首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

Spatial analyses in life cycle assessments are hardly ever conducted. The combination of geoinformation systems and life cycle assessments (LCA) databases is a way to realise such complex calculations. By the example of energetic utilisation of biomass via conditioned biogas a geoinformation systems-based calculation tool is presented which combines geodata on biomass potentials, infrastructure, land use, cost and technology databases with analysis tools for the planning of biogas plants to identify the most efficient plant locations, to calculate balances of emissions, biomass streams and costs.

Methods

The calculations include the impact categories greenhouse gases, acidification, and eutrophication and were tested for the Lower Rhine region and the Altmark region in Germany. The results of the greenhouse gas (GHG) balances are presented. By using only nationwide available datasets, the calculation tool can be used in other regions as well.

Results and discussion

Balances of individual sites, regional balances and their temporal development can be calculated in geoinformation systems (GIS) using LCA methods. The composition of the substrates varies according to site and catchment area and lead to large variations in plant configurations and the resulting GHG balances and cost structures.

Conclusions

GIS tools do not only allow the assessment of individual plants, but also the determination of the GHG reduction potential, the biogas potential as well as the necessary investment costs for entire regions. Thus, the exploitation of regional biogas potentials in a way that is sustainable and climate-friendly becomes simple.  相似文献   

2.

Purpose

In life cycle assessment (LCA), resource availability is currently evaluated by means of models based on depletion time, surplus energy, etc. Economic aspects influencing the security of supply and affecting availability of resources for human use are neglected. The aim of this work is the development of a new model for the assessment of resource provision capability from an economic angle, complementing existing LCA models. The inclusion of criteria affecting the economic system enables an identification of potential supply risks associated with resource use. In step with actual practice, such an assessment provides added value compared to conventional (environmental) resource assessment within LCA. Analysis of resource availability including economic information is of major importance to sustain industrial production.

Methods

New impact categories and characterization models are developed for the assessment of economic resource availability based on existing LCA methodology and terminology. A single score result can be calculated providing information about the economic resource scarcity potential (ESP) of different resources. Based on a life cycle perspective, the supply risk associated with resource use can be assessed, and bottlenecks within the supply chain can be identified. The analysis can be conducted in connection with existing LCA procedures and in line with current resource assessment practice and facilitates easy implementation on an organizational level.

Results and discussion

A portfolio of 17 metals is assessed based on different impact categories. Different impact factors are calculated, enabling identification of high-risk metals. Furthermore, a comparison of ESP and abiotic depletion potential (ADP) is conducted. Availability of resources differs significantly when economic aspects are taken into account in addition to geologic availability. Resources assumed uncritical based on ADP results, such as rare earths, turn out to be associated with high supply risks.

Conclusions

The model developed in this work allows for a more realistic assessment of resource availability beyond geologic finiteness. The new impact categories provide organizations with a practical measure to identify supply risks associated with resources. The assessment delivers a basis for developing appropriate mitigation measures and for increasing resilience towards supply disruptions. By including an economic dimension into resource availability assessment, a contribution towards life cycle sustainability assessment (LCSA) is achieved.  相似文献   

3.

Purpose

Odour is an important aspect of systems for human and agricultural waste management and many technologies are developed with the sole purpose of reducing odour. Compared with greenhouse gas assessment and the assessment of toxicity, odour assessment has received little attention in the life cycle assessment (LCA) community. This article aims to redress this.

Methods

Firstly, a framework for the assessment of odour impacts in LCA was developed considering the classical LCA framework of emissions, midpoint and endpoint indicators. This suggested that an odour footprint midpoint indicator was worth striving for. An approach to calculating an areal indicator we call “odour footprint”, which considers the odour detection threshold, the diffusion rate and the kinetics of degradation of odourants, was implemented in MATLAB. We demonstrated the use of the characterisation factors we calculated in a case study based on odour removal technology applied to a pig barn.

Results and discussion

We produced a list of 33 linear characterisation factors based on hydrogen sulphide equivalents, analogous to the linear carbon dioxide equivalency factors in use in carbon footprinting, or the dichlorobenzene equivalency factors developed for assessment of toxic impacts in LCA. Like the latter, this odour footprint method does not take local populations and exposure pathway analysis into account—its intent is not to assess regulatory compliance or detailed design. The case study showed that despite the need for materials and energy, large factor reductions in odour footprint and eutrophication potential were achieved at the cost of a smaller factor increase in greenhouse emissions.

Conclusions

The odour footprint method is proposed as an improvement on the established midpoint method for odour assessment in LCA. Unlike it, the method presented here considers the persistence of odourants. Over time, we hope to increase the number of characterised odourants, enabling analysts to perform simple site-generic LCA on systems with odourant emissions.  相似文献   

4.

Purpose

The results of published Life Cycle Assessments (LCAs) of biofuels are characterized by a large variability, arising from the diversity of both biofuel chains and the methodologies used to estimate inventory data. Here, we suggest that the best option to maximize the accuracy of biofuel LCA is to produce local results taking into account the local soil, climatic and agricultural management factors.

Methods

We focused on a case study involving the production of first-generation ethanol from sugar beet in the Picardy region in Northern France. To account for local factors, we first defined three climatic patterns according to rainfall from a 20-year series of weather data. We subsequently defined two crop rotations with sugar beet as a break crop, corresponding to current practice and an optimized management scenario, respectively. The six combinations of climate types and rotations were run with the process-based model CERES-EGC to estimate crop yields and environmental emissions. We completed the data inventory and compiled the impact assessments using Simapro v.7.1 and Ecoinvent database v2.0.

Results

Overall, sugar beet ethanol had lower impacts than gasoline for the abiotic depletion, global warming, ozone layer depletion and photochemical oxidation categories. In particular, it emitted between 28 % and 42 % less greenhouse gases than gasoline. Conversely, sugar beet ethanol had higher impacts than gasoline for acidification and eutrophication due to losses of reactive nitrogen in the arable field. Thus, LCA results were highly sensitive to changes in local conditions and management factors. As a result, an average impact figures for a given biofuel chain at regional or national scales may only be indicative within a large uncertainty band.

Conclusions

Although the crop model made it possible to take local factors into account in the life-cycle inventory, best management practices that achieved high yields while reducing environmental impacts could not be identified. Further modelling developments are necessary to better account for the effects of management practices, in particular regarding the benefits of fertiliser incorporation into the topsoil in terms of nitrogen losses abatement. Supplementary data and modelling developments also are needed to better estimate the emissions of pesticides and heavy metals in the field.  相似文献   

5.

Purpose

Habitat loss is a significant cause of biodiversity loss, but while its importance is widely recognized, there is no generally accepted method on how to include impacts on biodiversity from land use and land use changes in cycle assessment (LCA), and existing methods are suffering from data gaps. This paper proposes a methodology for assessing the impact of land use on biodiversity using ecological structures as opposed to information on number of species.

Methods

Two forms of the model (global and local scales) were used to assess environmental quality, combining ecosystem scarcity, vulnerability, and conditions for maintaining biodiversity. A case study for New Zealand kiwifruit production is presented. As part of the sensitivity analysis, model parameters (area and vulnerability) were altered and New Zealand datasets were also used.

Results and discussion

When the biodiversity assessment was implemented using a global dataset, the importance of productivity values was shown to depend on the area the results were normalized against. While the area parameter played an important role in the results, the proposed alternative vulnerability scale had little influence on the final outcome.

Conclusions

Overall, the paper successfully implements a model to assess biodiversity impacts in LCA using easily accessible, free-of-charge data and software. Comparing the model using global vs. national datasets showed that there is a potential loss of regional significance when using the generalized model with the global dataset. However, as a guide to assessing biodiversity impact, the model allows for consistent comparison of product systems on an international basis.  相似文献   

6.

Purpose

This study analyzes the influence of value choices in impact assessment models for human health, such as the choice of time horizon, on life cycle assessment outcomes.

Methods

For 756 products, the human health damage score is calculated using three sets of characterization factors (CFs). The CFs represent seven human health impact assessment categories: water scarcity, tropospheric ozone formation, particulate matter formation, human toxicity, ionizing radiation, stratospheric ozone depletion, and climate change. Each set of CFs embeds a combination of value choices following the Cultural Theory, and reflects the individualist, hierarchist, or egalitarian perspective.

Results

We found that the average difference in human health damage score goes from 1 order of magnitude between the individualist and hierarchist perspectives to 2.5 orders of magnitude between the individualist and egalitarian perspectives. The difference in damage score of individual materials among perspectives depends on the combination of emissions driving the impact of both perspectives and can rise up to 5 orders of magnitude.

Conclusions

The value choices mainly responsible for the differences in results among perspectives are the choice of time horizon and inclusion of highly uncertain effects. A product comparison can be affected when the human health damage score of two products differ less than a factor of 5, or the comparing products largely differ in their emitted substances. Overall, our study implies that value choices in impact assessment modeling can modify the outcomes of a life cycle assessment (LCA) and thus the practical implication of decisions based on the results of an LCA.  相似文献   

7.

Purpose

This article evaluates the parameters that influence the results of a life cycle assessment (LCA) of biogas production from maize and the conversion of biogas into electricity. The environmental impacts of biogas vary according to regional farming procedures and, therefore, the soil, climate conditions, crop yield, and cultivation management. This study focuses on these regional parameters and the existing infrastructure, including the number of installed biogas plants and their share of used heat.

Materials and methods

To assess the regional impact, the LCAs of maize cultivation, on the one hand, and the production and use of biogas, on the other, were performed for three different areas. These areas were the administrative districts of Celle, Hildesheim, and Goettingen; all located in the south of Lower Saxony, Germany. The areas differed in geographic location conditions, crop yield, and the number of installed biogas plants. The necessary data for modeling the cultivation of maize were derived from the specific regional and local parameters of each area. The most important parameters were the soil characteristics and the climate conditions for cultivating maize. The share of used heat from combined heat and power unit (CHP) was another relevant factor for biogas production and use.

Results

Our results demonstrate significant differences among the investigated areas. The smallest environmental impact of all the considered categories occurs in Goettingen and the largest in Celle. The net greenhouse gas emissions vary from 0.179?kg CO2 eq./kWhel in Celle to 0.058?kg CO2 eq./kWhel in Goettingen. This result is due to the maize cultivation system and the different credits for using heat from the CHP. Variances in energy crop cultivation result from different nitrogen and irrigation demands. In addition, despite higher applications of nitrogen fertilizer and irrigation, the maize yield is lower in Celle. The impact category of total fossil energy shows similar results to that of the greenhouse gas (GHG) emissions. The results range from ?0.274 to 0.175 kWh/kWhel. The results of acidification and eutrophication vary from 1.62 in Goettingen to 1.94?g SO2 eq./kWhel in Celle and respectively 0.330 to 0.397?g PO 4 3? eq./kWhel. These differences are primarily caused by maize cultivation, especially irrigation.

Conclusions and perspectives

Cultivating maize and using waste heat from the CHP were identified as the most influential parameters for the GHG emissions and total fossil energy demand. Regarding acidification and eutrophication, the most relevant factors are the application of digester output and the emissions from the CHP. Our results show the need to consider regional parameters in the LCA of bioenergies, particularly biogas production and use, especially if the LCA studies are used for generalized evaluations such as statements on the climate protection potential of biogas.  相似文献   

8.

Background, aim, and scope

Many studies evaluate the results of applying different life cycle impact assessment (LCIA) methods to the same life cycle inventory (LCI) data and demonstrate that the assessment results would be different with different LICA methods used. Although the importance of uncertainty is recognized, most studies focus on individual stages of LCA, such as LCI and normalization and weighting stages of LCIA. However, an important question has not been answered in previous studies: Which part of the LCA processes will lead to the primary uncertainty? The understanding of the uncertainty contributions of each of the LCA components will facilitate the improvement of the credibility of LCA.

Methodology

A methodology is proposed to systematically analyze the uncertainties involved in the entire procedure of LCA. The Monte Carlo simulation is used to analyze the uncertainties associated with LCI, LCIA, and the normalization and weighting processes. Five LCIA methods are considered in this study, i.e., Eco-indicator 99, EDIP, EPS, IMPACT 2002+, and LIME. The uncertainty of the environmental performance for individual impact categories (e.g., global warming, ecotoxicity, acidification, eutrophication, photochemical smog, human health) is also calculated and compared. The LCA of municipal solid waste management strategies in Taiwan is used as a case study to illustrate the proposed methodology.

Results

The primary uncertainty source in the case study is the LCI stage under a given LCIA method. In comparison with various LCIA methods, EDIP has the highest uncertainty and Eco-indicator 99 the lowest uncertainty. Setting aside the uncertainty caused by LCI, the weighting step has higher uncertainty than the normalization step when Eco-indicator 99 is used. Comparing the uncertainty of various impact categories, the lowest is global warming, followed by eutrophication. Ecotoxicity, human health, and photochemical smog have higher uncertainty.

Discussion

In this case study of municipal waste management, it is confirmed that different LCIA methods would generate different assessment results. In other words, selection of LCIA methods is an important source of uncertainty. In this study, the impacts of human health, ecotoxicity, and photochemical smog can vary a lot when the uncertainties of LCI and LCIA procedures are considered. For the purpose of reducing the errors of impact estimation because of geographic differences, it is important to determine whether and which modifications of assessment of impact categories based on local conditions are necessary.

Conclusions

This study develops a methodology of systematically evaluating the uncertainties involved in the entire LCA procedure to identify the contributions of different assessment stages to the overall uncertainty. Which modifications of the assessment of impact categories are needed can be determined based on the comparison of uncertainty of impact categories.

Recommendations and perspectives

Such an assessment of the system uncertainty of LCA will facilitate the improvement of LCA. If the main source of uncertainty is the LCI stage, the researchers should focus on the data quality of the LCI data. If the primary source of uncertainty is the LCIA stage, direct application of LCIA to non-LCIA software developing nations should be avoided.  相似文献   

9.

Purpose

Biopolymers are considered to be environmentally friendlier than petroleum-based polymers, but little is known about their environmental performance against petroleum-based products. This paper presents the results of a life cycle assessment (LCA) of two prototype biocomposite formulations produced by extrusion of wood fibre with either polylactic acid (PLA) or a blend of PLA and locally produced thermoplastic starch (TPS).

Methods

The study followed the LCA methodology outlined in the two standards set out by the International Organization for Standardization (ISO): ISO 14040 and ISO 14044 of 2006. A life cycle inventory (LCI) for the biocomposite formulations was developed, and a contribution analysis was performed to identify the significant inputs. Environmental performances of the two formulations were then compared with each other and polypropylene (PP), a petroleum-based polymer. The US Environmental Protection Agency’s impact assessment method, “TRACI: The Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts”, was combined with Cumulative Energy Demand (a European method) in order to characterize the inventory flows. Environmental impact categories chosen for the analysis were the following: global warming, stratospheric ozone depletion, acidification of land and water, eutrophication, smog, human health (respiratory, carcinogenic, and non-carcinogenic) effects and ecotoxicity.

Results and discussion

We found that PLA is the significant input which contributes mostly to fossil fuel consumption, acidification and respiratory and smog effects. Impacts from PLA transport from the faraway source significantly added more burden to its contributions. TPS causes less environmental burden compared to PLA; the environmental performance of the biocomposite improved when a blend of PLA and TPS is used in formulating the biocomposite. The two formulations performed better than PP in all the environmental impact categories except eutrophication effects, which is important on a regional basis.

Conclusions

The following conclusions were drawn from this study:
  • PLA is the environmentally significant input among the three raw materials.
  • TPS causes less environmental burden than PLA. Environmental performance of the biocomposite improves in the life cycle energy consumption, fossil energy use, ozone depletion and non-carcinogenic impact categories when a blend of PLA and TPS is used.
  • The biocomposite can outperform PP in all the impact categories except eutrophication effects if manufactured using hydroelectricity.
The biopolymer could be a potential alternative to PP as it could cause less of a burden to the environment on a cradle-to-gate basis. Environmental impacts at the complete life cycle levels should be looked into in order to fully understand its potential.  相似文献   

10.
Life cycle assessment of soybean-based biodiesel in Argentina for export   总被引:2,自引:0,他引:2  

Background, aim and scope

Regional specificities are a key factor when analyzing the environmental impact of a biofuel pathway through a life cycle assessment (LCA). Due to different energy mixes, transport distances, agricultural practices and land use changes, results can significantly vary from one country to another. The Republic of Argentina is the first exporter of soybean oil and meal and the third largest soybean producer in the world, and therefore, soybean-based biodiesel production is expected to significantly increase in the near future, mostly for exportation. Moreover, Argentinean biodiesel producers will need to evaluate the environmental performances of their product in order to comply with sustainability criteria being developed. However, because of regional specificities, the environmental performances of this biofuel pathway can be expected to be different from those obtained for other countries and feedstocks previously studied. This work aims at analyzing the environmental impact of soybean-based biodiesel production in Argentina for export. The relevant impact categories account for the primary non-renewable energy consumption (CED), the global warming potential (GWP), the eutrophication potential (EP), the acidification potential (AP), the terrestrial ecotoxicity (TE), the aquatic ecotoxicity (AE), the human toxicity (HT) and land use competition (LU). The paper tackles the feedstock and country specificities in biodiesel production by comparing the results of soybean-based biodiesel in Argentina with other reference cases. Emphasis is put on explaining the factors that contribute most to the final results and the regional specificities that lead to different results for each biodiesel pathway.

Materials and methods

The Argentinean (AR) biodiesel pathway was modelled through an LCA and was compared with reference cases available in the ecoinvent® 2.01 database, namely, soybean-based biodiesel production in Brazil (BR) and the United States (US), rapeseed-based biodiesel production in the European Union (EU) and Switzerland (CH) and palm-oil-based biodiesel production in Malaysia (MY). In all cases, the systems were modelled from feedstock production to biodiesel use as B100 in a 28 t truck in CH. Furthermore, biodiesel pathways were compared with fossil low-sulphur diesel produced and used in CH. The LCA was performed according to the ISO standards. The life cycle inventory and the life cycle impact assessment (LCIA) were performed in Excel spreadsheets using the ecoinvent® 2.01 database. The cumulative energy demand (CED) and the GWP were estimated through the CED for fossil and nuclear energy and the IPCC 2001 (climate change) LCIA methods, respectively. Other impact categories were assessed according to CML 2001, as implemented in ecoinvent. As the product is a fuel for transportation (service), the system was defined for one vehicle kilometre (functional unit) and was divided into seven unit processes, namely, agricultural phase, soybean oil extraction and refining, transesterification, transport to port, transport to the destination country border, distribution and utilisation.

Results

The Argentinean pathway results in the highest GWP, CED, AE and HT compared with the reference biofuel pathways. Compared with the fossil reference, all impact categories are higher for the AR case, except for the CED. The most significant factor that contributes to the environmental impact in the Argentinean case varies depending on the evaluated category. Land provision through deforestation for soybean cultivation is the most impacting factor of the AR biodiesel pathway for the GWP, the CED and the HT categories. Whilst nitrogen oxide emissions during the fuel use are the main cause of acidification, nitrate leaching during soybean cultivation is the main factor of eutrophication. LU is almost totally affected by arable land occupation for soybean cultivation. Cypermethrin used as pesticide in feedstock production accounts for almost the total impact on TE and AE.

Discussion

The sensitivity analysis shows that an increase of 10% in the soybean yield, whilst keeping the same inputs, will reduce the total impact of the system. Avoiding deforestation is the main challenge to improve the environmental performances of soybean-based biodiesel production in AR. If the soybean expansion can be done on marginal and set-aside agricultural land, the negative impact of the system will be significantly reduced. Further implementation of crops’ successions, soybean inoculation, reduced tillage and less toxic pesticides will also improve the environmental performances. Using ethanol as alcohol in the transesterification process could significantly improve the energy balance of the Argentinean pathway.

Conclusions

The main explaining factors depend on regional specificities of the system that lead to different results from those obtained in the reference cases. Significantly different results can be obtained depending on the level of detail of the input data, the use of punctual or average data and the assumptions made to build up the LCA inventory. Further improvement of the AR biodiesel pathways should be done in order to comply with international sustainability criteria on biofuel production.

Recommendations and perspectives

Due to the influence of land use changes in the final results, more efforts should be made to account for land use changes others than deforestation. More data are needed to determine the part of deforestation attributable to soybean cultivation. More efforts should be done to improve modelling of interaction between variables and previous crops in the agricultural phase, future transesterification technologies and market prices evolution. In order to assess more accurately the environmental impact of soybean-based biodiesel production in Argentina, further considerations should be made to account for indirect land use changes, domestic biodiesel consumption and exportation to other regions, production scale and regional georeferenced differentiation of production systems.  相似文献   

11.

Purpose

As a consequence of the multi-functionality of land, the impact assessment of land use in Life Cycle Impact Assessment requires the modelling of several impact pathways covering biodiversity and ecosystem services. To provide consistency amongst these separate impact pathways, general principles for their modelling are provided in this paper. These are refinements to the principles that have already been proposed in publications by the UNEP-SETAC Life Cycle Initiative. In particular, this paper addresses the calculation of land use interventions and land use impacts, the issue of impact reversibility, the spatial and temporal distribution of such impacts and the assessment of absolute or relative ecosystem quality changes. Based on this, we propose a guideline to build methods for land use impact assessment in Life Cycle Assessment (LCA).

Results

Recommendations are given for the development of new characterization models and for which a series of key elements should explicitly be stated, such as the modelled land use impact pathways, the land use/cover typology covered, the level of biogeographical differentiation used for the characterization factors, the reference land use situation used and if relative or absolute quality changes are used to calculate land use impacts. Moreover, for an application of the characterisation factors (CFs) in an LCA study, data collection should be transparent with respect to the data input required from the land use inventory and the regeneration times. Indications on how generic CFs can be used for the background system as well as how spatial-based CFs can be calculated for the foreground system in a specific LCA study and how land use change is to be allocated should be detailed. Finally, it becomes necessary to justify the modelling period for which land use impacts of land transformation and occupation are calculated and how uncertainty is accounted for.

Discussion

The presented guideline is based on a number of assumptions: Discrete land use types are sufficient for an assessment of land use impacts; ecosystem quality remains constant over time of occupation; time and area of occupation are substitutable; transformation time is negligible; regeneration is linear and independent from land use history and landscape configuration; biodiversity and multiple ecosystem services are independent; the ecological impact is linearly increasing with the intervention; and there is no interaction between land use and other drivers such as climate change. These assumptions might influence the results of land use Life Cycle Impact Assessment and need to be critically reflected.

Conclusions and recommendations

In this and the other papers of the special issue, we presented the principles and recommendations for the calculation of land use impacts on biodiversity and ecosystem services on a global scale. In the framework of LCA, they are mainly used for the assessment of land use impacts in the background system. The main areas for further development are the link to regional ecological models running in the foreground system, relative weighting of the ecosystem services midpoints and indirect land use.  相似文献   

12.

Purpose

This paper compares 16 waste lubricant oil (WLO) systems (15 management alternatives and a system in use in Portugal) using a life cycle assessment (LCA). The alternatives tested use various mild processing techniques and recovery options: recycling during expanded clay production, recycling and electric energy production, re-refining, energy recovery during cement production, and energy recovery during expanded clay production.

Methods

The proposed 15 alternatives and the actual present day situation were analyzed using LCA software UMBERTO 5.5, applied to eight environmental impact categories. The LCA included an expansion system to accommodate co-products.

Results

The results show that mild processing with low liquid gas fuel consumption and re-refining is the best option to manage WLO with regard to abiotic depletion, eutrophication, global warming, and human toxicity environmental impacts. A further environmental option is to treat the WLO using the same mild processing technique, but then send it to expanded clay recycling to be used as a fuel in expanded clay production, as this is the best option regarding freshwater sedimental ecotoxicity, freshwater aquatic ecotoxicity, and acidification.

Conclusions

It is recommended that there is a shift away from recycling and electric energy production. Although sensitivity analysis shows re-refining and energy recovery in expanded clay production are sensitive to unit location and substituted products emission factors, the LCA analysis as a whole shows that both options are good recovery options; re-refining is the preferable option because it is closer to the New Waste Framework Directive waste hierarchy principle.  相似文献   

13.

Purpose

Land use in dry lands can result in a final stage where land is completely depleted or entirely degraded causing the desertification phenomenon. The first part (part 1) of this series of two articles proposed a methodology to include desertification in life cycle assessment (LCA). A set of variables to be measured in the life cycle inventory, characterization factors, and an impact assessment method for the life cycle impact assessment phase were proposed. This second part (part 2) aims at showing the application of the model proposed in part 1 on two case studies of agricultural activities.

Methods

The impact model proposed is applied to plots of land devoted to agricultural activities in two countries: Argentina and Spain. In the agricultural plots of Spain (1SP to 9SP), two crops were analyzed: winter wheat (Triticum aestivum) and rapeseed (RS, Brassica napus). Two crops were considered in the Argentinean case study: rapeseed (RS, B. napus) and digit grass (Digitaria eriantha) (10AR to 17AR). A bare soil state is considered in both countries as a reference state. Both case studies consider only the agricultural stage in the inventory of a complete life cycle assessment study. Both also consider only one impact category in life cycle environmental assessment: desertification impact due to land occupation.

Results and discussion

On the basis of the obtained results, it can be inferred that cultivating 1 ha of rapeseed and 1 ha of wheat has the same impact on the analyzed plots in Spain and improves the reference state conditions in 50 % of the cases. Moreover, rapeseed grown in Mendoza produces almost the same impact as in some of the Spanish plots. Normalized areas of plots could be useful to compare results in different regions of the world to avoid the influence of the area of occupation in results.

Conclusions

The proposed model implies a contribution of significant importance because so far there has not been an impact assessment tool for land use in dry lands within the LCA framework. The main strength of the proposed model is that it allows a simple way to quantify the desertification impact. Also, it is emphasized that the model can be adapted virtually without difficulty to the evaluation of all types of crops with different management practices in different regions in the life cycle impact assessment stage.  相似文献   

14.

Purpose

The production of bioethanol in Argentina is based on the sugarcane plantation system, with extensive use of agricultural land, scarce use of fertilizers, pesticides, and artificial irrigation, and burning of sugarcane prior to harvesting. The objective of this paper is to develop a life cycle assessment (LCA) of the fuel ethanol from sugarcane in Tucumán (Argentina), assessing the environmental impact potentials to identify which of them cause the main impacts.

Methods

Our approach innovatively combined knowledge about the main impact pathways of bioethanol production with LCA which covers the typical emission-related impact categories at the midpoint life cycle impact assessment. Real data from the Argentinean industry subsystems have been used to perform the study: S1—sugarcane production, S2—milling process, S3—sugar production, and S4—ethanol production from molasses, honey, or sugarcane juice.

Results and discussion

The results are shown in the three alternative pathways to produce bioethanol. Different impact categories are assessed, with global warming potential (GWP) having the highest impact. So, the production of 1 kg of ethanol from molasses emitted 22.5 kg CO2 (pathway 1), 19.2 kg CO2 from honey (pathway 2), and 15.0 kg CO2 from sugarcane juice (pathway 3). Several sensitivity analyses to study the variability of the GWP according to the different cases studied have been performed (changing the agricultural yield, including economic and calorific allocation in sugar production, and modifying the sugar price).

Conclusions

Agriculture is the subsystem which shows the highest impact in almost all the categories due to fossil fuel consumption. When an economic and calorific allocation is considered to assess the environmental impact, the value is lower than when mass allocation is used because ethanol is relatively cheaper than sugars and it has higher calorific value.  相似文献   

15.

Purpose

This paper presents a cradle-to-grave comparative life cycle assessment (LCA) of new gas atomised (GA) sponge nickel catalysts and evaluates their performance against the current cast and crush standard currently used in the industrial hydrogenation of butyraldehyde to butanol.

Methods

A comparative LCA has been made, accounting for the energy used and emissions throughout the entire life cycle of sponge nickel catalysts—ranging from the upstream production of materials (mainly aluminium and nickel), to the manufacturing, to the operation and finally to the recycling and disposal. The LCA was performed following ISO14040 principles where possible, and subsequently implemented in the software package GaBi 4.3. The CML2001 impact assessment methodology was used, with primary focus on comparing catalysts for equivalent greenhouse gasses generated over their lifetime and their relative global warming potential and secondary focus on acidification potential. This is justified as the lifetime is dominated by energy use in the operational phase, and acidification is dominated by the production of nickel for which existing ISO14040 collected data has been used. A sensitivity analysis was used to provide a number of scenarios and overall environmental performances of the various sponge nickels considered when compared to the existing industrial standard.

Results and discussion

It was found that the energy and emissions during the operation phase associated with a given catalyst significantly outweigh the primary production, manufacturing and recycling. Primary production of the nickel (and to a lesser extent molybdenum when used as a dopant) also has a significant environmental impact in terms of acidification potential, but this is offset by operational energy savings over the catalysts’ estimated lifetime and end of life recyclability. Finally, the impact of activity improvement and lifetime duration of sponge nickel catalysts was determined as both total life cycle energy for operational use and as a total life cycle global warming potential.

Conclusions

From this assessment, the newly developed, higher activity spongy nickel catalysts produced by gas atomisation could have a significantly lower environmental impact than the current industry standard cast and crush method. Given the potential environmental benefits of such catalysts, applications in other processes that require a catalyst should also be investigated.  相似文献   

16.

Purpose

Temporal variability is a major source of uncertainty in current life cycle assessment (LCA) practice. In this paper, the recently developed dynamic LCA approach is adapted to assess freshwater ecotoxicity impacts of metals. The objective is to provide relevant information regarding the distribution and magnitude of metal impacts over time and to show whether the dynamic approach significantly influences the conclusions of an LCA. An LCA of zinc fertilization in agriculture was therefore carried out.

Methods

Dynamic LCA is based on the temporal disaggregation of the inventory, which is then assessed using time-horizon-dependent characterization factors. The USEtox multimedia fate model is used to develop time-horizon-dependent characterization factors for the freshwater ecotoxicity impact of 18 metals. Mass balance equations are solved dynamically to obtain fate factors as a function of time, providing both instantaneous (impact at time t following a pulse emission) and cumulative (total time-integrated impact following a pulse emission) characterization factors (CFs).

Results and discussion

Time-horizon-dependent CFs for freshwater ecotoxicity depend on the emission compartment and the metal itself. The two variables clearly influence metal fate aspects such as the maximum mass loading reaching freshwater and the persistence time of metals into this compartment. The time needed to reach the total impact for each metal may exceed thousands of years, so the time horizon used in the analysis constitutes a determining factor. The case study reveals that the results of a classical LCA are always higher than those obtained from a dynamic LCA, especially for short time horizons. For instance, at the end of a 100-year fertilization treatment, only 25 % of the impacts obtained through traditional LCA occurred.

Conclusions

Results show that dynamic LCA enables assessing freshwater ecotoxicity impacts of metals over time, allowing decision makers to test the sensitivity of their results to the choice of a time horizon. For the particular case study of zinc fertilization over a period of 20 years, the use of time-horizon-dependent CFs is more important in determining the dynamics of impacts than the timing of emission.  相似文献   

17.

Purpose

Characterization factors (CFs) quantifying the potential impact of acidifying emissions on inland aquatic environments in life cycle assessment are typically available on a generic level. The lack of spatial differentiation may weaken the relevance of generic CFs since it was shown that regional impact categories such as aquatic acidification were influenced by the surroundings of the emission location. This paper presents a novel approach for the development of spatially differentiated CFs at a global scale for the aquatic acidification impact category.

Methods

CFs were defined as the change in relative decrease of lake fish species richness due to a change in acidifying chemicals emissions. The characterization model includes the modelling steps linking emission to atmospheric acid deposition (atmospheric fate factor) change, which lead to lake H+ concentration (receiving environment fate factor) change and a decrease in relative fish species richness (effect factor). We also evaluated the significance of each factor (i.e. atmospheric fate, receiving environment fate and effects) to the overall CFs spatial variability and parameter uncertainty.

Results and discussion

The highest CFs were found for emissions occurring in Canada, Scandinavia and the northern central Asia because of the extensive lake areas in these regions (lake areas being one of the parameters of the CFs; the bigger the lake areas, the higher the CFs). The CFs’ spatial variability ranged over 5, 6 and 8 orders of magnitude for NOx, SO2 and NH3 emissions, respectively. We found that the aquatic receiving environment fate factor is the dominant contributor to the overall spatial variability of the CFs, while the effect factors contributed to 98 % of the total parameter uncertainty.

Conclusions

The resulting characterization model and factors enable a consistent evaluation of spatially explicit acidifying emissions impacts at the global scale.  相似文献   

18.

Purpose

Land use is a potentially important impact category in life cycle assessment (LCA) studies of buildings. Three research questions are addressed in this paper: Is land use a decisive factor in the environmental impact of buildings?; Is it important to include the primary land use of buildings in the assessment?; and How does the environmental performance of solid structure and timber frame dwellings differ when assessed by distinct available models for quantifying land use impacts?

Methods

This paper compares several operational land use impact assessment models, which are subsequently implemented in an LCA case study comparing a building constructed using timber frame versus a solid structure. Different models were used for addressing the different research questions.

Results and discussion

The results reveal that contrasting decisions may be supported by LCA study results, depending on whether or not and how land use is included in the assessment. The analysis also highlights the need to include the building land footprint in the assessment and to better distinguish building locations in current land use impact assessment models.

Conclusions

Selecting land use assessment models that are most appropriate to the goals of the study is recommended as different models assess different environmental issues related to land use. In general, the combination of two land use assessment methods for buildings is recommended, i.e. soil organic matter (SOM) of Milà i Canals and Eco-indicator 99.  相似文献   

19.

Purpose

One of the main trends in life cycle assessment (LCA) today is towards increased regionalization in inventories and impact assessment methods. LCA studies require the collection of activity data but also of increasingly region-specific background data to accurately depict supply chain processes and enable the application of an increasing number of geographically explicit impact assessment models. This is particularly important for agri-food products. In this review, we assess progress in Portugal towards this goal and provide recommendations for future developments.

Methods

We perform a comprehensive review of available LCA studies conducted for Portuguese agri-food products, in order to evaluate the current state of Portuguese agri-food LCA. Among other issues, we assess availability of data, methods used, level of regionalization, impact assessment model relevance and coherence for inter-product comparability. We also provide conclusions and recommendations based on recent developments in the field.

Results and discussion

We found 22 LCA studies, covering 22 different products. The analysis of these studies reveals limitations in inter-study comparability. The main challenges have to do with a lack of country-specific foreground data sources applied consistently in the studies found, with discrepancies in impact assessment categories, and with the use of simple functional units that may misrepresent the product analyzed.

Conclusions

We conclude that Portuguese agri-food LCA studies do not have a systematic and country-scale approach in order to guarantee regional accuracy and comparability. We propose a research strategy to engage the Portuguese agri-food LCA community in devising a consistent framework before practical application studies are conducted.
  相似文献   

20.

Purpose

The environmental issue is a particular concern for chainsaw oils because these fluids represent a total loss system. The aim of this study is to quantify the environmental impacts of a biobased chainsaw oil made on the farm in Wallonia (a region of Belgium) and to compare it with a model mineral chainsaw oil. With this study, the aim is also to participate in the development of the life cycle assessment (LCA) methodology applied to the biolubricant sector since LCAs on these products are quite limited and rarely sufficiently detailed.

Method

In this LCA, the attributional approach is applied. Seven impact categories are studied. The methods for life cycle impact assessment are IPCC, ReCiPe, CML and USEtox. The functional unit is 1 kg of base oil. Seven sensitivity analyses are performed.

Results and discussion

Results indicate that the biobased chainsaw oil made on the farm has a lower impact for the global warming potential, the abiotic depletion potential, the ozone depletion potential and the photochemical oxidation potential. On the contrary, it has larger acidification, aquatic eutrophication and aquatic ecotoxicity potential impacts. Regarding the contribution of the life cycle stages of the biobased chainsaw oil, the agricultural stage causes the highest contribution in all impact categories. For the mineral chainsaw oil, the refining stage is preponderant for all impact categories except for the global warming potential for which the end-of-life stage contributes the most. When taking additives into account, conclusions regarding the comparison between the oils are not reversed. Even if it was necessary to consume more biobased than mineral chainsaw oil, conclusions regarding the comparison of the oils would not be reversed. In the same way, a different allocation procedure for rapeseed oil and rape meal, a different rape seeds yield or different extraction yields in the refining stage of the mineral base oil do not change the results of the comparison. For the biobased chainsaw oil, the substitution of only one active substance in the agricultural stage could result in an important decrease of the freshwater ecotoxicity impact.

Conclusions

The biobased chainsaw oil has a lower impact in four out of the seven impact categories and a higher impact in three impact categories. By providing a detailed LCA on a biobased chainsaw oil, this study contributes to the development of LCA applied to biobased lubricants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号