首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Positional specificity of NodB-like domain of a multidomain xylanase U from Clostridium thermocellum (CtAxe) was investigated. Of three monoacetates of 4-nitrophenyl β-d-xylopyranoside the acetylxylan esterase domain showed a clear preference for the 2-acetate. Moreover, the enzyme was significantly activated by Co2+. Acetylated methyl β-d-xylopyranosides were deacetylated slightly better at position 3 than at position 2, suggesting that the enzyme binds the substrate with the small methyl aglycone also in the opposite orientation. Nevertheless, both positions 2 and 3 of methyl β-d-xylopyranoside were deacetylated much faster in the presence of the activating metal ion. In contrast, replacement of the hydroxyl group at either of these positions with fluorine or hydrogen, as well as acetylation of both positions, abolished the enzyme activity, regardless the absence or the presence of Co2+. Thus, the presence of the free vicinal hydroxyl group seems to be a prerequisite not only for an efficient deacetylation of position 2 or 3, but also for the activation of the enzyme with cobalt ion. The demonstrated involvement of the vicinal hydroxyl groups in the mechanism of deacetylation is in accord with 3-D structures of CtAxe as well as other CE4 metal-dependent deacetylases.  相似文献   

2.
The cellulolytic enzyme complex of Clostridium thermocellum is very large   总被引:11,自引:0,他引:11  
The cellulolytic enzyme system bound to cellulose during the early stages of growth of C. thermocellum on this substrate was resolved into two major complexes. These complexes, as viewed by electron microscopy, are spherical particles with diameters of 210 A and 610 A and calculated molecular weights of 4.2 million and 102 million daltons, respectively.  相似文献   

3.
4.
【目的】阐明嗜热细菌Clostridium thermocellum Xyn Z蛋白的阿魏酸酯酶催化域的酶学特性,为其在生物质能源及其它发酵工业中的应用奠定基础。【方法】分别构建了C.thermocellum Xyn Z的阿魏酸酯酶催化域(FAE)及该阿魏酸酯酶催化域和碳水化合物结合域(FAE-CBM6)编码基因的原核表达载体,并在大肠杆菌菌株BL21(DE3)中异源表达,在此基础上分析比较了温度、pH、底物、金属离子及CBM6结合域对阿魏酸酯酶活性的影响。【结果】重组FAE酶及FAE-CBM6酶发挥催化活性的适宜pH值为5.0-9.0,适宜温度为50-70°C,它们对不同金属离子的响应有差异。【结论】在同一反应条件下,FAE-CBM6酶的酶活均比FAE高,说明CBM6结合域的存在对于阿魏酸酯酶活性有促进作用。  相似文献   

5.
Feruloyl esterases function in the cleavage of ferulic acid's bonds to arabinoxylan and pectin where the ferulic acid moieties cross-link the layers of polysaccharide chains within hemicellulose. This work presents the crystal structure of FAE_XynZ, the domain of Clostridium thermocellum's cellulosomal xylanase Z that displays feruloyl esterase activity. The structure was obtained via multiple isomorphous replacement with anomalous scattering (MIRAS) using three heavy atom derivatives and refined against X-ray diffraction data of up to 1.75 A resolution. The R-value of the final model was 0.187 (R(free) = 0.21). FAE_XynZ displays an eight-stranded alpha/beta-fold with the characteristic "catalytic triad" at the heart of the active site. To define the substrate specificity determinants of the enzyme, the crystal structures of FAE_XynZ and the inactive FAE_XynZ(S172A) mutant were determined in complexes with the feruloyl-arabinoxylans FAXX and FAX(3), respectively. In the complex crystals, the ferulic acid moieties are clearly recognizable and allowed identification of the hydrophobic binding pocket. The carbohydrate part of both substrates is not visible in either structure. The location of the putative carbohydrate binding-pocket was inferred based on the location and orientation of the adjacent ferulic acid molecule. Five of the six residues lining the pocket were found to be conserved in FAE A from Orpinomyces sp., which further supports the proposed role of these amino acids.  相似文献   

6.
BACKGROUND: Degradation of the plant cell wall requires the synergistic action of a consortium of predominantly modular enzymes. In Clostridiae, these biocatalysts are organized into a supramolecular assembly termed a "cellulosome." This multienzyme complex possesses, in addition to its well-described cellulolytic activity, an apparatus specific for xylan degradation. Cinnamic acid esterases hydrolyze the ferulate groups involved in the crosslinking of arabinoxylans to lignin and thus play a key role in the degradation of the plant cell wall in addition to having promising industrial and medical applications. RESULTS: We have cloned and overexpressed the feruloyl esterase module from a 5 domain xylanase, Xyn10B from Clostridium thermocellum. The native structure at 1.6 A resolution has been solved with selenomethionine multiple wavelength anomalous dispersion and refined to a final R(free) of 17.8%. The structure of a hydrolytically inactive mutant, S954A, in complex with the reaction product ferulic acid has been refined at a resolution of 1.4 A with an R(free) of 16.0%. CONCLUSIONS: The C. thermocellum Xyn10B ferulic acid esterase displays the alpha/beta-hydrolase fold and possesses a classical Ser-His-Asp catalytic triad. Ferulate esterases are characterized by their specificity, and the active center reveals the binding site for ferulic acid and related compounds. Ferulate binds in a small surface depression that possesses specificity determinants for both the methoxy and hydroxyl ring substituents of the substrate. There appears to be a lack of specificity for the xylan backbone, which may reflect the intrinsic chemical heterogeneity of the natural substrate.  相似文献   

7.
The cellulosome of Clostridium thermocellum is a multiprotein complex with endo- and exocellulase, xylanase, beta-glucanase, and acetyl xylan esterase activities. XynY and XynZ, components of the cellulosome, are composed of several domains including xylanase domains and domains of unknown function (UDs). Database searches revealed that the C- and N-terminal UDs of XynY and XynZ, respectively, have sequence homology with the sequence of a feruloyl esterase of strain PC-2 of the anaerobic fungus Orpinomyces. Purified cellulosomes from C. thermocellum were found to hydrolyze FAXX (O-(5-O-[(E)-feruloyl]-alpha-L-arabinofuranosyl)-(1-->3)-O-beta-D- xyl opyranosyl-(1-->4)-D-xylopyranose) and FAX(3) (5-O-[(E)-feruloyl]-[O-beta-D-xylopyranosyl-(1-->2)]-O-alpha-L- arabinofuranosyl-[1-->3])-O-beta-D-xylopyranosyl-(1-->4)-D-xylopyranose) , yielding ferulic acid as a product, indicating that they have feruloyl esterase activity. Nucleotide sequences corresponding to the UDs of XynY and XynZ were cloned into Escherichia coli, and the expressed proteins hydrolyzed FAXX and FAX(3). The recombinant feruloyl esterase domain of XynZ alone (FAE(XynZ)) and with the adjacent cellulose binding domain (FAE-CBD(XynZ)) were characterized. FAE-CBD(XynZ) had a molecular mass of 45 kDa that corresponded to the expected product of the 1,203-bp gene. K(m) and V(max) values for FAX(3) were 5 mM and 12.5 U/mg, respectively, at pH 6.0 and 60 degrees C. PAX(3), a substrate similar to FAX(3) but with a p-coumaroyl group instead of a feruloyl moiety was hydrolyzed at a rate 10 times slower. The recombinant enzyme was active between pH 3 to 10 with an optimum between pH 4 to 7 and at temperatures up to 70 degrees C. Treatment of Coastal Bermuda grass with the enzyme released mainly ferulic acid and a lower amount of p-coumaric acid. FAE(XynZ) had similar properties. Removal of the 40 C-terminal amino acids, residues 247 to 286, of FAE(XynZ) resulted in protein without activity. Feruloyl esterases are believed to aid in a release of lignin from hemicellulose and may be involved in lignin solubilization. The presence of feruloyl esterase in the C. thermocellum cellulosome together with its other hydrolytic activities demonstrates a powerful enzymatic potential of this organelle in plant cell wall decomposition.  相似文献   

8.
Acetylxylan esterases hydrolyze the ester linkages of acetyl groups at positions 2 and/or 3 of the xylose moieties in xylan and play an important role in enhancing the accessibility of xylanases to the xylan backbone. The hemicellulolytic system of the thermophilic bacterium Geobacillus stearothermophilus T-6 comprises a putative acetylxylan esterase gene, axe2. The gene product belongs to the GDSL hydrolase family and does not share sequence homology with any of the carbohydrate esterases in the CAZy Database. The axe2 gene is induced by xylose, and the purified gene product completely deacetylates xylobiose peracetate (fully acetylated) and hydrolyzes the synthetic substrates 2-naphthyl acetate, 4-nitrophenyl acetate, 4-methylumbelliferyl acetate, and phenyl acetate. The pH profiles for k(cat) and k(cat)/K(m) suggest the existence of two ionizable groups affecting the binding of the substrate to the enzyme. Using NMR spectroscopy, the regioselectivity of Axe2 was directly determined with the aid of one-dimensional selective total correlation spectroscopy. Methyl 2,3,4-tri-O-acetyl-β-d-xylopyranoside was rapidly deacetylated at position 2 or at positions 3 and 4 to give either diacetyl or monoacetyl intermediates, respectively; methyl 2,3,4,6-tetra-O-acetyl-β-d-glucopyranoside was initially deacetylated at position 6. In both cases, the complete hydrolysis of the intermediates occurred at a much slower rate, suggesting that the preferred substrate is the peracetate sugar form. Site-directed mutagenesis of Ser-15, His-194, and Asp-191 resulted in complete inactivation of the enzyme, consistent with their role as the catalytic triad. Overall, our results show that Axe2 is a serine acetylxylan esterase representing a new carbohydrate esterase family.  相似文献   

9.
The microbial degradation of the plant cell wall is of increasing industrial significance, exemplified by the interest in generating biofuels from plant cell walls. The majority of plant cell-wall polysaccharides are acetylated, and removal of the acetyl groups through the action of carbohydrate esterases greatly increases the efficiency of polysaccharide saccharification. Enzymes in carbohydrate esterase family 3 (CE3) are common in plant cell wall-degrading microorganisms but there is a paucity of structural and biochemical information on these biocatalysts. Clostridium thermocellum contains a single CE3 enzyme, CtCes3, which comprises two highly homologous (97% sequence identity) catalytic modules appended to a C-terminal type I dockerin that targets the esterase into the cellulosome, a large protein complex that catalyses plant cell wall degradation. Here, we report the crystal structure and biochemical properties of the N-terminal catalytic module (CtCes3-1) of CtCes3. The enzyme is a thermostable acetyl-specific esterase that exhibits a strong preference for acetylated xylan. CtCes3-1 displays an α/β hydrolase fold that contains a central five-stranded parallel twisted β-sheet flanked by six α-helices. In addition, the enzyme contains a canonical catalytic triad in which Ser44 is the nucleophile, His208 is the acid-base and Asp205 modulates the basic nature of the histidine. The acetate moiety is accommodated in a hydrophobic pocket and the negative charge of the tetrahedral transition state is stabilized through hydrogen bonds with the backbone N of Ser44 and Gly95 and the side-chain amide of Asn124.  相似文献   

10.

Background

The twin problem of shortage in fossil fuel and increase in environmental pollution can be partly addressed by blending of ethanol with transport fuel. Increasing the ethanol production for this purpose without affecting the food security of the countries would require the use of cellulosic plant materials as substrate. Clostridium thermocellum is an anaerobic thermophilic bacterium with cellulolytic property and the ability to produce ethanol. But its application as biocatalyst for ethanol production is limited because pyruvate ferredoxin oxidoreductase, which diverts pyruvate to ethanol production pathway, has low affinity to the substrate. Therefore, the present study was undertaken to genetically modify C. thermocellum for enhancing its ethanol production capacity by transferring pyruvate carboxylase (pdc) and alcohol dehydrogenase (adh) genes of the homoethanol pathway from Zymomonas mobilis.

Results

The pdc and adh genes from Z. mobilis were cloned in pNW33N, and transformed to Clostridium thermocellum DSM 1313 by electroporation to generate recombinant CTH-pdc, CTH-adh and CTH-pdc-adh strains that carried heterologous pdc, adh, and both genes, respectively. The plasmids were stably maintained in the recombinant strains. Though both pdc and adh were functional in C. thermocellum, the presence of adh severely limited the growth of the recombinant strains, irrespective of the presence or absence of the pdc gene. The recombinant CTH-pdc strain showed two-fold increase in pyruvate carboxylase activity and ethanol production when compared with the wild type strain.

Conclusions

Pyruvate decarboxylase gene of the homoethanol pathway from Z mobilis was functional in recombinant C. thermocellum strain and enhanced its ability to produced ethanol. Strain improvement and bioprocess optimizations may further increase the ethanol production from this recombinant strain.
  相似文献   

11.
We have shown that sodium salicylate (SA) activates the heat shock promoter and induces the expression of heat shock proteins (Hsps) with a concomitant increase in the thermotolerance of cells. To identify the functional groups of SA necessary for the induction of Hsps, we evaluated the effect of various derivatives of SA using a mammalian cell line containing a reporter gene downstream of an hsp105 promoter. Among the derivatives, the compounds in which the carboxyl group of SA was substituted activated the hsp105 promoter at 37 degrees C as SA did, but the compounds in which the hydroxyl group was substituted did not. Thus, the phenylic hydroxyl group but not the carboxyl group of SA seemed to be necessary for a stress-induced response. In addition, the orientation of two functional groups on the benzene ring of SA derivatives was also important for the induction of a response. Among these compounds, salicylalcohol which strongly induced the expression of Hsps suppressed the protein aggregation and apoptosis caused by an expanded polyglutamine tract in a cellular model of polyglutamine disease. These findings may aid in the development of novel effective Hsp-inducers.  相似文献   

12.
13.
The crude extracellular cellulase from Clostridium thermocellum was oxidatively inactivated by air and inhibited by sulfhydryl reagents. Activity-loss was prevented and reversed by the addition of a high concentration (10 mM) dithiothreitol (DDT) at zero time and up to 24 h respectively. In the presence of a low concentration (0.4 mM) of DTT, the enzyme was more rapidly inactivated than in air alone. This was probably due to autoxidation of the low DTT concentration to H2O2 as shown by its prevention by a high DTT concentration, exclusion of air, or catalase; and by the oxidative inactivation of the enzyme by H2O2. The inactivation by H2O2 could be prevented by a high concentration of DTT but not by air exclusion. EDTA protected the enzyme from inactivation in air by a low concentration of DTT or by H2O2. This is presumably due to the role of metals in oxidation of SH groups. Furthermore, copper (5 M) also caused inactivation and this was prevented by the presence of a high DTT concentration. Even in the protective atmosphere of a high DTT concentration, cellulase was inactivated by certain apolar chelating agents such as o-phenanthroline and -1-dipyridyl, such inactivation being preventable by the prior incubation of the chelator with a mixture of Fe2+ and Fe3+. These data suggest that the clostridial cellulase, unlike the enzyme from aerobic fungi, contains essential sulfhydryl groups and is stimulated by iron. The endo--glucanase component of the cellulase complex was not susceptible to oxidative inactivation.Abbreviations DTT dithiothreitol - CMC carboxymethylcellulose - DTNB 5,5-dithiobis-(2-nitrobenzoic acid) - NEM N-ethylmaleimide - p-CMB p-chloromercuribenzoic acid  相似文献   

14.
To investigate the role of the hydroxyl group at position 4 of the phorbol esters in protein kinase C (PKC) binding and function, 4beta-deoxy-phorbol-12,13-dibutyrate (4beta-deoxy-PDBu, 5a) and 4beta-deoxy-phorbol-13-acetate (6a) were synthesized from phorbol (1). The binding affinities of these 4beta-deoxy compounds (5a, 6a) to the 13 PKC isozyme C1 domains were quite similar to those of the corresponding 4beta-hydroxy compounds (4a, 4b), suggesting that the C4 hydroxyl group of phorbol esters is not necessary for PKC binding. Moreover, functional assays showed that 4beta-deoxy-PDBu (5a) exhibited biological activities (Epstein-Barr virus induction and superoxide generation) equally potent to those of PDBu (4a). These solution phase results differ from expectations based on the previously reported solid-phase structure of the complex of PKCdelta-C1B and phorbol-13-acetate (4b).  相似文献   

15.
The natural antimicrobial compound carvacrol shows a high preference for hydrophobic phases. The partition coefficients of carvacrol in both octanol-water and liposome-buffer phases were determined (3.64 and 3.26, respectively). Addition of carvacrol to a liposomal suspension resulted in an expansion of the liposomal membrane. Maximum expansion was observed after the addition of 0.50 micromol of carvacrol/mg of L-alpha-phosphatidylethanolamine. Cymene, a biological precursor of carvacrol which lacks a hydroxyl group, was found to have a higher preference for liposomal membranes, thereby causing more expansion. The effect of cymene on the membrane potential was less pronounced than the effect of carvacrol. The pH gradient and ATP pools were not affected by cymene. Measurement of the antimicrobial activities of compounds similar to carvacrol (e.g., thymol, cymene, menthol, and carvacrol methyl ester) showed that the hydroxyl group of this compound and the presence of a system of delocalized electrons are important for the antimicrobial activity of carvacrol. Based on this study, we hypothesize that carvacrol destabilizes the cytoplasmic membrane and, in addition, acts as a proton exchanger, thereby reducing the pH gradient across the cytoplasmic membrane. The resulting collapse of the proton motive force and depletion of the ATP pool eventually lead to cell death.  相似文献   

16.
Abstract Ten distinct Eco RI fragments of Clostridum thermocellum DNA have been cloned in Escherichia coli and shown to express enzymatic activities related to cellulose degradation. Two of the cloned fragments appeared to carry the previously characterized celA and celB genes, which code for the endoglucanases (EG) A and B. Five other cloned fragments code for hitherto unidentified EGs, which can be detected by the Congo red test for hydrolysis of carboxymethylcellulose (CMC). In addition, three separate clones hydrolyzed methylumbelliferyl-β-cellobioside (MUC) but not CMC, hinting that they may express three different cellobiohydrolase genes.  相似文献   

17.
18.
Endoglucanase CelA from Clostridium thermocellum (CtCelA) is a thermophilic endo-β-1,4-glucanase and has a low solubility when expressed in Escherichia coli. To make industrial application of CtCeA more appealing, artificial oil bodies (AOBs) was implemented for one-step renaturation and immobilization of recombinant CtCelA. CtCelA was first fused with oleosin (Ole-CtCelA), a structural protein of plant seed oils. Ole-CtCelA was overexpressed in E. coli, and its insoluble form was recovered and mixed with plant oils to assemble AOBs. Moreover, the Box–Behnken design and the central composite design were employed to optimize the condition for assembly of AOBs and the enzymatic reaction condition, respectively. Consequently, the approach led to the resumption of active CtCelA on AOBs. CtCelA-bound AOBs exhibited an optimum activity at 69 °C and pH 6.3 while the immobilized protein remained stable for several hours at 70 °C and after 5 repeated uses. Overall, it indicates a promise of this novel approach for direct processing and immobilization of recombinant CtCelA.  相似文献   

19.
The nucleotide sequence of the CelB gene, encoding the extracellular endoglucanase B of Clostridium thermocellum, is reported. The putative start of the 1689 bp coding sequence was assigned to an ATG codon which is preceded by an AGGAGG sequence typical of ribosomal binding sites in Gram-positive bacteria. The amino-terminal end of the deduced protein sequence is similar to signal peptides described for other bacterial secretory proteins. The carboxy-terminal ends of endoglucanases A and B appear to be remarkably homologous. A striking feature of the conserved region is that both proteins contain two reiterated stretches of 23 aminoacids each, separated by 9 residues.  相似文献   

20.
Numerous bacterial and fungal organisms have evolved elaborate sets of modular glycoside hydrolases and similar enzymes aimed at the degradation of polymeric carbohydrates. Presently, on the basis of sequence similarity catalytic modules of these enzymes have been classified into 90 families. Representatives of a particular family display similar fold and catalytic mechanisms. However, within families distinctions occur with regard to enzymatic properties and type of activity against carbohydrate chains. Cellobiohydrolase CbhA from Clostridium thermocellum is a large seven-modular enzyme with a catalytic module belonging to family 9. In contrast to other representatives of that family possessing only endo- and, in few cases, endo/exo-cellulase activities, CbhA is exclusively an exocellulase. The crystal structures of the combination of the immunoglobulin-like module and the catalytic module of CbhA (Ig-GH9_CbhA) and that of an inactive mutant Ig-GH9_CbhA(E795Q) in complex with cellotetraose (CTT) are reported here. The detailed analysis of these structures reveals that, while key catalytic residues and overall fold are conserved in this enzyme and those of other family 9 glycoside hydrolases, the active site of GH9_CbhA is blocked off after the -2 subsite. This feature which is created by an extension and altered conformation of a single loop region explains the inability of the active site of CbhA to accommodate a long cellulose chain and to cut it internally. This altered loop region is responsible for the exocellulolytic activity of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号