首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyanide-resistant respiration (CRR) is a widespread metabolic pathway among yeasts, that involves a mitochondrial alternative oxidase sensitive to salicylhydroxamic acid (SHAM). The physiological role of this pathway has been obscure. We used the yeasts Debaryomyces hansenii and Pichia membranifaciens to elucidate the involvement of CRR in energy conversion. In both yeasts the adenosine triphosphate (ATP) content was still high in the presence of antimycin A or SHAM, but decreased to low levels when both inhibitors were present simultaneously, indicating that CRR was involved in ATP formation. Also the mitochondrial membrane potential (Delta Psi(m)), monitored by fluorescent dyes, was relatively high in the presence of antimycin A and decreased upon addition of SHAM. In both yeasts the presence of complex I was confirmed by the inhibition of oxygen consumption in isolated mitochondria by rotenone. Comparing in the literature the occurrence of CRR and of complex I among yeasts, we found that CRR and complex I were simultaneously present in 12 out of 13 yeasts, whereas in six out of eight yeasts in which CRR was absent, complex I was also absent. Since three phosphorylating sites are active in the main respiratory chain and only one in CRR, we propose a role for this pathway in the fine adjustment of energy provision to the cell.  相似文献   

2.
In Pichia membranifaciens, cyanide-resistant respiration (CRR) sensitive to salicylhydroxamic acid emerged after forced aeration of starved cells for 4 h. Surveying a large number of species by this simple methodology, we found that CRR is very frequent among yeasts. Remarkably, considering our results together with previous data in the literature, CRR was present in 24 out of 28 non-fermentative or Crabtree-negative yeasts and absent in 10 out of 12 Crabtree-positive yeasts. We submit that, as alternatives to cytochromic respiration, yeasts developed two strategies: either aerobic fermentation in Crabtree-positive yeasts or CRR in non-fermentative or Crabtree-negative yeasts.  相似文献   

3.
Yeast species belonging to the lineage that underwent the whole genome duplication (WGD), and including Saccharomyces cerevisiae, can grow under anaerobiosis and accumulate ethanol in the presence of glucose and oxygen. The pre-WGD yeasts, which branched from the S. cerevisiae lineage just before the WGD event, including Kluyveromyces lactis, are more dependent on oxygen and do not accumulate large amounts of ethanol in the presence of excess oxygen. Yeasts that belong to the so-called 'lower branches' of the yeast phylogenetic tree and diverged from S. cerevisiae more than 200 million years ago have so far not been thoroughly investigated for their physiology and carbon metabolism. Here, we have studied several isolates of Candida albicans and Debaryomyces hansenii for their dependence on oxygen. Candida albicans grew very poorly at an oxygen concentration <1 p.p.m. and D. hansenii could not grow at all. In aerobic batch cultivations, C. albicans exhibited a predominantly aerobic metabolism, accumulating only small amounts of ethanol (0.01-0.09 g g(-1) glucose). Apparently, C. albicans and several other pre-WGD yeasts still exhibit the original traits of the yeast progenitor: poor accumulation of ethanol under aerobic conditions and strong dependence on the presence of oxygen.  相似文献   

4.
Debaryomyces hansenii is an osmotolerant and halotolerant yeast of increasing interest for fundamental and applied research. In this work, we have performed a first study on the effect of oxidative stress on the performance of this yeast. We have used Saccharomyces cerevisiae as a well-known reference yeast. We show that D. hansenii is much more susceptible than S. cerevisiae to cadmium chloride, hydrogen peroxide or 1,4-dithiothreitol. These substances induced the formation of reactive oxygen species (ROS) in both yeasts, the amounts measured being significantly higher in the case of D. hansenii . We also show that NaCl exerted a protective effect against oxidative stress in Debaryomyces , but that this was not the case in Saccharomyces because sodium protected that yeast only when toxicity was induced with cadmium. On the basis of the present results, we raised the hypothesis that the sensitivity to oxidative stress in D. hansenii is related to the high amounts of ROS formed in that yeast and that observations such as low glutathione amounts, low basal superoxide dismutase and peroxidase activities, decrease in ATP levels produced in the presence of ROS inducers and high cadmium accumulation are determinants directly or indirectly involved in the sensitivity process.  相似文献   

5.
It has recently been shown that cyanide-resistant respiration (CRR) is very common in Crabtree-negative yeasts (incapable of aerobic fermentation) and in non-fermentative yeasts. It is conferred by a salicylhydroxamic acid-sensitive alternative oxidase that transfers electrons from ubiquinol to oxygen, bypassing the cytochrome chain. An interesting finding is that, in general, whenever CRR is present, complex I is also present. In this article we briefly review the occurrence of CRR, the biochemistry and molecular biology of the alternative oxidase, and summarise the putative functions that have been attributed to this ubiquitous metabolic pathway, whose usefulness for the yeast cells still remains obscure.  相似文献   

6.
Benzoyl phenyl urea, a class of insect growth regulator's acts by inhibiting chitin synthesis. Carvacrol, a naturally occurring monoterpenoid is an effective antifungal agent. We have structurally modified carvacrol (2-methyl-5-[1-methylethyl] phenol) by introducing benzoylphenyl urea linkage. Two series of benzoylcarvacryl thiourea (BCTU, 4a-f) and benzoylcarvacryl urea (BCU, 5a-f) derivatives were prepared and characterized by elemental analysis, IR, (1)H and (13)C NMR and Mass spectroscopy. Derivatives 4b, 4d, 4e, 4f and 5d, 5f showed comparable insecticidal activity with the standard BPU lufenuron against Dysdercus koenigii. BCTU derivatives 4c, 4e and BCU 5c showed good antifungal activity against phytopathogenic fungi viz. Magnaporthe grisae, Fusarium oxysporum, Dreschlera oryzae; food spoilage yeasts viz. Debaromyces hansenii, Pichia membranifaciens; and human pathogens viz. Candida albicans and Cryptococcus neoformans. Compounds 5d, 5e and 5f showed potent activity against human pathogens. Moderate and selective activity was observed for other compounds. All the synthesized compounds were non-haemolytic. These compounds have potential application in agriculture and medicine.  相似文献   

7.
Two yeasts, the salt-tolerant Debaryomyces hansenii and the non-tolerant Saccharomyces cerevisiae were grown in basal media (4 m M NaCl) and also a high salinities that produced a similar salt stress in the two species in terms of growth rate reduction (i.e., 1.4 M NaCl for S. cerevisae and 2.7 M NaCl for D. hansenii ). A study was made of the sterol content, the fatty acid composition of the phospholipids, and the permeation of a series of tritiated ethylene glycols of graded molecular weights. On the basis of cell dry weight the amount of total and free sterols increased in both species when cultured at high salinity. Irrespective of growth medium salinity, the molar ratio of free sterols to phospholipids was higher in D. hansenii than in S. cerevisiae . Increased salinity produced only minor changes in the fatty acid composition of the phospholipids in D. hansenii , whereas in S. cerevisiae there was a marked decrease of linolenic acid with a concomitant increase of linoleic acid.
In both yeasts there was an energy linked component in the uptake of ethylene glycol, which component could be inhibited by sodium azide and N -ethylmaleimide. The passive permeability for ethylene-, diethylene- and triethylene glycol increased for both species at increased salinity. This increase was more pronounced for S. cerevisiae than for D. hansenii . Polyethylene glycol of M , 200 as well as higher polyethylene glycols appeared to be excluded or very slowly admitted by the yeasts.  相似文献   

8.
Debaryomyces hansenii is a spoilage yeast able to grow in a variety of ecological niches, from seawater to dairy products. Results presented in this article show that (i) D. hansenii has an inherent resistance to H2O2 which could be attributed to the fact that this yeast has a basal catalase activity which is several-fold higher than that observed in Saccharomyces cerevisiae under the same culture conditions, (ii) D. hansenii has two genes (DhCTA1 and DhCTT1) encoding two catalase isozymes with a differential enzymatic activity profile which is not strictly correlated with a differential expression profile of the encoding genes.  相似文献   

9.
An B  Li B  Qin G  Tian S 《Current microbiology》2012,65(2):122-127
In this article, we investigated the effect of exogenous calcium on improving viability of Debaryomyces hansenii and Pichia membranaefaciens under heat stress, and evaluated the role of calcium in reducing oxidant damage of proteins in the yeast cells. The results indicated that high concentration of exogenous calcium in culture medium was beneficial for enhancing the tolerance of the biocontrol yeasts to heat stress. The possible mechanism of calcium improving the viability of yeasts was attributed to enhancement of antioxidant enzyme activities, decrease in ROS accumulation and reduction of oxidative damage of intracellular protein in yeast cells under heat stress. D. hansenii is more sensitive to calcium as compared to P. membranaefaciens. Our results suggest that application of exogenous calcium combined with biocontrol yeasts is a practical approach for the control of postharvest disease in fruit.  相似文献   

10.
Debaryomyces hansenii is one of the most osmotolerant and halotolerant yeasts. The molecular mechanisms underlying its extreme osmotolerance and halotolerance have drawn considerable attention in the recent past. However, progress in this regard has been limited due to lack of availability of a transformation system and molecular tools to study the functions of the genes in D. hansenii . Here, we have described the development of an efficient transformation system for D. hansenii that is based on a histidine auxotrophic recipient strain and the DhHIS4 gene as the selectable marker. By screening the D. hansenii genomic library, we have isolated several autonomous replication sequences that can be used for constructing a replicating vector. Moreover, our study is the first to demonstrate gene disruption in D. hansenii by homologous recombination.  相似文献   

11.
Most yeast species can ferment sugars to ethanol, but only a few can grow in the complete absence of oxygen. Oxygen availability might, therefore, be a key parameter in spoilage of food caused by fermentative yeasts. In this study, the oxygen requirement and regulation of alcoholic fermentation were studied in batch cultures of the spoilage yeast Zygosaccharomyces bailii at a constant pH, pH 3.0. In aerobic, glucose-grown cultures, Z. bailii exhibited aerobic alcoholic fermentation similar to that of Saccharomyces cerevisiae and other Crabtree-positive yeasts. In anaerobic fermentor cultures grown on a synthetic medium supplemented with glucose, Tween 80, and ergosterol, S. cerevisiae exhibited rapid exponential growth. Growth of Z. bailii under these conditions was extremely slow and linear. These linear growth kinetics indicate that cell proliferation of Z. bailii in the anaerobic fermentors was limited by a constant, low rate of oxygen leakage into the system. Similar results were obtained with the facultatively fermentative yeast Candida utilis. When the same experimental setup was used for anaerobic cultivation, in complex YPD medium, Z. bailii exhibited exponential growth and vigorous fermentation, indicating that a nutritional requirement for anaerobic growth was met by complex-medium components. Our results demonstrate that restriction of oxygen entry into foods and beverages, which are rich in nutrients, is not a promising strategy for preventing growth and gas formation by Z. bailii. In contrast to the growth of Z. bailii, anaerobic growth of S. cerevisiae on complex YPD medium was much slower than growth in synthetic medium, which probably reflected the superior tolerance of the former yeast to organic acids at low pH.  相似文献   

12.
D. STEAD. 1995. Hydroxycinnamic acids and their derivatives occur widely in plants, fruits and wine. The effect of the common hydroxycinnamic acids (caffeic, coumaric and ferulic acids), at concentrations of 100 and 500 mg 1-1, on growth of 11 strains of spoilage yeasts was measured spectrophotometrically and compared with that of potassium sorbate. Ferulic acid was the most generally inhibitory hydroxycinnamic acid. At 500 mg 1-1 it appreciably inhibited Pichia anomala, Debaryomyces hansenii and Saccharomyces cerevisiae and prevented detectable growth of one strain each of P. anomala and D. hansenii. Caffeic acid was the least inhibitory compound and coumaric acid had an intermediate effect. The more resistant strains of yeast were P. membranaefaciens, Saccharomycodes ludwigii and Zygosaccharomyces bailii. Sensitivity to hydroxycinnamic acid was, in general, associated with sensitivity to potassium sorbate; at a given concentration potassium sorbate was more inhibitory than were any of the hydroxycinnamic acids.  相似文献   

13.
To determine which yeasts are present in the naturally fermented milks of China, 69 samples made by the nomads of Tibet were collected from the Tibetan Plateau in China. From these samples, 225 strains of yeast were isolated and identified using conventional microbiological analysis and gene sequencing analysis of the D1/D2 domain of the large subunit (26S) ribosomal DNA. The results showed that the total concentration of yeasts in these samples ranged from 5.01 to 8.97 log10 colony-forming units (CFU)/mL (6.91?± 1.02 log10 CFU/mL; mean?± SD). The number of cultivable yeasts was higher in the samples from Qinghai (7.55?± 0.75 log10 CFU/mL) than those from Tibet (6.21?± 0.79 log10 CFU/mL, P?< 0.05). Moreover, there were 15 phylotypes in these 69 samples. Among these phylotypes, Kluyveromyces marxianus (49.3%, frequency percentage), Saccharomyces cerevisiae (62.3%), and Pichia fermentans (46.4%) appeared frequently and can be considered the most common culturable species in naturally fermented milk products. Traditional fermented Mongolian cow milk featured a wide diversity of yeast species, including Issatchenkia orientalis, Kazachstania unisporus, Rhodotorula mucilaginosa, Candida pararugosa, Torulaspora delbrueckii, Geotrichum sp., Kazachstania unisporus, Geotrichum fragrans, Debaryomyces hansenii, Yarrowia lipolytica, Trichosporon gracile, and Pichia membranifaciens. This study provides new data on yeast composition in naturally fermented milk and shows the yeast biodiversity of fermented milk products from the Tibetan Plateau of China.  相似文献   

14.
The spoilage yeast Saccharomyces cerevisiae degraded the food preservative sorbic acid (2,4-hexadienoic acid) to a volatile hydrocarbon, identified by gas chromatography mass spectrometry as 1,3-pentadiene. The gene responsible was identified as PAD1, previously associated with the decarboxylation of the aromatic carboxylic acids cinnamic acid, ferulic acid, and coumaric acid to styrene, 4-vinylguaiacol, and 4-vinylphenol, respectively. The loss of PAD1 resulted in the simultaneous loss of decarboxylation activity against both sorbic and cinnamic acids. Pad1p is therefore an unusual decarboxylase capable of accepting both aromatic and aliphatic carboxylic acids as substrates. All members of the Saccharomyces genus (sensu stricto) were found to decarboxylate both sorbic and cinnamic acids. PAD1 homologues and decarboxylation activity were found also in Candida albicans, Candida dubliniensis, Debaryomyces hansenii, and Pichia anomala. The decarboxylation of sorbic acid was assessed as a possible mechanism of resistance in spoilage yeasts. The decarboxylation of either sorbic or cinnamic acid was not detected for Zygosaccharomyces, Kazachstania (Saccharomyces sensu lato), Zygotorulaspora, or Torulaspora, the genera containing the most notorious spoilage yeasts. Scatter plots showed no correlation between the extent of sorbic acid decarboxylation and resistance to sorbic acid in spoilage yeasts. Inhibitory concentrations of sorbic acid were almost identical for S. cerevisiae wild-type and Deltapad1 strains. We concluded that Pad1p-mediated sorbic acid decarboxylation did not constitute a significant mechanism of resistance to weak-acid preservatives by spoilage yeasts, even if the decarboxylation contributed to spoilage through the generation of unpleasant odors.  相似文献   

15.
The yeast Debaryomyces hansenii is usually found in salty environments such as the sea and salted food. It is capable of accumulating sodium without being intoxicated even when potassium is present at low concentration in the environment. In addition, sodium improves growth and protects D. hansenii in the presence of additional stress factors such as high temperature and extreme pH. An array of advantageous factors, as compared with Saccharomyces cerevisiae, is putatively involved in the increased halotolerance of D. hansenii: glycerol, the main compatible solute, is kept inside the cell by an active glycerol-Na+ symporter; potassium uptake is not inhibited by sodium; sodium protein targets in D. hansenii seem to be more resistant. The whole genome of D. hansenii has been sequenced and is now available at http://cbi.labri.fr/Genolevures/ and, so far, no genes specifically responsible for the halotolerant behaviour of D. hansenii have been found.  相似文献   

16.
Characterization of β-glucosidase activity in yeasts of oenological origin   总被引:4,自引:4,他引:0  
I. ROSI, M. VINELLA AND P. DOMIZIO. 1994. Three hundred and seventeen strains representing 20 species of yeasts were screened for the presence of β-glucosidase activity. All of the strains of the species Debaryomyces castellii, Deb. hansenii, Deb. polymorphus, Kloeckera apiculata and Hansenula anomala showed β-glucosidase activity, but only one of 153 strains of Saccharomyces cerevisiae. The other species behaved differently, depending upon the strain. The strains that hydrolysed arbutin were checked to localize the β-glucosidase activity. A strain of Deb. hansenii exhibited the highest exocellular activity and some wall-bound and intracellular activity. The β-glucosidase synthesis from this yeast was enhanced by aerobic conditions of growth, was repressed by high glucose concentration (9%) and occurred during exponential growth. The optimum conditions for enzymatic preparations of Deb. hansenii were between pH 4.0 and 5.0 and 40C. A high concentration of ethanol and glucose did not reduce the ezymatic activity. The enzymatic preparations of Deb. hansenii released monoterpenols and other alcohols from a grape glycoside extract.  相似文献   

17.
Moderate heat stress (40 degrees C for 30 min) on spinach thylakoid membranes induced cleavage of the reaction center-binding D1 protein of photosystem II, aggregation of the D1 protein with the neighboring polypeptides D2 and CP43, and release of three extrinsic proteins, PsbO, -P, and -Q. These heat-induced events were suppressed under anaerobic conditions or by the addition of sodium ascorbate, a general scavenger of reactive oxygen species. In accordance with this, singlet oxygen and hydroxyl radicals were detected in spinach photosystem II membranes incubated at 40 degrees C for 30 min with electron paramagnetic resonance spin-trapping spectroscopy. The moderate heat stress also induced significant lipid peroxidation under aerobic conditions. We suggest that the reactive oxygen species are generated by heat-induced inactivation of a water-oxidizing manganese complex and through lipid peroxidation. Although occurring in the dark, the damages caused by the moderate heat stress to photosystem II are quite similar to those induced by excessive illumination where reactive oxygen species are involved.  相似文献   

18.
We developed a rapid and sensitive identification method for the halotolerant yeast Debaryomyces hansenii, based on the hybridization of species-specific sequences. These sequences were first identified in a survey of D. hansenii strains by random amplification of polymorphic DNA (RAPD) as giving conserved bands in all isolates tested. Two such conserved RAPD products, termed F01pro and M18pro, were cloned from the type strain CBS 767. The specificity of these probes was assessed by hybridizing them to DNA from various species of yeasts commonly found in cheese. F01pro and M18pro hybridized to the DNA of all D. hansenii var. hansenii tested, but not to DNA of other yeast species including the closely related strain of D. hansenii var. fabryii CBS 789. Hybridization patterns of F01pro and M18pro on digested genomic DNA of D. hansenii indicated that the sequences were repeated in the genome of all D. hansenii var. hansenii tested, and gave distinct polymorphic patterns. The single F01pro probe generated 11 different profiles for 24 strains by restriction fragment length polymorphism, using one restriction enzyme. F01pro represents a new type of repeated element found in fungi, useful for both identification and typing of D. hansenii and, together with M18pro, simplifies the study of this species in complex flora.  相似文献   

19.
The composition of samples taken from the baceman stage of traditional Indonesian kecap (soy sauce) production can vary greatly from batch to batch and from manufacturer to manufacturer. This variability could be caused by physical factors such as salt concentration, temperature, dissolved oxygen tension and pH. The effect of these factors on the changes in microflora and biochemical composition during the baceman stage are described in this report. Salt concentration was found to have a large influence on the spoilage of the baceman. At low salt concentrations pellicle-forming yeasts were able to grow. The pellicle on the liquid surface formed by these yeasts provided an acrobic environment in which coryneform bacteria could grow. These bacteria consumed amino acids and fermentation products like acetate and lactate, which resulted in a rise in pH and subsequent spoilage of the baceman. An aerobic baceman showed the same development as those with a low salt concentration. Salt concentration as well as temperature had a large influence on the rate of growth of bacteria. Growth of bacteria and associated lactate and acetate production were also stimulated by a high pH, while growth of yeasts and ethanol and glycerol formation was better at low pH. Also, the production of formol nitrogen by enzymes resulting from the previous bungkil stage was greatly influenced by temperature and pH, with higher temperature and pH giving rise to higher formol nitrogen contents. The consequences of these physical factors on the production of traditional Indonesian kecap are discussed.  相似文献   

20.
Vacuum packing of British fresh sausage in a low oxygen permeability film (Diolon) extended the product shelf-life at 6 degrees C to more than 20 d compared with 9-14 d in conventional packs. After 10 d storage, counts of key spoilage organisms such as yeasts and Brochothrix thermosphacta were generally 2 log cycles lower in vacuum packs. Vacuum-packed sausages also displayed a slower rate of loss of free sulphite. Variations in pack permeability to SO2 were not responsible for this. Losses of free SO2 in stored sausages are largely due to the production of sulphite-binding agents by yeasts. Selective enumeration of these yeasts showed them to be inhibited by conditions of vacuum packing. The extension of shelf-life observed is ascribed to the reduction in growth rate of the spoilage flora in vacuum packs coupled with the consequent maintenance of inhibitory levels of sulphite for a longer period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号