首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two L5178Y (LY) murine lymphoma cell sublines, LY-R, resistant, and LY-S, sensitive, to X-irradiation display inverse cross-sensitivity to camptothecin (CPT): LY-R cells were more susceptible to this specific topoisomerase I inhibitor than LY-S cells. After 1 h incubation with CPT, the doses that inhibited growth by 50 per cent (ID50) after 48 h of incubation were 0·54μM for LY-R cells and 1·25 μM for LY-S cells. Initial numbers of DNA–protein crosslinks (DPCs) measured at this level of growth inhibition were two-fold higher in LY-R (5·6 Gray-equivalents) than in LY-S cells (3·1 Gray-equivalents), which corresponds well with the greater in vitro sensitivity of Topo I from LY-R cells to CPT.1,2 Conversely, the initial levels of single-strand DNA breaks (SSBs) and double-strand DNA breaks (DSBs) were lower in LY-R cells (4·2 Gray-equivalent SSBs and 5·8 Gray equivalent DSBs) than in LY-S cells (8·0 Gray-equivalent SSBs and 12·0 Gray-equivalent DSBs). Dissimilarity in the replication-dependent DNA damage observed after 1 h of treatment with CPT was not due to a difference in the rate of DNA synthesis between the two cell lines, but may have arisen from a substantially slower repair of DNA breaks in LY-S cells.3 Release from G2 block by caffeine co-treatment significantly increased cell killing in the LY-S subline, and only slightly inhibited growth of LY-R cells. These results show that after CPT treatment cells arrest in G2, allowing them time to repair the long-lived DSBs. As LY-S cells are slower in repairing the DSBs, they were more susceptible to CPT in the presence of caffeine.  相似文献   

2.
The processes involved in cell response to camptothecin (CPT) were investigated in two sublines of L5178Y (LY) murine lymphoma; LY-R, resistant and LY-S, sensitive to X-irradiation, which are inversely cross-sensitive to the drug. The cells were pulse-treated with 2 μM CPT for 1 h; this resulted in equal numbers of replication-related DNA double-strand breaks (DSBs) in both sublines.1 After drug removal, at different time points up to 24 h, the levels of DSBs were measured by using field inversion gel electrophoresis (FIGE) and comet assay at neutral pH. Both methods revealed faster DSBs repair in LY-S than in LY-R cells, in contrast with X-ray-induced DSBs. This however, was followed by the appearance of secondary breaks in the former subline. The cell cycle arrest was at S/G2 phase and comprised equal numbers of cells in LY-S and LY-R populations. In both sublines formation of giant cells took place, as well as delayed apoptosis starting about 20 h post-CPT incubation and proceeding with similar intensity. At the same time, the total number of necrotic cells appearing during post-exposure incubation in the LY-R subline exceeded that in the LY-S subline. We suggest that, beside previously documented higher susceptibility of topoisomerase I (Topo I) from LY-R cells to CPT,2,3 a higher initial rate of replication-related DSBs repair, but not lower propensity to apoptosis, may contribute to the relative CPT resistance of LY-S versus LY-R cells. Copyright © 1998 John Wiley & Sons, Ltd.  相似文献   

3.
Summary The mutation frequency of L5178Y mouse lymphoma cells to resistance to 5′-bromo-2′-deoxyuridine increased 6-to 14-fold after growth in ethylene oxide-sterilized polycarbonate culture flasks compared to growth in glass flasks. No comparable increase was observed when L5178Y cells were growth in identical polycarbonate culture flasks sterilized by autoclaving.  相似文献   

4.
Compounds containing B-N bonds have shown interesting biological activity. One class of such molecules is the 2,2-diphenyl-1,3,2-oxazaborolidin-5-ones (3a-j), which contain a B-N bond, have an alpha-amino acid moiety in the heterocycle, and have an exocyclic moiety related to an amino acid. The purpose of this work was to determine the inhibitory effects of 3a-j on the proliferation of murine L5178Y lymphoma cells. A new five-membered heterocyclic nucleus with apoptotic activity was found. The target products showed potent cytotoxicity in the L5178Y cell line. Among them, 3a exhibited the highest antineoplastic activity in L5178Y cells with an IC(50) value of 22.5+/-0.2 microM.  相似文献   

5.
We examined apoptosis and expression of p53, E2F-1, bax, bclxL and bcl2 proteins in two L5178Y (LY) murine lymphoma sublines, LY-R and LY-S, which differ in radiosensitivity and double-strand break (DSB) repair. Both sublines are heterozygous for a p53 mutation in codon 170 that precludes the transactivation function. Accordingly, there is no G1/S arrest after irradiation.We found that there is no change in expression of E2F-1, bax, bclxL or bcl2 proteins in both LY sublines after x-irradiation. LY-R cells do not constitutively express bcl2, whereas both sublines show high bax content. Radiation induces delayed apoptosis to a greater extent in LY-S than in LY-R cells. The apoptosis can be seen 24 h after irradiation (2 Gy) of LY-S cells, with a maximum at 48 h. LY-R cells need 5 Gy and 72 h post-irradiation incubation to show marked apoptosis (identified by the TUNEL method). The reported observations support the assumption that differential radiosensitivity of LY sublines is associated with the induction of apoptosis that is not related to transactivation by p53 and is primarily related to differential DNA repair ability. Received: 19 August 1999 / Accepted in revised form: 30 November 1999  相似文献   

6.
利用小鼠淋巴瘤细胞L5178Y tk+/--3.7.2C和阴性化合物Glc、NaCl及阳性化合物EMS、ENU、4-NQO、B(a)P建立并验证基于哺乳动物细胞的体外Pig-a基因突变检测方法。计算细胞相对倍增速率评价细胞毒性,抗体标记突变型细胞确定流式检测模板,L5178Y细胞经EMS处理后第4、8、12、16、20天检测Pig-a基因突变频率,确定最大突变频率发生时间点,免疫荧光技术检测CD90蛋白在细胞中的定位情况,采用PCR方法进行突变位点分析。结果表明(:1)Glc、NaCl、EMS、ENU、B(a)P、4-NQO所设浓度组RPD均大于50%。(2)Pig-a基因突变频率在给药后第8天出现峰值。Glc和NaCl致Pig-a基因突变频率均小于200×10-6,各浓度组与溶剂对照组间不存在显著性差异(P>0.05),EMS、ENU、B(a)P、4-NQO均可引起Pig-a基因突变频率增加,且与溶剂对照组相比存在显著性差异。(3)免疫荧光成像显示突变型细胞表面无CD90蛋白,野生型细胞正常表达CD45,CD90蛋白。(4)基因突变位点检测显示存在G→C、A→C、C→T三种突变类型。基于小鼠淋巴瘤L5178Y细胞分别在有无S9代谢活化条件下成功建立体外Pig-a基因突变的遗传毒性检测方法,旨为化合物体外遗传毒性评价或药物研发早期遗传毒性筛选提供新方法。  相似文献   

7.
The mutagenicity of the mycotoxin patulin was assessed by the thymidine kinase mutation assay, which is based on point mutations and deletions. Patulin was mutagenic in cultured mouse lymphoma cells and the mutagenicity was significantly increased in cells pretreated with buthionine sulfoximine, which reduces intracellular glutathione levels. Presented at the 26th Mykotoxin-Workshop in Herrsching, Germany, May 17–19, 2004 Financial support Deutsche Forschungsgemeinschaft (Grant Me 574/14-2)  相似文献   

8.
The biological significance of DNA adducts is under continuous discussion because analytical developments allow determination of adducts at ever lower levels. Central questions refer to the biological consequences of adducts and to the relationship between background DNA damage and exposure-related increments. These questions were addressed by measuring the two DNA adducts 7-methylguanine (7-mG) and O6-methyl-2′-deoxyguanosine (O6-mdGuo) by LC–MS/MS in parallel to two biological endpoints of genotoxicity (comet assay and in vitro micronucleus test), using large batches of L5178Y mouse lymphoma cells treated with methyl methanesulfonate (MMS). The background level of 7-mG was 1440 adducts per 109 nucleotides while O6-mdGuo was almost 50-fold lower (32 adducts per 109 nucleotides). In the comet assay and the micronucleus test, background was in the usual range seen with smaller batches of cells (2.1% Tail DNA and 12 micronuclei-containing cells per 1000 binucleated cells, respectively). For the comparison of the four endpoints for dose-related increments above background in the low-response region we assumed linearity at low dose and used the concept of the “doubling dose”, i.e., we estimated the concentration of MMS necessary to double the background measures. Doubling doses of 4.3 and 8.7 μM MMS were deduced for 7-mG and O6-mdGuo, respectively. For doubling the background measures in the comet assay and the micronucleus test, 5 to 15-fold higher concentrations of MMS were necessary (45 and 66 μM, respectively). This means that the contribution of an increase in DNA methylation to biological endpoints of genotoxicity is overestimated. For xenobiotics that generate adducts without background, the difference is even more pronounced because the dose–response curve starts at zero and the limit of detection of an increase is not affected by background variation. Consequences for the question of thresholds in dose–response relationships and for the setting of tolerable exposure levels are discussed.  相似文献   

9.
Complete inhibition of growth of sensitive L5178Y mouse lymphoma cells in culture was obtained with 10(-3)M ouabain, 1.65 X 10(-3)M thymidine, 1.8 X 10(-4)M thioguanine and 10(-6)M cytosine arabinoside. The toxicity of methotrexate was dependent upon cell density and this compound was excluded from further study. The expression time before addition of the selective agent was important for detecting EMS induced resistant variants. Ouabain-resistant variants appeared immediately after treatment and were present over a broad time span. No excess thymidine- or thioguanine-resistant variants were seen initially; a peak in variant numbers was seen for excess thymidine resistance at 48-96 h and for thioguanine resistance at 144-192 h. Using induced mutation frequencies at optimum expression times, equal EMS treatments yielded substantially more variants resistant to thioguanine than to ouabain. It is suggested that this difference may have origin in possible constraints in the classes of mutants which are permissible in a vital function, maintenance of the Na+/K+ balance, when compared with a non-vital function, salvage purine biosynthesis. Some data are presented on the stability in culture of resistant variants. A limited number of observations were made following treatment in the peritoneal cavity of the mouse which were in broad agreement with the above results.  相似文献   

10.
The adrenal chromaffin cells synthesize and release catecholamine (mostly epinephrine and norepinephrine) and different peptides, such as the neuropeptide Y (NPY). NPY stimulates catecholamine release through NPY Y1 receptor in mouse chromaffin cells. The aim of our study was to determine the intracellular signaling events coupled to NPY Y1 receptor activation that lead to stimulation of catecholamine release from mouse chromaffin cells. The stimulatory effect of NPY mediated by NPY Y1 receptor activation was lost in the absence of extracellular Ca2+. On the other hand, inhibition of nitric oxide synthase and guanylyl cyclase also decreased the stimulatory effect of NPY. Moreover, catecholamine release stimulated by NPY or by the nitric oxide donor (NOC-18) was inhibited by mitogen-activated protein kinase (MAPK) and protein kinase C inhibitors. In summary, in mouse chromaffin cells, NPY evokes catecholamine release by the activation the NPY Y1 receptor, in a Ca2+-dependent manner, by activating mitogen-activated protein kinase and promoting nitric oxide production, which in turn regulates protein kinase C and guanylyl cyclase activation.  相似文献   

11.
Furan is found in various food items and is cytotoxic and carcinogenic in the liver of rats and mice. Metabolism of furan includes the formation of an unsaturated dialdehyde, cis-2-butene-1,4-dial (BDA). In view of the multifunctional electrophilic reactivity of BDA, adduct formation with protein and DNA may explain some of the toxic effects. Short-term tests for genotoxicity of furan in mammalian cells are inconclusive, little is known for BDA. We investigated BDA generated by hydrolysis of 2,5-diacetoxy-2,5-dihydrofuran for genotoxicity in L5178Y tk+/− mouse lymphoma cells using standard procedures for the comet assay, the micronucleus test, and the mouse lymphoma thymidine kinase gene mutation assay, using 4-h incubation periods. Cytotoxicity was remarkable: cell viability at concentrations ≥50 μM was reduced to <50%. In the dose range up to 25 μM, viability was >90%. Measures of comet-tail length and thymidine–kinase mutant frequency were increased 1.6- and 2.4-fold above control, respectively. Analysis of three fully independent replicates with a linear mixed-effects model showed a highly significant increase with concentration for both endpoints. Compared to methyl methanesulfonate used as a positive control, BDA was of similar potency with respect to genotoxicity, but it was much more cytotoxic. Furan added to cell cultures at doses that resulted in time-averaged effective concentrations of up to 3100 μM was neither cytotoxic nor genotoxic. A potential cross-linking activity of BDA was investigated by checking whether gamma radiation-induced DNA migration in the comet assay could be reduced by pre-treatment with BDA. In contrast to the effect of the positive control glutaraldehyde, BDA treatment did not reduce the comet tail length. On the contrary, an increase was observed at ≥100 μM BDA, which was attributable to early apoptotic cells. Although BDA was found to be a relatively potent genotoxic agent in terms of the concentration necessary to double the background measures, cytotoxicity strongly limited the concentration range that produced interpretable results. This may explain some of the inconclusive results and indicates that non-genotoxic effects must be taken into account in the discussion of the modes of toxic and carcinogenic action of furan.  相似文献   

12.
Unfiltered broad spectrum radiation emitted by black light, cool white, and black light blue fluorescent lamps and a sunlamp, is both toxic and mutagenic to L5178Y mouse lymphoma cells when the cells are irradiated in phosphate-buffered saline. The increase in mutant frequency seen after exposure of the cells is linear throughout the range of exposures tested. The linear increase in mutagenesis is observed even at exposure levels which do not cause significant toxicity. To facilitate comparison of the differing rates of mutagenesis derived from exposure-response curves obtained for each light source, we have defined a parameter, joule-equivalent mutagenesis (jem), equal to mutants per 10(5) survivors per joule per square meter. Jem values are calculated using the integrated irradiance of each lamp. Based on jem values, the relative mutagenicity of the various lamps tested (compared with a germicidal ultraviolet lamp) is 3 x 10(-3) for the sunlamp, 1 x 10(-4) for the black light and cool white lamps, and 3 x 10(-5) for the black light blue lamp. The toxic and mutagenic effects of the lamps are in reasonable agreement with their relative spectral output from 290 to 330 nm.  相似文献   

13.
L5178 mouse lymphoma cells were treated with the mismatching agent 6-hydroxy-aminopurine (HAP), a base analogue known to produce forward and reverse mutations in bacteria. Mutants with the phenotype deficient in hypoxanthine guanine phosphoribosyl transferase (HPRT) were selected in 6-thioguanine (TG)-containing medium and isolated. Reverse mutations to Hhe HPRT-proficient phenotype oc occuredd both spontaneously and after treatment with ethyl nitrosourea (ENU), which suggested that the initial HAP treatment had induced point mutations at the HPRT locus.

Reconstruction experiments, in which a small number of wild-type cells together with different numbers of mutant cells were seeded in HAT medium, indicated that densities up to 106 cells per ml can be used for the selection of revertants. Optimal expression of induced revertants was obtained two days after treatment.

The dose-response relationship for induction of reverse mutations by ENU appears not to deviate from linearity. The highest revertant frequency observed was 3.3 × 10−5 at an ENU concentration of 1 mM. The spontaneous reversion frequency per generation — based on 3 spontaneous revertants — was estimated to be 1.3 × 10−9. All revertants were indistinguishable from the parental wild-type line with respect to the activity as well as the electrophoretic mobility of HPRT.  相似文献   


14.
The effect of thapsigargicin (TGC), a non-phorbol ester type tumor promoter, on Ca2+ movements has been investigated using L1210 mouse lymphoma cells. Ca2+ release from intact and digitonin permeabilized cells was evaluated using Fura-2 and Fura-3. TGC like Thapsigargin (TG) has the ability to discharge the intracellular Ca2+ stores and to increase intracellular free Ca2+ concentrations. TGC in a concentration dependent manner (0.16–16 nM) also inhibited cell growth and this effect was at least partially reversed by arachidonate. The article is published in the original.  相似文献   

15.
In a search for cell mutants that show an increase or a decrease in the frequency of baseline sister-chromatid exchanges (SCEs) or spontaneous chromosomal aberrations (CAs), large numbers of mutagen-sensitive clones previously isolated from mouse lymphoma L5178Y cells were analyzed. In addition to two SCE mutants (ES 4 and AC 12) previously reported, three other mutants were identified as an SCE mutant. An ethyl methanesulfonate-sensitive mutant ES 2 and an alkylating agent-sensitive mutant MS 1 exhibited, respectively, 1.4-fold and 1.8-fold higher baseline SCE frequencies than did the parental L5178Y. In contrast, M10, which is sensitive to X-ray and 4-nitroquinoline 1-oxide, showed a reduced frequency of baseline SCEs (0.65-fold). These 5 mutants including ES 4 and AC 12 had 3--9-fold increases in spontaneous CA frequencies. Measurement of baseline SCE formation in inter-mutant hybrids revealed that M10 mutation is dominant, MS 1 and ES 4 mutations are semidominant, and ES 2 and AC 12 mutations are recessive. Because SCE frequencies in hybrids formed between pairs of 4 mutants (ES 2, MS 1, ES 4 and AC 12) were significantly lower than those in the tetraploid mutant cells, these 4 mutants probably belong to different complementation groups. Since M10 behaved dominantly with respect to SCE phenotype, it was not possible to determine by complementation test whether it belongs to a different group from the other mutants. However, the finding that M10 is complemented by other mutants for EMS sensitivity indicates that the M10 mutation is different from the other mutations. From these results, it is concluded that at least 4 different genes participate in the formation of high levels of baseline SCEs. The defects in ES 2, MS 1, ES 4, and AC 12 produce common lesions responsible for the formation of both SCEs and CAs. In contrast, the defect in M10 is associated with a high increase in spontaneous CA frequency, but conversely associated with a decrease in baseline SCE frequency. This suggests that M10 is defective in the process involved in the formation of baseline SCEs.  相似文献   

16.
Iron regulatory protein 1 (IRP1) is a bifunctional [4Fe-4S] protein that controls iron homeostasis. Switching off its function from an aconitase to an apo-IRP1 interacting with iron-responsive element-containing mRNAs depends on the reduced availability of iron in labile iron pool (LIP). Although the modulation of IRP1 by nitric oxide has been characterized, its impact on LIP remains unknown. Here, we show that inhibition of IRP1 aconitase activity and induction of its IRE-binding activity during exposure of L5178Y mouse lymphoma cells to NO are associated with an increase in LIP levels. Removal of NO resulted in a reverse regulation of IRP1 activities accompanied by a decrease of LIP. The increased iron burden in LIP caused by NO exacerbated hydrogen peroxide-induced genotoxicity in L5178Y cells. We demonstrate that the increase in LIP levels in response to chronic but not burst exposure of L5178Y cells to NO is associated with alterations in the expression of proteins involved in iron metabolism.  相似文献   

17.
The development of a system for the detection of somatic cell mutation to hypoxanthine-guanine-phosphoribosyl-transferase (HGPRT) (EC 2.4.2.8) deficiency in L5178Y mouse lymphoma cells is described. The selection of mutant cells was not influenced by the concentration of the selective agent 6-thioguanine (6-TG). In addition, all the mutants selected, spontaneous as well as induced ones, showed a complete loss of HGPRT activity. In reconstruction experiments, in which mutant cells were mixed with wild-type cells, the recovery of mutant cells was only markedly influenced when wild-type cells were seeded in a cell density ten times higher than the one, 5-10(4) cells/ml, used in subsequent induction experiments. X-irradiation and treatment with ethyl methanesulfonate (EMS) increased in the mutation rate above the spontaneous background. A clear-cut dose-dependent mutagenic effect after exposure to X-rays was measured. The rate of induced mutations at the HGPRT locus in lymphoma cells was 1-3-10(-7) per R, as determined after exposures of 200, 300, 400, 500 and 600 R. The time the cells needed to express their mutations was much longer than 48 h. Further study of this phenomenon showed that the optimal expression time for TGr-resistant mutants in L5178Y cells was 6 to 7 days. No indication for a dose-dependent effect on the optimal expression of the mutants was found.  相似文献   

18.
19.
Laboratory protocols and guidelines have been developed for the performance of point mutation assays using Chinese hamster ovary (CHO) cells, V79 cells, and L5178Y mouse lymphoma cells. Since only minor differences in the treatment of CHO and V79 cells exist, these two assays could be combined in one procedural guideline. A second protocol was developed for the mouse lymphoma assay in order to incorporate concerns and methods specific to that cell type and genetic locus. The protocols were based primarily on current laboratory practices as determined by responses to a detailed questionnaire completed by North-American and European governmental, university and contract laboratories involved with in vitro mutation testing. This report identifies those modifications to previously described methodologies which are being used on a regular basis, provides recommendations, and also serves to clarify confusing or inconsistent practices.  相似文献   

20.
p38 MAPK is mainly activated by stress stimuli and mediates signals that regulate various cellular responses, including cell-cycle progression and apoptosis, depending on cell types and stimuli. Here we examine the role of p38 in regulation of apoptosis and cell cycle checkpoint in Daudi B-cell lymphoma cells treated with the topoisomerase II inhibitor etoposide. Etoposide activated p38, inhibited the G2/M transition with the persistent inhibitory phosphorylation of Cdc2 on Tyr15, and caused apoptosis of Daudi cells. Inducible expression of a dominant negative p38α mutant in Daudi cells reduced the inhibition of Cdc2 as well as G2/M arrest and augmented apoptosis induced by etoposide. SB203580, a specific inhibitor of p38α and p38β, similarly reduced the inhibitory phosphorylation of Cdc2 as well as G2/M arrest and augmented apoptosis of Daudi cells treated with etoposide. These results suggest that p38 plays a role in G2/M checkpoint activation through induction of the persistent inhibitory phosphorylation of Cdc2 and, thereby, inhibits apoptosis of Daudi cells treated with etoposide. The present study, thus, raises the possibility that p38 may represent a new target for sensitization of lymphoma cells to DNA-damaging chemotherapeutic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号