首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Dicer is a 219-kDa protein that plays key roles in gene regulation, particularly as the ribonuclease III enzyme responsible for cleaving precursor miRNA substrates. Its enzymatic activity is highly regulated by protein factors, and this regulation can impact on the levels of miRNAs and modulate the behavior of a cell. To better understand the underlying mechanisms of regulation, detailed enzymatic and structural characterization of Dicer are needed. However, these types of studies generally require several milligrams of recombinant protein, and efficient preparation of such quantities of pure human Dicer remains a challenge. To prepare large quantities of human Dicer, we have optimized transfection in HEK293-6E cells grown in suspension and streamlined a purification procedure.

Results

Transfection conditions were first optimized to achieve expression levels between 10 and 18?mg of recombinant Dicer per liter of culture. A three-step purification protocol was then developed that yields 4–9?mg of purified Dicer per liter of culture in a single day. From SEC-MALS/RI analysis and negative stain TEM, we confirmed that the purified protein is monomerically pure ( ≥ 98%) and folds with the characteristic L-shape geometry. Using an electrophoretic mobility shift assay, a dissociation constant (Kd) of 5?nM was measured for Dicer binding to pre-let-7a-1, in agreement with previous reports. However, when probing the cleavage activity of Dicer for pre-let-7a-1, we measured kcat (7.2?±?0.5?min??1) and KM (1.2?±?0.3?μM) values that are much higher than previously reported due to experimental conditions that better respect the steady-state assumption.

Conclusions

The expression and purification protocols described here provide high yields of monomerically pure and active human Dicer. Cleavage studies of a pre-let-7 substrate with this purified Dicer reveal higher kcat and KM values than previously reported and support the current view that conformational changes are associated with substrate binding. Large quantities of highly pure Dicer will be valuable for future biochemical, biophysical and structural investigations of this key protein of the miRNA pathway.
  相似文献   

2.
Large-scale transient transfection of mammalian cells is a recent and powerful technology for the fast production of milligram amounts of recombinant proteins (r-proteins). As many r-proteins used for therapeutic and structural studies are naturally secreted or engineered to be secreted, a cost-effective serum-free culture medium that allows their efficient expression and purification is required. In an attempt to design such a serum-free medium, the effect of nine protein hydrolysates on cell proliferation, transfection efficiency, and volumetric productivity was evaluated using green fluorescent protein (GFP) and human placental secreted alkaline phosphate (SEAP) as reporter genes. The suspension growing, serum-free adapted HEK293SF-3F6 cell line was stably transfected with an EBNA1-expression vector to increase protein expression when using EBV oriP bearing plasmids. Compared to our standard serum-free medium, concomitant addition of the gelatin peptone N3 and removal of BSA slightly enhanced transfection efficiency and significantly increased volumetric productivity fourfold. Using the optimized medium formulation, transfection efficiencies between 40-60% were routinely obtained and SEAP production reached 18 mg/L(-1). To date, we have successfully produced and purified over fifteen r-proteins from 1-14-L bioreactors using this serum-free system. As examples, we describe the scale-up of two secreted his-tagged r-proteins Tie-2 and Neuropilin-1 extracellular domains (ED) in bioreactors. Each protein was successfully purified to >95% purity following a single immobilized metal affinity chromatography (IMAC) step. In contrast, purification of Tie-2 and Neuropilin-1 produced in serum-containing medium was much less efficient. Thus, the use of our new serum-free EBNA1 cell line with peptone-enriched serum-free medium significantly improves protein expression compared to peptone-less medium, and significantly increases their purification efficiency compared to serum-containing medium. This eliminates labor-intensive and expensive chromatographic steps, and allows for the simple, reliable, and extremely fast production of milligram amounts of r-proteins within 5 days posttransfection.  相似文献   

3.
Transient gene expression (TGE) in mammalian cells at the reactor scale is becoming increasingly important for the rapid production of recombinant proteins. We improved a process for transient calcium phosphate-based transfection of HEK293-EBNA cells in a 1-3 L bioreactor volume. Cells were adapted to suspension culture using a commercially available medium (BioWhittaker, Walkersville, MD). Process parameters were optimized using a plasmid reporter vector encoding the enhanced green fluorescent protein (EGFP/CLONTECH, Palo Alto, CA, USA). Using GFP as a marker-protein, we observed by microscopic examination transfection efficiencies between 70-100%. Three different recombinant proteins were synthesized within a timeframe of 7 days from time of transfection to harvest. The first, a human recombinant IgG(1)-type antibody, was secreted into the supernatant of the cell culture and achieved a final concentration of >20 mg/L. An E. coli-derived DNA-binding protein remained intracellular, as expected, but accumulated to such a concentration that the lysate of cells, taken up into the entire culture volume, gave a concentration of 18 mg/L. The third protein, a transmembrane receptor, was expressed at 3-6 x 10(6) molecules/cell.  相似文献   

4.
Mitogen-activated protein (MAP) kinases are a family of serine/threonine protein kinases that play an important role in a myriad of cellular processes, including cell proliferation, differentiation, and apoptosis. Abnormal activation of MAP kinases has been shown to participate in a variety of human diseases which include cancer, septic shock, rheumatoid arthritis, diabetes, and cardiovascular diseases. Active MAP kinase enzymes are not only valuable for basic biomedical research but are also critical for the development of pharmacological inhibitors as therapeutic drugs in the treatment of relevant human diseases. MAP kinases produced in a bacterial system are poorly active due to a lack of proper phosphorylation at their characteristic threonine and tyrosine residues. To overcome these limitations, we have developed a mammalian expression system for high level expression and one-step purification of enzymatically MAP kinases. We cloned JNK1, p38, and p38-regulated MAP kinase-activated protein kinase-2 into the mammalian expression vector pEBG, and expressed these protein kinases as glutathione S-transferase fusion proteins in human embryonic kidney 293T cells through transient transfection. The protein kinases were activated in vivo through treating the transfected cells with sodium arsenite and affinity-purified using glutathione-Sepharose beads. The enzymatic activities of these protein kinases were demonstrated by Western blot analysis and in vitro kinase assays. Our results indicate that this system is an extremely powerful tool for generating valuable reagents, and could be very valuable for proteomic studies.  相似文献   

5.
6.
Large scale, transient gene expression (TGE) is highly dependent of the physiological status of a cell line. Therefore, intracellular nucleotide pools and ratios were used for identifying and monitoring the optimal status of a suspension cell line used for TGE. The transfection efficiency upon polyethyleneimine (PEI)-mediated transient gene delivery into HEK-293 cells cultured in suspension was investigated to understand the effect of different culture and transfection conditions as well as the significance of the culture age and the quality of the cell line used. Based on two different bicistronic model plasmids expressing the human erythropoietin gene (rHuEPO) in the first position and green fluorescent protein as reporter gene in the second position and vice versa, a completely serum-free transient transfection process was established. The process makes use of a 1:1 mixture of a special calcium-free DMEM and the FreeStyle™ 293 Expression Medium. Maximum transfectability was achieved by adjusting the ratio for complex formation to one mass part of DNA and three parts of PEI corresponding to an N/P (nitrogen residues/DNA phosphates) ratio of 23 representing a minimum amount of DNA for the polycation-mediated gene delivery. Applying this method, maximum transfectabilities between 70 and 96 % and a rHuEPO concentration of 1.6 μg mL−1 72 h post transfection were reached, when rHuEPO gene was expressed from the first position of the bicistronic mRNA. This corresponded to 10 % of the total protein concentration in the cell-free supernatant of the cultures in protein-free medium. Up to 30 % higher transfectabilities were found for cells of early passages compared to those from late passages under protein-free culture conditions. In contrast, when the same cells were propagated in serum-containing medium, higher transfectabilities were found for late-passage cells, while up to 40 % lower transfectabilities were observed for early-passage cells. Nucleotide pools were measured during all cell cultivations and the nucleoside triphosphate/uridine ratios were calculated. These ‘nucleotide ratios’ changed in an age-dependent manner and could be used to distinguish early- from late-passage cells. The observed effects were also dependent on the presence of serum in the culture. Nucleotide ratios were shown being applied to investigate the optimal passage number of cultured cell lines for achieving a maximum productivity in cultures used for transient gene expression. Furthermore, these nucleotide ratios proved to be different for transfected and untransfected cells, providing a high potential tool to monitor the status of transfection under various culture conditions.  相似文献   

7.
One of the major constraints to performing large-scale transfections of cultured mammalian cells for the transient expression of recombinant proteins is the production of large quantities of purified plasmid DNA. In this report partially purified plasmid DNA was prepared by a method that combines alkaline lysis of E. coli with standard precipitation techniques. The efficiency of calcium phosphate-DNA co-precipitate formation with crude DNA was similar to that observed for pure DNA, but precipitate formed with crude DNA also contained RNA. The transfection of adherent and suspension-adapted HEK293-EBNA cells with partially purified pEGFPN1 resulted in levels of transient GFP expression equivalent to those achieved with pure DNA. In addition, the co-transfection of 1-200 ml cultures of suspension-adapted HEK293-EBNA cells with two different plasmids encoding the heavy and light chain genes of anti-human RhD IgG1, respectively, yielded similar IgG titers with pure and partially purified plasmid DNA. Finally, it was observed that suspension-adapted cells were more tolerant to the presence of RNA in the plasmid preparations than were adherent cells. These findings are relevant to the field of DNA transfection, including applications ranging from high-throughput screening to large-scale transient protein expression.  相似文献   

8.
Our lab studies human myeloproliferative diseases induced by such oncogenes as Bcr-Abl or growth factor receptor-derived oncogenes (ZNF198-FGFR1, Bcr-PDGFRalpha, etc.). We are able to model and study a human-like disease in our mouse model, by transplanting bone marrow cells previously infected with a retrovirus expressing the oncogene of interest. Replication-defective retrovirus encoding a human oncogene and a marker (GFP, RFP, antibiotic resistance gene, etc.) is produced by a transient transfection protocol using 293T cells, a human renal epithelial cell line transformed by the adenovirus E1A gene product. 293 cells have the unusual property of being highly transfectable by calcium phosphate (CaPO4), with up to 50-80% transfection efficiency readily attainable. Here, we co-transfect 293 cells with a retroviral vector expressing the oncogene of interest and a plasmid that expresses the gag-pol-env packaging functions, such as the single-genome packaging constructs kat or pCL, in this case the EcoPak plasmid. The initial transfection is further improved by use of chloroquine. Stocks of ecotropic virus, collected as culture supernatant 48 hrs. post-transfection, can be stored at -80 degrees C and used for infection of cell-lines in view of transformation and in vitro studies, or primary cells such as mouse bone marrow cells, that can then be used for transplant in our mouse model.  相似文献   

9.
10.
High-level transient expression of recombinant protein in lettuce   总被引:3,自引:0,他引:3  
Transient expression following agroinfiltration of plant tissue was investigated as a system for producing recombinant protein. As a model system, Agrobacterium tumefaciens containing the beta-glucuronidase (GUS) gene was vacuum infiltrated into lettuce leaf disks. Infiltration with a suspension of 10(9) colony forming units/mL followed by incubation for 72 h at 22 degrees C in continuous darkness produced a maximum of 0.16% GUS protein based on dry tissue or 1.1% GUS protein based on total soluble protein. This compares favorably to expression levels for commercially manufactured GUS protein from transgenic corn seeds. A. tumefaciens culture medium pH between 5.6 and 7.0 and surfactant concentrations < or = 100 ppm in the vacuum infiltration did not affect GUS expression, while infiltration with an A. tumefaciens density of 10(7) and 10(8) colony forming units/mL, incubation at 29 degrees C, and a surfactant concentration of 1,000 ppm significantly reduced expression. Incubation in continuous light caused lettuce to produce GUS protein more rapidly, but final levels did not exceed the GUS production in leaves incubated in continuous darkness after 72 h at 22 degrees C. The kinetics of GUS expression during incubation in continuous light and dark were represented well using a logistic model, with rate constants of 0.30 and 0.29/h, respectively. To semi-quantitatively measure the GUS expression in large numbers of leaf disks, a photometric enhancement of the standard histochemical staining method was developed. A linear relationship with an R2 value of 0.90 was determined between log10 (% leaf darkness) versus log10 (GUS activity). Although variability in expression level was observed, agroinfiltration appears to be a promising technology that could potentially be scaled up to produce high-value recombinant proteins in planta.  相似文献   

11.
12.
13.
14.
Recombinant proteins (r-proteins) are increasingly important in fundamental research and for clinical applications. As many of these r-proteins are of human or animal origin, cultivated mammalian cells are the host of choice to ensure their functional folding and proper posttranslational modifications. Large-scale transfection of human embryonic kidney 293 or Chinese hamster ovary cells is now an established technology that can be used in the production of hundreds of milligram to gram quantities of a r-protein in less than 1 mo from cloning of its cDNA. This chapter aims to provide an overview of large-scale transfection technology with a particular emphasis on calcium phosphate and polyethylenimine-mediated gene transfer.  相似文献   

15.
Cho S  Shin D  Ji GE  Heu S  Ryu S 《Journal of biotechnology》2005,119(2):197-203
Escherichia coli excretes acetate during aerobic growth on LB broth containing glucose and growth ceases before depletion of glucose because of the low pH caused by the accumulation of acetate. It has been known that the acetate accumulation is reduced even when E. coli is grown in the presence of high concentration of glucose if Mlc is overexpressed. The intracellular concentration of Mlc is very low in E. coli because of autoregulation and a low efficiency of mlc translation. We constructed various mutants that can express higher levels of Mlc using site-directed mutagenesis and one of the Mlc-overproducing mutant showed reduced glucose consumption rate and low production of acetate. The mutant showed higher foreign gene expression level than that of its parental strain in the presence of glucose. These results suggest that the Mlc overproducing E. coli strain having an improved ability of glucose utilization can be a better host for high-level production of useful recombinant proteins.  相似文献   

16.
Production of recombinant human acetylcholinesterase (AChE) by a high producer human embryonic kidney cell line (293) was evaluated by three main cell propagation systems; surface propagator, fixed-bed reactor and stirred microcarrier cultures. The recombinant cell line expresses AChE levels as high as 10–20 mg/l/day. System productivities in either the surface propagator (multitray system), or in the fixed-bed reactor (polyurethane macroporous sponges) were 4–8 mg AChE/l/day during a production period of 8 days. Similar productive rates, yet longer production periods (up to 22 days), were obtained in microcarrier (MC) cultures using either polystyrene beads (Biosilon); collagen-coated dextran beads (Cytodex-3); or gelatin macroporous beads (Cultispher-G). Best results were obtained in an aggregate cculture using cellulose beads charged with diethylaminoethyl (DEAE) groups, (Servacel), as carriers. In this culture, a system productivity of 6–10 mg/l/day was maintained for 28 days.  相似文献   

17.
Human 293S cells, a cell line adapted to suspension culture, were grown to 5×106 cells/mL in batch with calcium-free DMEM. These cells, infected with new constructions of adenovirus vectors, yielded as much as 10 to 20% recombinant protein with respect to the total cellular protein content. Until recently, high specific productivity of recombinant protein was limited to low cell density infected cultures of no more than 5×105 cells/mL. In this paper, we show with a model protein, Protein Tyrosine Phosphatase 1C how high product yield can be maintained at high cell densities of 2×106 cells/mL by a medium replacement strategy. This allows the production of as much as 90 mg/L of active recombinant protein per culture volume. Analysis of key limiting/inhibiting medium components showed that glucose addition along with pH control can yield the same productivity as a medium replacement strategy at high cell density in calcium-free DMEM. Finally, the above results were reproduced in 3L bioreactor suspension culture thereby establishing the scalability of this expression system. The process we developed is used routinely with the same success for the production of various recombinant proteins and viruses.Abbreviations CFDMEM calcium-free DMEM - CS bovine calf serum - hpi hours post-infection - J+ enriched Joklik medium - MLP major late promoter - MOI multiplicity of infection (# of infectious viral particle/cell) - q specific consumption rate (mole/cell.h) - pfu plaque forming unit (# of infectious viral particle) - Y yield (g/E6 cells or mole/cell)  相似文献   

18.
Large-scale transient expression from mammalian cells is a new technology. Breakthroughs have been achieved for non-viral delivery methods: transfections can now be done at the 1-10 L scale with mammalian cells grown in suspension. Production of 1-20 mg/L of recombinant protein have been obtained in stirred bioreactors. Modified alphaviruses have provided a fast and efficient expression technology based on viral vectors.  相似文献   

19.
Transient transfection allows for fast production of recombinant proteins. However, the current bottlenecks in transient transfection are low titers and low specific productivity compared to stable cell lines. Here, we report an improved transient transfection protocol that yields titers exceeding 1 g/l in HEK293E cells. This was achieved by combining a new highly efficient polyethyleneimine (PEI)-based transfection protocol, optimized gene expression vectors, use of cell cycle regulators p18 and p21, acidic Fibroblast Growth Factor, exposure of cells to valproic acid and consequently the maintenance of cells at high cell densities (4 million cells/ml). This protocol was reproducibly scaled-up to a working volume of 2 l, thus delivering >1 g of purified protein just 2 weeks after transfection. This is the fastest approach to gram quantities of protein ever reported from cultivated mammalian cells and could initiate, upon further scale-up, a paradigm shift in industrial production of such proteins for any application in biotechnology.  相似文献   

20.
The cDNA coding for mature human alpha 1-proteinase inhibitor (alpha 1-PI) has been inserted into a variety of yeast expression vectors. Yeast cells transformed with these plasmids were then assayed for the production of mature, unglycosylated alpha 1-PI. The production level is optimal when the recombinant plasmid carries the TDH promoter, the complete 2mu and the leu2D selection marker. Biologically active recombinant alpha 1-PI can be purified either analytically, by affinity chromatography using a monoclonal antibody, or on a large scale, by a procedure involving precipitation of high-Mr yeast material with polyethylene glycol 3300 followed by successive chromatography on DEAE-agarose, Zn-chelate agarose, kappa-chain agarose, heparin-agarose and aminohexyl-agarose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号