首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
The BCL2 family of genes (B-cell CLL/lymphoma 2; Bcl-2) plays a pivotal role in the highly regulated process of apoptosis. We have recently cloned a newly identified member of this family, BCL2L12, which was found to be differentially expressed in many tumors. It is known that topotecan and methotrexate act through induction of apoptosis in cancer cells. In the present study we investigated the expression profile of the novel apoptotic gene BCL2L12 in relation to other apoptotic genes in the human leukemic cell line HL-60, after treatment with topotecan or methotrexate. The kinetics of apoptosis induction and cell toxicity were investigated by DNA laddering and the MTT method, respectively. Gene expression levels were analyzed by RT-PCR using gene-specific primers. Downregulation of BCL2L12, BCL2 and FAS was observed after treatment of HL-60 cells with topotecan, while treatment with methotrexate led to downregulation of BCL2 and FAS, with no change in BCL2L12 expression. Our results support the significance of mRNA modulations in the expression of apoptosis-related genes during treatment of human leukemic cells with anticancer drugs.  相似文献   

3.
Though there were a lot of reports about the totally different responses to the inhibition of ubiquitin-proteasome pathway in different kinds of cell lines, much less has been known about the responses in primary human leukemic cells. In this study, the effects of inhibition of ubiq-uitin-proteasome pathway on human bone marrow (BM) mononuclear cells (MNCs) obtained from 10 normal persons and 8 leukemia patients were examined. The results showed that the responses obviously varied individually. Among them, BM MNCs in 3 cases of leukemic patients were extremely sensitive, demonstrated by that > 90% cells were induced to undergo apoptosis within 24 h, but MNCs in 10 cases of normal persons showed resistance to the inhibition and no apoptosis was observed. Furthermore, Western blots revealed that the Bcl-2 expression was relatively high in the sensitive primary leukemia cells, and especially the cleavage of 26 ku Bcl-2 into a 22 ku fragment occurred during the induction of apoptosis. In contrast, the Bcl-2 expression was either undetectable or detectable but no cleavage of that above was observed in the cells insensitive to the inhibition of the pathway (including BM MNCs in normal persons). Together with the observations on the leukemic cell lines, these findings suggested the correlation of the specific cleavage of Bcl-2 into a shortened fragment with the sensitivity of cells to the inhibition of ubiquitin-proteasome pathway, which provides clues to the further understanding of the mechanisms of that dramatically different responses existing in different kinds of cells to the inhibition of ubiq-uitin-proteasome pathway.  相似文献   

4.
Though there were a lot of reports about the totally different responses to the inhibition of ubiquitin-proteasome pathway in different kinds of cell lines, much less has been known about the responses in primary human leukemic cells. In this study, the effects of inhibition of ubiquitin-proteasome pathway on human bone marrow (BM) mononuclear cells (MNCs) obtained from 10 normal persons and 8 leukemia patients were examined. The results showed that the responses obviously varied individually. Among them, BM MNCs in 3 cases of leukemic patients were extremely sensitive, demonstrated by that >90% cells were induced to undergo apoptosis within 24 h, but MNCs in 10 cases of normal persons showed resistance to the inhibition and no apoptosis was observed. Furthermore, Western blots revealed that the Bcl-2 expression was relatively high in the sensitive primary leukemia cells, and especially the cleavage of 26 ku Bcl-2 into a 22 ku fragment occurred during the induction of apoptosis. In contrast, the Bcl-2 e  相似文献   

5.
Bcr-Abl is the cause of Philadelphia-positive (Ph(+)) leukemias and also constitutes their principal therapeutic target, as exemplified by dramatic effects of imatinib mesylate. However, mono-targeting of Bcr-Abl does not always achieve complete leukemia eradication, and additional strategies those enable complete elimination of leukemic cells are desired to develop. Here we demonstrate that INNO-406, a much more active Bcr-Abl tyrosine kinase inhibitor than imatinib, augments the activities of several proapoptotic Bcl-2 homology (BH)3-only proteins (Bim, Bad, Bmf and Bik) and induces apoptosis in Ph(+) leukemia cells via Bcl-2 family-regulated intrinsic apoptosis pathway. ABT-737, an inhibitor of antiapoptotic Bcl-2 and Bcl-X(L), greatly enhanced the apoptosis by INNO-406, even in INNO-406-less sensitive cells with Bcr-Abl point mutations except T315I mutation. In contrast, co-treatment with INNO-406 and other pharmacologic inducers of those BH3-only proteins, such as 17-allylaminogeldanamycin, an heat shock protein-90 inhibitor, or PS-341, a proteasome inhibitor, did not further increase the BH3-only protein levels or sensitize leukemic cells to INNO-406-induced apoptosis, suggesting a limit to how much expression levels of BH3-only proteins can be increased by anticancer agents. Thus, double-barrelled molecular targeting for Bcr-Abl-driven oncogenic signaling and the cell protection by antiapoptotic Bcl-2 family proteins may be the rational therapeutic approach for eradicating Ph(+) leukemic cells.  相似文献   

6.
7.
Since its discovery in follicular lymphoma cells at the breakpoint t(14;18), Bcl-2 has been studied extensively in many basic and clinical science settings. Bcl-2 can locate as an integral mitochondrial membrane component, where its primary role is to block apoptosis by maintaining membrane integrity. Here we show that Bcl-2 also can position on the outer cell surface membrane of B cells from patients with chronic lymphocytic leukemia (B-CLL) and certain other leukemias that do not classically possess the chromosomal breakpoint t(14;18). Although low levels of Bcl-2 can be detected on the surface membrane of apparently healthy leukemic and normal B cells, expression of Bcl-2 correlates best with spontaneous or induced apoptosis. Notably, upon induction of apoptosis, B-CLL cells were much more efficient in upregulating surface Bcl-2 than normal B cells. It is not clear if this surface membrane expression is a passive consequence of the apoptotic process or an active attempt by the B cell to abort cell death by stabilizing the plasma membrane.  相似文献   

8.
Withaferin A (WA) is present abundantly in Withania somnifera, a well-known Indian medicinal plant. Here we demonstrate how WA exhibits a strong growth-inhibitory effect on several human leukemic cell lines and on primary cells from patients with lymphoblastic and myeloid leukemia in a dose-dependent manner, showing no toxicity on normal human lymphocytes and primitive hematopoietic progenitor cells. WA-mediated decrease in cell viability was observed through apoptosis as demonstrated by externalization of phosphatidylserine, a time-dependent increase in Bax/Bcl-2 ratio; loss of mitochondrial transmembrane potential, cytochrome c release, caspases 9 and 3 activation; and accumulation of cells in sub-G0 region based on DNA fragmentation. A search for the downstream pathway further reveals that WA-induced apoptosis was mediated by an increase in phosphorylated p38MAPK expression, which further activated downstream signaling by phosphorylating ATF-2 and HSP27 in leukemic cells. The RNA interference of p38MAPK protected these cells from WA-induced apoptosis. The RNAi knockdown of p38MAPK inhibited active phosphorylation of p38MAPK, Bax expression, activation of caspase 3 and increase in Annexin V positivity. Altogether, these findings suggest that p38MAPK in leukemic cells promotes WA-induced apoptosis. WA caused increased levels of Bax in response to MAPK signaling, which resulted in the initiation of mitochondrial death cascade, and therefore it holds promise as a new, alternative, inexpensive chemotherapeutic agent for the treatment of patients with leukemia of both lymphoid and myeloid origin. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
The effects of hyperthermia on the expression of p53, the apoptosis-associated genes Bax and Bcl-2, Notch and S100A4 have been studied in the HepG2 cell line and the HUT cell line derived from HepG2, adapted for growth in hyperthermic conditions. Hyperthermia inhibits cell proliferation and induces apoptosis. HepG2 and HUT cells differed in respect of anchorage to growth surface, degree of proliferation and apoptosis and expression of p53, Bax, Bcl-2, Notch, and S100A4 genes. The induction of apoptosis and the inhibition of cell proliferation occurred independently of p53, and independently also of involvement of the apoptosis family genes Bax and Bcl-2. We demonstrate novel and marked differences between transient heat shock and heat adaptation in respect of pathways of signaling and generation of phenotypic effects in vitro. Different signaling patterns have been identified here. Pathways of signaling by S100A4, by its interaction with and sequestration of p53, and by Notch also seem differentially operational in the induction of apoptosis, and both appear to be activated as alternative pathways in the context of hyperthermia signaling independently of p53.  相似文献   

10.
In primary cultures of porcine proximal tubular kidney cells and LLC-PK1 cells cisplatin (5 - 50 microM) caused apoptosis and cell detachment; in both systems cell detachment occurred, preceded by a loss of cytoskeletal F-actin stress fibers within 4 - 6 h, and a reduction of mRNA encoding for fibronectin, collagen a2 type (IV) and laminin B2 within 17 - 41 h. Prevention of F-actin damage by phalloidin prevented nuclear fragmentation, suggesting a relation between F-actin damage and apoptosis. Overexpression of Bcl-2 also prevented apoptosis, but did not prevent damage to the F-actin skeleton or the reduction of mRNA expression of the matrix proteins. These results suggest that Bcl-2 overexpression interferes with apoptotic signals downstream of F-actin. The relevance of these results for cell detachment in kidney toxicity is discussed.  相似文献   

11.
12.
Much evidence suggests that apoptosis plays a crucial role in cell population homeostasis that depends on the expression of various genes implicated in the control of cell life and death. The sensitivity of human neuroblastoma cells SK-N-SH to undergo apoptosis induced by thapsigargin was examined. SK-N-SH were previously differentiated into neuronal cells by treatments with retinoic acid (RA), 4 beta-phorbol 12-myristate 13-acetate (PMA) which increases protein kinase C (PKC) activity, and staurosporine which decreases PKC activity. Neuronal differentiation was evaluated by gamma-enolase, microtubule associated protein 2 (MAP2) and synaptophysin immunocytochemistry. The sensitivity of the cells to thapsigargin-induced apoptosis was evaluated by cell viability and nuclear fragmentation (Hoechst 33258) and compared with pro-(Bcl-2, Bcl-x(L)) and anti-apoptotic (Bax, Bak) protein expression of the Bcl-2 family. Cells treated with RA and PMA were more resistant to apoptosis than controls. Conversely, the cells treated with staurosporine were more susceptible to apoptosis. In parallel with morphological modifications, the expression of inhibitors and activators of apoptosis was directly dependent upon the differentiating agent used. Bcl-2 expression was strongly increased by PMA and drastically decreased by staurosporine as was Bcl-x(L) expression. Bax and Bak expression were not significantly modified. These results demonstrate that drugs that modulate PKC activity may induce a modification of Bcl-2 expression as well as resistance to the apoptotic process. Furthermore, the expression of Bcl-2 was reduced by toxin B from Clostridium difficile and, to a lesser extent, by wortmannin suggesting a role of small G-protein RhoA and PtdIns3 kinase in the control of Bcl-2 expression. Our data demonstrate a relationship between the continuous activation of PKC, the expression of Bcl-2 protein family and the resistance of differentiated SK-N-SH to apoptosis.  相似文献   

13.
In continuing search for exploitable biochemical differences between cancer and normal cells at the level of DNA replication, leukemic and "normal" hematopoietic cells from four different, established human cell lines were grown in culture flasks, and both the DNA and the DNA polymerase alpha were isolated in each case from the harvested (5-10 g wet weight) cell pellets. The four selected cell lines included a "normal" lymphoblastoid B-cell line (RPMI-1788), a pre-B cell (NALM-6) and a T-cell (MOLT-4) acute lymphoblastic leukemias, and a promyelocytic leukemia (HL-60). The DNA polymerase alpha enzyme of the two B-cell lines (both the leukemic and the "normal") showed the usual sensitivity toward inhibition by aphidicolin, while those from the two other leukemic cell lines were remarkably resistant to the antibiotic. Partially thiolated polycytidylic acid (MPC) strongly inhibited only the DNA polymerase alpha of the "normal" cell line, whereas the corresponding enzymes of all three leukemic cell lines were relatively insensitive to MPC. In contrast, the partially thiolated DNAs derived from the leukemic cell lines more strongly inhibited the DNA polymerase alphas of the leukemic cell lines than that of the "normal" cell line. These results indicate the existence of some structural differences between the DNA polymerase alpha enzymes (as well as between the DNAs) of human cells of different lineage and, particularly, of leukemic vs. "normal" character; such differences could be exploited in the design of selective antitemplates for chemotherapy.  相似文献   

14.
The mechanism underlying apoptosis induced by proteasome inhibition in leukemic Jurkat and Namalwa cells was investigated in this study. The proteasome inhibitor lactacystin differentially regulated the protein levels of proapoptotic Bcl-2 family members and Bik was accumulated at the mitochondria. Bik overexpression sufficed to induce apoptosis in these cells. Detailed examination along the respiration chain showed that lactacystin compromised a step after complex III, and exogenous cytochrome c could overcome this compromise. Probably as a result, the succinate-stimulated generation of mitochondrial membrane potential was significantly diminished. Bcl-x(L) interacted with Bik in the cells, and Bcl-x(L) overexpression prevented cytochrome c leakage out of the mitochondria, corrected the mitochondrial membrane potential defect, and protected the cells from apoptosis. These results show that proteasomes can modulate apoptosis of lymphocytes by affecting the half-life of Bcl-2 family members, Bik being one of them.  相似文献   

15.
BACKGROUND: Some forms of chemoresistance in leukemia may start from failure of tumour cells to successfully undergo apoptosis and Bcl-2 may play a role in this defect. Therefore, we evaluated the Bcl-2 content and synthesis in relation with the apoptotic potential in leukemic cell lines after anthracycline treatment. METHODS: U937, HL60, and K562 cells and their drug resistant (DR) variants were treated with varying concentrations of Idarubicin (IDA). Apoptosis was evaluated by fluorescence microscopy after acridine orange staining. Bcl-2 and Bax content were evaluated either by flow cytometry after indirect immunolabelling or by Western blot. RESULTS: High Bcl-2 contents were not related to a poor ability to undergo apoptosis in U937, HL60, K562 and their DR variants. IDA induced a concentration-dependent increase in Bcl-2 content in all cell lines as long as they do not perform apoptosis. Enhanced Bcl-2 expression was inhibited by cycloheximide, actinomycin D, or antisense oligonucleotide directed against bcl-2 mRNA. Bcl-2 expression was also increased in the resistant U937 variant after serum deprivation or C2-ceramide treatment. The synthesis of Bcl-2 led to an increased Bcl-2/Bax ratio solely in the cells with an apoptosis-resistance phenotype. CONCLUSIONS: These data suggest that exposure to IDA induces Bcl-2 expression in leukemic cell lines, and that this mechanism could contribute to apoptosis resistance and participate in the acquisition of chemoresistance. They also confirm that the evolution of the Bcl-2/Bax ratio reflects apoptotic ability better than the steady state level of Bcl-2 expression.  相似文献   

16.
Histone deacetylase inhibitors (HDI) increase gene expression through induction of histone acetylation. However, it remains unclear whether increases in specific gene expression events determine the apoptotic response following HDI administration. Herein, we show that a variety of HDI trigger in hematopoietic cells not only widespread histone acetylation and DNA damage responses but also actual DNA damage, which is significantly increased in leukemic cells compared with normal cells. Thus, increase in H2AX and ataxia telangiectasia mutated (ATM) phosphorylation, early markers of DNA damage, occurs rapidly following HDI administration. Activation of the DNA damage and repair response following HDI treatment is further emphasized by localizing DNA repair proteins to regions of DNA damage. These events are followed by subsequent apoptosis of neoplastic cells but not normal cells. Our data indicate that induction of apoptosis by HDI may result predominantly through accumulation of excessive DNA damage in leukemia cells, leading to activation of apoptosis.  相似文献   

17.
The BH3-only members of the Bcl-2 protein family are essential for initiation of programmed cell death and stress-induced apoptosis. We have determined the expression pattern in mice of the BH3-only protein Bik, also called Blk or Nbk, and examined its physiological function by gene targeting. We found that Bik is expressed widely in the hematopoietic compartment and in endothelial cells of the venous but not arterial lineages. Nevertheless, its loss did not increase the numbers of such cells in mice or protect hematopoietic cells in vitro from apoptosis induced by cytokine withdrawal or diverse other cytotoxic stimuli. Moreover, whereas loss of the BH3-only protein Bim rescued mice lacking the prosurvival protein Bcl-2 from fatal polycystic kidney disease and lymphopenia, loss of Bik did not. These results indicate that any function of Bik in programmed cell death and stress-induced apoptosis must overlap that of other BH3-only proteins.  相似文献   

18.
Heat stress can inhibit follicular development in dairy cows, and thus can affect their reproductive performance. Follicular granulosa cells can synthesize estrogen, that affects the development and differentiation of follicles by apoptosis. Heme oxygenase 1 (HO-1/heat shock protein 32) plays an antiapoptotic and cytoprotective role in various cells during stress-induced apoptosis, but little is known about its definitive function in bovine (ovarian) granulosa cells (bGCs). In our study, the roles and mechanism of HO-1 on the heat stress-induced apoptosis of bGCs were studied. Our results show that the expression of HO-1 was significantly increased under heat stress. Moreover, HO-1 silencing increased apoptosis, whereas its overexpression dampened apoptosis by regulating the expression of Bax/Bcl-2 and the levels of cleaved caspase-3. In addition, HO-1 can also play a cytoprotective role by affecting estrogen levels and decomposing heme to produce biologically active metabolite carbon monoxide (CO). Meanwhile, CO significantly increased the level of HO-1, decreased Bax/Bcl-2 levels, and inhibited the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway. The apoptosis of ovarian GCs can affect the secretion of estrogen and lead to disorder of the ovarian microenvironment, thus affecting the normal function of the ovary. Our results indicate that HO-1 acts as a cytoprotective enzyme and plays a protective role in heat-induced apoptosis of bGCs. In conclusion, HO-1 and its metabolite CO inhibit the apoptosis of bGCs induced by heat stress through the ERK1/2 pathway. The results of this study provide a valuable clue for improving the fertility of heat stressed cows in summer.  相似文献   

19.
Tissue homeostasis is controlled by the availability of growth factors, which sustain exogenous nutrient uptake and prevent apoptosis. Although autophagy can provide an alternate intracellular nutrient source to support essential basal metabolism of apoptosis-resistant growth factor–withdrawn cells, antiapoptotic Bcl-2 family proteins can suppress autophagy in some settings. Thus, the role of autophagy and interactions between autophagy and apoptosis in growth factor–withdrawn cells expressing Bcl-2 or Bcl-xL were unclear. Here we show autophagy was rapidly induced in hematopoietic cells upon growth factor withdrawal regardless of Bcl-2 or Bcl-xL expression and led to increased mitochondrial lipid oxidation. Deficiency in autophagy-essential gene expression, however, did not lead to metabolic catastrophe and rapid death of growth factor–deprived cells. Rather, inhibition of autophagy enhanced survival of cells with moderate Bcl-2 expression for greater than 1 wk, indicating that autophagy promoted cell death in this time frame. Cell death was not autophagic, but apoptotic, and relied on Chop-dependent induction of the proapoptotic Bcl-2 family protein Bim. Therefore, although ultimately important, autophagy-derived nutrients appear initially nonessential after growth factor withdrawal. Instead, autophagy promotes tissue homeostasis by sensitizing cells to apoptosis to ensure only the most apoptosis-resistant cells survive long-term using autophagy-derived nutrients when growth factor deprived.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号