首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 14-kilobase-pair (kbp) EcoRI DNA fragment that encodes an enzyme capable of rapid hydrolysis of N-methylcarbamate insecticides (carbofuran hydrolase) was cloned from carbofuran-degrading Achromobacter sp. strain WM111. When used to probe Southern blots containing plasmid and total DNAs from WM111, this 14-kbp fragment hybridized strongly to a 14-kbp EcoRI fragment from the greater than 100-kbp plasmid harbored by this strain but weakly to EcoRI-digested total DNA from Achromobacter sp. strain WM111, indicating that the gene for N-methylcarbamate degradation (mcd) is plasmid encoded. Further subcloning localized the mcd gene on a 3-kbp ScaI-ClaI fragment. There was little or no expression of this gene in the alternative gram-negative hosts Pseudomonas putida, Alcaligenes eutrophus, Acinetobacter calcoaceticus, and Achromobacter pestifer. Western blotting (immunoblotting) of the protein products produced by low-level expression in P. putida confirmed that this 3-kbp fragment encodes the two 70+-kilodalton protein products seen in sodium dodecyl sulfate-polyacrylamide gel electrophoresis of purified carbofuran hydrolase.  相似文献   

2.
Thirty-seven carbofuran-degrading bacteria were isolated from agricultural soils, and their genetic and phenotypic characteristics were investigated. The isolates were able to utilize carbofuran as a sole source of carbon and energy. Analysis of the 16S rRNA gene sequence indicated that the isolates were related to members of the genera Rhodococcus, Sphingomonas, and Sphingobium, including new types of carbofuran-degrading bacteria, Bosea and Microbacterium. Among the 37 isolates, 15 different chromosomal DNA patterns were obtained by polymerase chain reaction (PCR) amplification of repetitive extragenic palindromic (REP) sequences. Five of the 15 representative isolates were able to degrade carbofuran phenol, fenoxycarb, and carbaryl, in addition to carbofuran. Ten of the 15 representative isolates had 1 to 8 plasmids. Among the 10 plasmid-containing isolates, plasmid-cured strains were obtained from 5 strains. The cured strains could not degrade carbofuran and other pesticides anymore, suggesting that the carbofuran degradative genes were on the plasmid DNAs in these strains. When analyzed with PCR amplification and dot-blot hybridization using the primers targeting for the previously reported carbofuran hydrolase gene (mcd), all of the isolates did not show any positive signals, suggesting that their carbofuran hydrolase genes had no significant sequence homology with the mcd gene.  相似文献   

3.
Abstract: Fifty-five bacterial isolates, from English and French soils with different histories of carbofuran field treatment, which hydrolysed the N -methylcarbamate insecticide carbofuran to carbofuran 7-phenol were characterised phenotypically and genetically. The isolates were compared by using 125 physiological tests and morphological features, plasmid profiles and restriction fragment length polymorphism (RFLP) patterns of total DNA using the rRNA operon of Escherichia coli as a DNA probe. Cluster analysis of both phenotypic characters and RFLP patterns showed a high degree of diversity amongst the bacteria. Ten distinct plasmid profiles with 2–4 plasmids ranging in size from 84 to about 438 kb were visualised in 50 isolates. The majority of isolates had one of two types of plasmid profiles. Plasmid profiles and Eco RI restricted total DNA patterns were hybridised with an internal fragment of the carbofuran hydrolase ( mcd ) gene and 22 diverse soil isolates exhibited sequence homology with this gene probe. Our results indicate that sequences homologous to the mcd gene are located on a conserved Eco RI fragment (12 or 14 kb) of a plasmid (100, 105, 115 or 124 kb) found in diverse soil isolates from geographically distant areas. Thirty-three isolates did not exhibit detectable homology to the mcd gene probe and the hydrolase enzymes and genes in these isolates need further investigation.  相似文献   

4.
Rhodococcus sp. strain Mel was isolated from soil by enrichment and grew in minimal medium with melamine as the sole N source with a doubling time of 3.5 h. Stoichiometry studies showed that all six nitrogen atoms of melamine were assimilated. The genome was sequenced by Roche 454 pyrosequencing to 13× coverage, and a 22.3-kb DNA region was found to contain a homolog to the melamine deaminase gene trzA. Mutagenesis studies showed that the cyanuric acid hydrolase and biuret hydrolase genes were clustered together on a different 17.9-kb contig. Curing and gene transfer studies indicated that 4 of 6 genes required for the complete degradation of melamine were located on an ~265-kb self-transmissible linear plasmid (pMel2), but this plasmid was not required for ammeline deamination. The Rhodococcus sp. strain Mel melamine metabolic pathway genes were located in at least three noncontiguous regions of the genome, and the plasmid-borne genes encoding enzymes for melamine metabolism were likely recently acquired.  相似文献   

5.
A bacterium capable of using the carbamate insecticide carbofuran as a sole source of carbon and energy, was isolated from soil. The ability to catabolise carbofuran phenol, produced by cleavage of the carbamate ester linkage of the insecticide, was lost at very high frequency when the bacterium was grown in the absence of carbofuran. Plasmid analyses together with curing and mating experiments indicated that the presence of a large plasmid (pIH3, >199 kb) was required for the degradation of carbofuran phenol.Abbreviations Rifr Rifampicin resistant - Rifs Rifampicin sensitive - CFH+ Carbofuran hydrolase activity present - CFH- Carbofuran hydrolase activity absent - CFP+ ability to degrade carbofuran phenol present - CFP- ability to degrade carbofuran phenol absent - MS mineral salts medium. MSCF minimal mineral salts medium containing 0.25 mM carbofuran as sole source of carbon and energy - YP MS medium containing 5 g/l yeast extract and 5 g/l Bactopeptone. YPCF as above but with the addition of 1 mM carbofuran - EPTC S-ethyl-N,N-dipropylthiocarbamate - 2,4-D 2,4-dichlorophenoxyacetic acid - NAG N-acetylglucosamine - 3-HB 3-hydroxybutyrate  相似文献   

6.
X Feng  L T Ou    A Ogram 《Applied microbiology》1997,63(4):1332-1337
A bacterial strain (CF06) that mineralized both the carbonyl group and the aromatic ring of the insecticide carbofuran and that is capable of using carbofuran as a sole source of carbon and nitrogen was isolated from a soil in Washington state. Phospholipid fatty acid and 16S rRNA sequencing analysis indicate that CF06 is a Sphingomonas sp. CF06 contains five plasmids, at least some of which are required for metabolism of carbofuran. Loss of the plasmids induced by growth at 42 degrees C resulted in the inability of the cured strain to grow on carbofuran as a sole source of carbon. Introduction of the plasmids confers on Pseudomonas fluorescens M480R the ability to use carbofuran as a sole source of carbon for growth and energy. Of the five plasmids, four are rich in insertion sequence elements and contain large regions of overlap. Rearrangements, deletions, and loss of individual plasmids that resulted in the loss of the carbofuran-degrading phenotype were observed following introduction of Tn5.  相似文献   

7.
Bacterial metabolism of carbofuran.   总被引:9,自引:3,他引:6       下载免费PDF全文
Fifteen bacteria capable of degrading carbofuran (2,3-dihydro-2,2-dimethyl-7-benzofuranyl methylcarbamate) were isolated from soil samples with a history of pesticide application. All isolates were gram negative and were oxidase- and catalase-positive rods; they occurred singly or as short chains. All of the identified isolates belonged to one of two genera, Pseudomonas and Flavobacterium. They were separated into three groups based on their mode of utilization of carbofuran. Six isolates were placed in group I; these isolates utilized carbofuran as a sole source of nitrogen. Seven isolates were placed in group II; these isolates utilized the pesticide as a sole source of carbon. Isolates of both groups I and II hydrolyzed carbofuran to carbofuran phenol. Two isolates, designated group III, also utilized carbofuran as a sole source of carbon. They degraded the pesticide more rapidly, however, so up to 40% of [14C]carbofuran was lost as 14CO2 in 1 h. The results suggest that these isolates degrade carbofuran by utilizing an oxidative pathway.  相似文献   

8.
Bacterial metabolism of carbofuran   总被引:1,自引:0,他引:1  
Fifteen bacteria capable of degrading carbofuran (2,3-dihydro-2,2-dimethyl-7-benzofuranyl methylcarbamate) were isolated from soil samples with a history of pesticide application. All isolates were gram negative and were oxidase- and catalase-positive rods; they occurred singly or as short chains. All of the identified isolates belonged to one of two genera, Pseudomonas and Flavobacterium. They were separated into three groups based on their mode of utilization of carbofuran. Six isolates were placed in group I; these isolates utilized carbofuran as a sole source of nitrogen. Seven isolates were placed in group II; these isolates utilized the pesticide as a sole source of carbon. Isolates of both groups I and II hydrolyzed carbofuran to carbofuran phenol. Two isolates, designated group III, also utilized carbofuran as a sole source of carbon. They degraded the pesticide more rapidly, however, so up to 40% of [14C]carbofuran was lost as 14CO2 in 1 h. The results suggest that these isolates degrade carbofuran by utilizing an oxidative pathway.  相似文献   

9.
对硝基苯酚降解菌P3的分离、降解特性及基因工程菌的构建   总被引:22,自引:2,他引:22  
分离到一株假单胞菌 (Pseudomonassp .)P3 ,该菌能够以对硝基苯酚为唯一碳源和氮源进行生长。在有外加氮源的条件下 ,P3降解对硝基苯酚并在培养液中积累亚硝酸根。P3有比较广泛的底物适应性 ,对多种芳香族化合物都有降解能力。不同金属离子对P3降解对硝基苯酚有不同的作用。葡萄糖的存在对P3降解对硝基苯酚无明显促进作用 ,而微量酵母粉可以大大促进P3对硝基苯酚的降解。以P3为受体菌 ,通过接合转移的手段将甲基对硫磷水解酶基因mpd克隆至P3菌中 ,获得了表达甲基对硫磷水解酶活性的基因工程菌PM ,PM能够以甲基对硫磷为唯一碳源进行生长。工程菌PM具有较高的甲基对硫磷降解活性及稳定性  相似文献   

10.
Currently, chlorpyrifos (CP) and carbofuran are often applied together to control major agricultural pests in many developing countries, in most cases, they are simultaneously detected in agricultural soils. Some cost‐effective techniques are required for the remediation of combined pollution caused by multiple pesticides. In this work, we aim at constructing a detectable recombinant microorganism with the capacity to simultaneously degrade CP and carbofuran. To achieve this purpose, CP/carbofuran hydrolase genes and gfp were integrated into the chromosome of a biosafety strain Pseudomonas putida KT2440 using a chromosomal scarless modification strategy with upp as a counter‐selectable marker. The toxicity of the hydrolysis products was significantly lower compared with the parent compounds. The recombinant strain could utilize CP or carbofuran as the sole source of carbon for growth. The inoculation of the recombinant strain to soils treated with carbofuran and CP resulted in a higher degradation rate than in noninoculated soils. Introduced green fluorescent protein can be employed as a biomarker to track the recombinant strain during bioremediation. Therefore, the recombinant strain has potential to be applied for in situ bioremediation of soil co‐contaminated with carbofuran and CP.  相似文献   

11.
T P West 《Microbios》1988,56(226):27-36
Pyrimidine metabolism in Pseudomonas fluorescens biotype F, and its ability to grow in liquid culture on pyrimidines and related compounds was investigated. It was found that uracil, uridine, cytosine, cytidine, deoxycytidine, dihydrouracil, dihydrothymine, beta-alanine or beta-aminoisobutyric acid could be utilized by this pseudomonad as a sole nitrogen source. Only uridine, cytidine, beta-alanine, beta-aminoisobutyric acid or ribose were capable of supporting its growth as a sole source of carbon. In solid medium, the pyrimidine analogue 5-fluorouracil or 5-fluorouridine could prevent P. fluorescens biotype F growth at a low concentration while a 20-fold higher concentration of 5-fluorocytosine, 5-fluorodeoxyuridine or 6-azauracil was necessary to block its growth. The pyrimidine salvage enzymes cytosine deaminase, nucleoside hydrolase, uridine phosphorylase, thymidine phosphorylase and cytidine deaminase were assayed. Only cytosine deaminase and nucleoside hydrolase activities could be detected under the assay conditions used. The effect of growth conditions on cytosine deaminase and nucleoside hydrolase levels in the micro-organism was explored. Cytosine deaminase activity was shown to increase if glycerol was substituted for glucose as the sole carbon source or if asparagine replaced (NH4)2SO4 as the sole nitrogen source in each respective medium. In contrast, nucleoside hydrolase activity remained virtually unchanged whether the carbon source in the medium was glucose or glycerol. A decrease in nucleoside hydrolase activity was witnessed when asparagine was present in the medium instead of (NH4)2SO4 as the sole source of nitrogen.  相似文献   

12.
Agrobacterium tumefaciens strains isolated from crown gall tumors on grapevines in California were consistently of the biotype 3 group. All 11 of these strains were limited in their host range and harbored Ti plasmids with molecular masses between 119 and 142 megadaltons (Mdal) as well as a larger cryptic plasmid of greater than 200 Mdal; occasionally a smaller cryptic plasmid of 65 Mdal was also present. Ti plasmids o these strains have DNA sequences in common with Ti plasmids of octopine and nopaline strains belonging to the biotype 1 group and exhibited sequence homologies with the conserved region of the T-DNA. Ten of the 11 strains utilized octopine as a sole source of carbon and nitrogen and 3 strains catabolized both octopine and nopaline, whereas 1 strain catabolized only nopaline. All of these strains were resistant to the bacteriocin agrocin-84, except one grapevine strain that belonged to the biotype 1 group and was agrocin sensitive; it is also differed in its plasmid and virulence characteristics. Isolations from Rubus ursinus ollalieberry galls yielded exclusively biotype 2 strains. These strans were insensitive to agrocin-84, utilized nopaline as a sole carbon and nitrogen source, and were highly virulent on all host plants tested. They contained Ti plasmids ranging between 100 and 130 Mdal and occasionally a cryptic plasmid of 69 Mdal. Their Ti plasmids have DNA sequences in common with Ti plasmids of biotype 1 strains and with the conserved region of the T-DNA.  相似文献   

13.
Flavobacterium sp. K172, which is able to grow on 6-aminohexanoic acid cyclic dimer as the sole source of carbon and nitrogen, and plasmid control of the responsible enzymes, 6-aminohexanoic acid cyclic dimer hydrolase and 6-aminohexanoic acid linear oligomer hydrolase, were studied. The wild strain of K172 harbors three kinds of plasmid, pOAD1 (26.2 megadaltons), pOAD2 (28.8 megadaltons), and pOAD3 (37.2 megadaltons). The wild strain K172 was readily cured of its ability to grow on the cyclic dimer by mitomycin C, and the cyclic dimer hydrolase could not be detected either as catalytic activity or by antibody precipitation. No reversion of the cured strains was detected. pOAD2 was not detected in every cured strain tested but was restored in a transformant. The transformant recovered both of the enzyme activities, and the cyclic dimer hydrolase of the transformant was immunologically identical with that of the wild strain. All of the strains tested, including the wild, cured, and transformant ones, possessed identical pOAD3 irrespective of the metabolizing activity. Some of the cured strains possessed pOAD1 identical with the wild strain, but the others harbored plasmids with partially altered structures which were likely to be derived from pOAD1 by genetic rearrangements such as deletion, insertion, or substitution. These results suggested that the genes of the enzymes were borne on pOAD2.  相似文献   

14.
Arthrobacter globiformis D47 was shown to degrade a range of substituted phenylurea herbicides in soil. This strain contained two plasmids of approximately 47 kb (pHRIM620) and 34 kb (pHRIM621). Plasmid-curing experiments produced plasmid-free strains as well as strains containing either the 47- or the 34-kb plasmid. The strains were tested for their ability to degrade diuron, which demonstrated that the degradative genes were located on the 47-kb plasmid. Studies on the growth of these strains indicated that the ability to degrade diuron did not offer a selective advantage to A. globiformis D47 on minimal medium designed to contain the herbicide as a sole carbon source. The location of the genes on a plasmid and a lack of selection would explain why the degradative phenotype, as with many other pesticide-degrading bacteria, can be lost on subculture. A 22-kb EcoRI fragment of plasmid pHRIM620 was expressed in Escherichia coli and enabled cells to degrade diuron. Transposon mutagenesis of this fragment identified one open reading frame that was essential for enzyme activity. A smaller subclone of this gene (2.5 kb) expressed in E. coli coded for the protein that degraded diuron. This gene and its predicted protein sequence showed only a low level of protein identity (25% over ca. 440 amino acids) to other database sequences and was named after the enzyme it encoded, phenylurea hydrolase (puhA gene).  相似文献   

15.
A strain of Pseudomonas putida MCM B-408 capable of utilizing ε-caprolactam (monomer of nylon-6) as the sole source of carbon and nitrogen was found to harbour a single 32-kb plasmid with the same electrophoretic mobility as that of pARI180, a reference plasmid. Acridine orange, ethidium bromide, mitomycin C and SDS failed to cure the plasmid and the phenotype. Elevated temperature alone (40°C) was found to be ineffective in curing. Phenotype, but not the plasmid, was cured at a frequency of 2.63% when acridine orange and elevated temperature (40°C) were used together. The studies therefore indicated that the phenotypic expression of caprolactam degradative genes is quite stable and that Pseudomonas putida MCM B-408 may degrade ε-caprolactam from waste-water satisfactorily without spontaneous loss of the property under adverse environmental conditions.  相似文献   

16.
Burkholderia (Pseudomonas) cepacia PR1(23) has been shown to constitutively express to toluene catabolic pathway distinguished by a unique toluene ortho-monooxygenase (Tom). This strain has also been shown to contain two extrachromosomal elements of < 70 and > 100 kb. A derivative strain cured of the largest plasmid, PR1(23) Cure, was unable to grow on phenol or toluene as the sole source of carbon and energy, which requires expression of the Tom pathway. Transfer of the larger plasmid from strain G4 (the parent strain inducible for Tom) enabled PR1(23) Cure to grow on toluene or phenol via inducible Tom pathway expression. Conjugal transfer of TOM23c from PR1(23) to an antibiotic-resistant derivative of PR1(23) Cure enabled the transconjugant to grow with either phenol or toluene as the sole source of carbon and energy through constitutive expression of the Tom pathway. A cloned 11.2-kb EcoRI restriction fragment of TOM23c resulted in the expression of both Tom and catechol 2,3-dioxygenase in Escherichia coli, as evidenced by its ability to oxidize trichloroethylene, toluene, m-cresol, o-cresol, phenol, and catechol. The largest resident plasmid of PR1 was identified as the source of these genes by DNA hybridization. These results indicate that the genes which encode Tom and catechol 2,3-dioxygenase are located on TOM, an approximately 108-kb degradative plasmid of B. cepacia G4.  相似文献   

17.
A bacterial strain, Pseudomonas sp. strain NK87, that can use 6-aminohexanoate-cyclic dimer as the sole source of carbon and nitrogen was newly isolated from wastewater of a factory which produces nylon-6. Two responsible enzymes, 6-aminohexanoate-cyclic-dimer hydrolase (P-EI) and 6-aminohexanoate-dimer hydrolase (P-EII), were found in the NK87 strain, as is the case with Flavobacterium sp. strain KI72, another 6-aminohexanoate-cyclic-dimer-metabolizing bacterium (H. Okada, S. Negoro, H. Kimura, and S. Nakamura, Nature [London] 306:203-206, 1983). The P-EI enzyme is immunologically identical to the 6-aminohexanoate-cyclic-dimer hydrolase of KI72 (F-EI). However, antiserum against the 6-aminohexanoate-dimer hydrolase purified from KI72 (F-EII) did not react with cell extracts of NK87, indicating that the F-EII and P-EII enzymes are immunologically different. Restriction endonuclease analyses show that the NK87 strain harbors at least six plasmids ranging in size from 20 to 80 kilobase pairs (kbp). The P-EI and P-EII genes were cloned in Escherichia coli. Both the P-EI and F-EI probes strongly hybridized with a 23-kbp plasmid in Southern hybridization analyses. The P-EII probe hybridized specifically with an 80-kbp plasmid, but the F-EII probe hybridized with none of the plasmids harbored in NK87. These results indicate that the P-EI gene and P-EII gene are encoded on the 23-kbp and 80-kbp plasmids, respectively.  相似文献   

18.
Two variants of plant growth-promoting strain Pseudomonas putida BS1380 harboring the naphthalene degradative plasmid pBS2 and the recombinant plasmid pNAU64 that contains the genes encoding for naphthalene dioxygenase were constructed by conjugation. The ability of this strain to produce phytohormone indole-3-acetic acid from different carbon sources was studied. Indole-3-acetic acid synthesis by these transconjugants was 15-30 times as much in contrast to a wild-type strain with glucose as the sole carbon source. No difference was observed in other carbon or nitrogen sources. It is suggested that naphthalene dioxygenase is involved in the conversion of indole-3-pyruvic acid to indole-3-acetic acid.  相似文献   

19.
To find alternative genetic resources for D-serine dehydratase (E.C. 4.3.1.18, dsdA) mediating the deamination of D-serine into pyruvate, metagenomic libraries were screened. The chromosomal dsdA gene of a wild-type Escherichia coli W3110 strain was disrupted by inserting the tetracycline resistance gene (tet), using double-crossover, for use as a screening host. The W3110 dsdA::tet strain was not able to grow in a medium containing D-serine as a sole carbon source, whereas wild-type W3110 and the complement W3110 dsdA::tet strain containing a dsdA-expression plasmid were able to grow. After introducing metagenome libraries into the screening host, a strain containing a 40-kb DNA fragment obtained from the metagenomic souce derived from a compost was selected based on its capability to grow on the agar plate containing D-serine as a sole carbon source. For identification of the genetic resource responsible for the D-serine degrading capability, transposon- micron was randomly inserted into the 40-kb metagenome. Two strains that had lost their D-serine degrading ability were negatively selected, and the two 6-kb contigs responsible for the D-serine degrading capability were sequenced and deposited (GenBank code: HQ829474.1 and HQ829475.1). Therefore, new alternative genetic resources for D-serine dehydratase was found from the metagenomic resource, and the corresponding ORFs are discussed.  相似文献   

20.
Sites of restriction endonucleases were mapped on pOAD2, a plasmid harbored in Flavobacterium sp. KI72. The plasmid codes 6-aminohexanoic acid cyclic dimer hydrolase and 6-aminohexanoic acid linear oligomer hydrolase. pOAD2 (molecular weight: 28.8 megadaltons [Mdal]) had 6 HindIII and 5 EcoRI sites, which were located at 0, 8.4, 8.9, 11.1, 19.0 and 25.0 Mdal (for HindIII) and 3.3, 5.4, 20.4, 20.8, 22.6 Mdal (for EcoRI). A mutant which could not grow on 6-aminohexanoic acid cyclic dimer but grew on the linear dimer as the sole carbon and nitrogen source harbored a deletion plasmid pOAD21 derived from pOAD2. By comparing the restriction sites of these two plasmids, the deleted region was localized on which the 6-aminohexanoic acid cyclic dimer hydrolase was coded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号