functions are augmented in the unloaded condition at least partly through the upregulation of Rankl expression in osteoblasts and that of Sost in osteocytes, although it cannot be excluded that low BCL2 transgene expression in osteoblasts contributed to the enhanced osteoblast function.  相似文献   

19.
Autophagy is the basic catabolic progress involved in cell degradation of unnecessary or dysfunctional cellular components.It has been proven that autophagy could be utilized for cell survival under stresses.Hypoxic-preconditioning(HPC)could reduce apoptosis induced by ischemia and hypoxia/serum deprivation(H/SD)in bone marrow-derived mesenchymal stem cells(BMSCs).Previous studies have shown that both leptin signaling and autophagy activation were involved in the protection against apoptosis induced by various stress,including ischemia-reperfusion.However,it has never been fully understood how leptin was involved in the protective effects conferred by autophagy.In the present study,we demonstrated that HPC can induce autophagy in BMSCs by increased LC3-II/LC3-I ratio and autophagosome formation.Interestingly,similar effects were also observed when BMSCs were pretreated with rapamycin.The beneficial effects offered by HPC were absent when BMSCs were incubated with autophagy inhibitor,3-methyladenine(3-MA).In addition,down-regulated leptin expression by leptin-shRNA also attenuated HPC-induced autophagy in BMSCs,which in turn was associated with increased apoptosis after exposed to sustained H/SD.Furthermore,increased AMP-activated protein kinase phosphorylation and decreased mammalian target of rapamycin phosphorylation that were observed in HPC-treated BMSCs can also be attenuated by down-regulation of leptin expression.Our data suggests that leptin has impact on HPC-induced autophagy in BMSCs which confers protection against apoptosis under H/SD,possibly through modulating both AMPK and mTOR pathway.  相似文献   

20.

Background

Concomitant supplementation of vitamins C and E during pregnancy has been reportedly associated with low birth weight, the premature rupture of membranes and fetal loss or perinatal death in women at risk for preeclampsia; however, the cause is unknown. We surmise that hypoxia-reoxygenation (HR) within the intervillous space due to abnormal placentation is the mechanism and hypothesize that concomitant administration of aforementioned vitamin antioxidants detrimentally affects trophoblast cells during HR.

Methodology/Principal Findings

Using villous explants, concomitant administration of 50 µM of vitamins C and E was observed to reduce apoptotic and autophagic changes in the trophoblast layer at normoxia (8% oxygen) but to cause more prominent apoptosis and autophagy during HR. Furthermore, increased levels of Bcl-2 and Bcl-xL in association with a decrease in the autophagy-related protein LC3-II were noted in cytotrophoblastic cells treated with vitamins C and E under standard culture conditions. In contrast, vitamin treatment decreased Bcl-2 and Bcl-xL as well as increased mitochondrial Bak and cytosolic LC3-II in cytotrophoblasts subjected to HR.

Conclusions/Significance

Our results indicate that concomitant administration of vitamins C and E has differential effects on the changes of apoptosis, autophagy and the expression of Bcl-2 family of proteins in the trophoblasts between normoxia and HR. These changes may probably lead to the impairment of placental function and suboptimal growth of the fetus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号